

FlywheelTools:

Data Curation and Manipulation on the Flywheel Platform

Tinashe M. Tapera1, Matthew Cieslak, PhD1, Max Bertolero, PhD1, Azeez Adebimpe, PhD1, 1
Geoffrey K. Aguirre, MD, PhD2, Ellyn R. Butler1, Philip A. Cook3, Diego Davila1, Mark A. 2
Elliott, PhD3, Sophia Linguiti1, Kristin Murtha1, William Tackett2, John A. Detre, MD2, 3
Theodore D. Satterthwaite, MD1* 4

1Penn Lifespan Informatics & Neuroimaging Center, Department of Psychiatry, University of 5
Pennsylvania, Philadelphia, PA, USA 6

2Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 7
PA, USA. 8

3Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA 9

* Address correspondence to: sattertt@pennmedicine.upenn.edu	 10

 FlywheelTools

ABSTRACT 11

The recent and growing focus on reproducibility in neuroimaging studies has led many major 12
academic centers to use cloud-based imaging databases for storing, analyzing, and sharing complex 13
imaging data. Flywheel is one such database platform that offers easily accessible, large-scale data 14
management, along with a framework for reproducible analyses through containerized pipelines. The 15
Brain Imaging Data Structure (BIDS) is the de facto standard for neuroimaging data, but curating 16
neuroimaging data into BIDS can be a challenging and time-consuming task. In particular, standard 17
solutions for BIDS curation are limited on Flywheel. To address these challenges, we developed 18
“FlywheelTools”, a software toolbox for reproducible data curation and manipulation on Flywheel. 19
FlywheelTools includes two elements: fw-heudiconv, for heuristic-driven curation of data into BIDS, 20
and flaudit, which audits and inventories projects on Flywheel. Together, these tools accelerate 21
reproducible neuroscience research on the widely used Flywheel platform. 22

KEYWORDS: neuroimaging, neuroinformatics, BIDS, curation, Python 23

24

 FlywheelTools

1 INTRODUCTION 25
Many fields in science are grappling with failures of scientific reproducibility (Botvinik-Nezer et al. 26
2020). Given the high dimensionality of the data, the need for complex image processing, and a 27
plethora of analytic techniques, this crisis is particularly acute for neuroimaging research. As such, 28
major academic centers and large consortia have increasingly adopted platforms that leverage 29
database technologies that have become standard in other fields. In addition to providing 30
functionality for searching and categorizing complex source data, imaging databases enhance 31
reproducible research by providing a clear audit trail of image processing applied to the data and its 32
results, including both derived images and other data. Widely used imaging databases include 33
Collaborative Informatics Neuroimaging Suite (COINS) (Landis et al. 2016), eXtensible 34
Neuroimaging Archive Toolkit (XNAT) (Herrick et al. 2016), Longitudinal Online Research and 35
Imaging System (LORIS) (Vaccarino et al. 2018), and others (Book et al. 2016; Helmer et al. 2011; 36
Rogovin et al. 2020; Helmer et al. 2011; Poldrack and Gorgolewski 2017; Sherif et al. 2014). More 37
recently, the commercial platform Flywheel has become widely used due to its modern technology, 38
ease of use, and scalability. 39

Many neuroimaging databases now leverage the Brain Imaging Data Structure (BIDS) (Gorgolewski 40
et al. 2016). BIDS is an open-source standard for neuroimaging data organization that specifies how 41
files should be named, how directories should be organized, and how metadata should be structured. 42
As such, BIDS provides users with a well-documented structure to understand both imaging data and 43
metadata. Importantly, as BIDS provides transparent format for recording imaging parameters and 44
key aspects of the experimental design, it enhances both data accessibility and data sharing. BIDS 45
has rapidly evolved to become the standard in the neuroimaging community for data organization. 46
Importantly, BIDS is supported by a large community that contributes to its development and 47
adoption. Further, proposals for BIDS schema pass through a rigorous testing process before being 48
adopted. 49

Notably, BIDS allows users to leverage BIDS-apps — image processing pipelines, (e.g., fMRIPrep, 50
C-PAC, and QSIprep) that read the metadata defined by BIDS (Esteban et al. 2019; Craddock et al. 51
2013; Cieslak et al. 2020). As BIDS-apps can auto-configure to ensure that analytic parameters are 52
appropriate for the input data provided, they dramatically reduce barriers to implementing best 53
practices in image processing. Importantly, containerized BIDS-apps encompass all software 54
dependencies, further enhancing reproducibility. 55

On a filesystem, conversion of raw DICOM images to NIfTIs that conform to BIDS can be 56
accomplished with a variety of tools including HeuDiConv, dcm2bids, and others (Halchenko et al. 57
2018). However, this crucial step, a process typically called “BIDS curation,” is incompletely 58
implemented on Flywheel. While Flywheel provides automated BIDS curation, flexibility is limited. 59
As BIDS curation is one of the very first steps performed on the data, flexibility in curation is 60
essential. Here we introduce FlywheelTools: software that provides flexible and reproducible 61
methods for BIDS curation on the Flywheel platform. Documentation and code can be found online 62
at: https://fw-heudiconv.readthedocs.io/en/latest/. 63

2 METHODS 64
The FlywheelTools toolkit allows users to follow a reproducible workflow for BIDS curation and 65
auditing of their data. This workflow typically includes inspection of sequences collected during a 66
study, design of a curation schema, implementation of that curation schema, and auditing the curated 67
data. 68

 FlywheelTools

2.1 Programming Languages & Technologies 69

FlywheelTools is built primarily in Python 3.6 (Van Rossum and Drake 2009) to leverage Flywheel’s 70
highly accessible Software Development Kit (SDK). Additionally, R 3.4.1 (R Core Team 2019) is 71
used for HTML report generation. For reproducibility and workflow management, the modules of 72
FlywheelTools are packaged as Docker container images (Merkel 2014). It should be noted that 73
FlywheelTools relies on users adopting BIDS as their data standard. 74

2.2 Flywheel 75

Flywheel is a data management and analysis platform that is tailored for neuroimaging research. The 76
platform focuses heavily on collaborative and reproducible science. User-facing components of the 77
platform itself are the web User Interface (UI), the Command Line Interface (CLI), the Flywheel 78
Software Development Kit (SDK), and the Application Programming Interface (API). 79

2.3 Flywheel Web UI 80

The web UI is accessible through any modern web browser. Through this point-and-click interface, 81
users are able to upload, view, download, and analyze data with ease. However, accomplishing tasks 82
with many repetitive steps or over a large number of participants/sessions can be tiresome and error-83
prone. In addition to interactions via web GUI, many users also make use of the API and SDK to 84
manipulate and analyze data programmatically. 85

2.4 Flywheel API & SDK 86

Flywheel’s database uses MongoDB for data storage and access, meaning that all Flywheel data are 87
represented by hierarchical relationships between document objects. This allows users to create and 88
store complex structures with ease, and query data rapidly (Banker 2011). To access these data, 89
Flywheel uses a RESTful Application Programming Interface (REpresentational State Transfer) 90
(Biehl 2016), making each document or data object accessible through a specific URL that a web 91
browser or SDK can access by requesting the data and waiting for a response from the server. The 92
Flywheel Python SDK1 provides a powerful interface for inspecting and manipulating data through 93
this API. By standardising this underlying data model into Pythonic objects, the Flywheel SDK is 94
effectively an object relationship mapper, similar to the popular SQLAlchemy software. 95

2.5 Flywheel Data Model 96

Objects in Flywheel’s data model follow a specific hierarchical structure — at the top level is a 97
Flywheel instance, a process that serves the API to an organization (for example, a neuroimaging 98
center). Within the Flywheel instance, there are multiple groups, which are typically labs or research 99
units that collaborate on one or more projects. Each project object can have one or many subjects (i.e. 100
participants), and each subject can have one or many sessions (i.e. scanning visits). Within a session, 101
there may be one or many acquisition objects which represent the scanning sequences collected 102
during a particular scan or examination (e.g., sMRI, rs-fMRI, dMRI). Finally, the data files 103
associated with the sequence (e.g., NIfTIs or DICOMs) are attached to each acquisition. Note that a 104
file can additionally be attached to any object type, and each object can have metadata associated 105
with it. Hence, a “subject” object may have metadata associated with that participant (such as 106

	
1	Flywheel also provides a MATLAB SDK, however we use the term SDK in this work to refer to the
Python SDK, which we use exclusively in FlywheelTools.	

 FlywheelTools

demographic information) and may also have a text file attached to it (such as clinical data). A 107
notable exception to this hierarchical structure is the analysis object, which behaves in much the 108
same way as others but can be a child object of any other object, allowing researchers to create 109
analyses of entire projects, for example, each with their own associated metadata and files. 110
 111
Abstracting this data model in Python results in simple hierarchical objects, each with methods for 112
handling metadata and files, and methods for accomplishing object-specific tasks like traversing the 113
hierarchical structure or running analyses. The modules of FlywheelTools make use of this data 114
model to accomplish a wide range of tasks. 115

2.6 Flywheel Gears 116

Flywheel encourages the use of pre-packaged computational workflows, called “gears”. Gears are 117
run by virtual machines using Docker; as such, they are version-controlled and can be executed on 118
any platform supporting Docker. Gears can accomplish tasks such as data manipulation, pre-119
processing, and analysis. In addition to the existing gears available on the platform, users are able to 120
package their own software in a gear and use it for running analysis workflows on their Flywheel 121
data via the web UI or SDK. The complexity and frequency of the task help to guide if a task should 122
be accomplished using the web UI, programmatically using the SDK, or by wrapping a workflow 123
into a gear. Gear developers are able to construct configurable options and necessary inputs for their 124
gear in a standardized manifest file, written as a JSON. These configurations appear as clickable 125
options in the GUI, can be set programmatically using the SDK, or specified using the command line 126
interface. Once a gear is launched, the gear queries Flywheel for the specified input data (such as 127
images or file attachments) and runs the pipeline. Once a workflow has completed running, Flywheel 128
collects any files remaining in the pre-defined output directory of the container and attaches them to a 129
resulting analysis object. The output of a gear (such as an HTML report or tabulated data) can be 130
viewed on the Flywheel UI, downloaded to disk for further sharing or analysis, or used as input to a 131
subsequent gear. 132
 133

3 RESULTS 134

FlywheelTools is implemented using the Flywheel SDK to enable easy inspection, curation, 135
validation, and audit of Flywheel data through a handful of user-friendly gears and command-line 136
interfaces. The first module of the package is fw-heudiconv, a toolbox for reproducible curation of 137
neuroimaging data into BIDS on Flywheel. The second module, flaudit, is a tool for auditing a 138
Flywheel project, giving users an overview of the key elements of their dataset. 139

3.1 FW-HEUDICONV 140

The first tool, fw-heudiconv2, is a multi-purpose command-line interface and Flywheel gear designed 141
for BIDS curation on Flywheel (Figure 1). It is designed to be intuitive, flexible, and reproducible. 142
Users of the Flywheel gear have used it to successfully run 27,251 jobs at the time of this writing. 143

3.1.1 Architecture & Design 144

	
2 https://github.com/PennLINC/fw-heudiconv

 FlywheelTools

To curate data into BIDS format, fw-heudiconv first considers DICOM data to be the “ground truth” 145
and builds its curation approach using data in the DICOM headers. DICOMs are added to the 146
Flywheel database, either through manual upload or automatically from a linked scanner. The 147
DICOMs are then automatically converted into NIfTI files by Flywheel’s automated gears. The result 148
is an acquisition object with both DICOMs and one or more NIfTIs. Ultimately, fw-heudiconv only 149
has permission to manipulate metadata associated with a NIfTI file. By not manipulating DICOMs or 150
their associated metadata, BIDS curation can safely be reproduced from ground truth data. 151

fw-heudiconv can be downloaded as a command-line tool from the Python Package Index using pip 152
or can be run from the Flywheel GUI as a gear. Running fw-heudiconv as a gear has the added 153
advantage of containerization, allowing gear configuration and all changes to the data to be tracked. 154
There are a number of commands available in fw-heudiconv, and each of them starts by querying data 155
from Flywheel. Users can filter their queries to operate on an entire Flywheel project, a subset of 156
subjects, or a subset of sessions. Notably, with the --dry-run option, each command has the 157
ability to test and evaluate its effects without actually manipulating metadata in the Flywheel 158
database or writing data to disk. Below, we consider each of the five available commands. 159

3.1.1.1 fw-heudiconv-tabulate 160

The tabulate tool is used to parse and extract DICOM header information in a project (or within a 161
filtered subset of that project) and compile these data into a table for the user to examine. By 162
collecting DICOM header information into a tabular format, the tabulate tool gives users a 163
comprehensive overview of the different scanning sequences that have been collected in the query, 164
including the sequence parameters. Additionally, users have the option to limit the tabulation to a 165
unique combination of common DICOM header fields, which significantly decreases the complexity 166
of the table. When used at the command line, the table produced by this command is written to a 167
local disk. When used as a gear on Flywheel, once the workflow has completed running, Flywheel 168
collects any files remaining in the pre-defined output directory of the container and attaches them to 169
the resulting analysis object. 170

3.1.1.2 fw-heudiconv-curate 171

The curate tool is used to curate a dataset on Flywheel into BIDS format. Much like HeuDiConv, 172
curation is accomplished through the use of a heuristic: a Python file that programmatically defines 173
the templates for a range of BIDS-valid filenames, and defines the boolean logic that would assign a 174
given scanning sequence to each template. This logic is usually based on the sequence information 175
users find in the tabulation of sequences, but all fields available in the DICOM header can be used to 176
determine which template a particular file can be assigned to. Additionally, the curate tool can be 177
used to manipulate BIDS metadata that may need to be added to the dataset. The process of curation 178
only manipulates the BIDS metadata of NIfTI files, and hence can be repeated or updated at any time 179
at the user’s discretion. In addition to hardcoding metadata, users can also use the heuristic to create 180
and upload additional BIDS files (e.g., a README, participants TSV, or events TSV). If the 181
required dataset description does not already exist in the project, it is auto-populated by fw-182
heudiconv with the minimum required fields. The curate tool ensures that these files are tracked as 183
BIDS files by hardcoding their relative BIDS paths into the file’s Flywheel metadata. 184

3.1.1.3 fw-heudiconv-export 185

The export tool is used to export a BIDS dataset on Flywheel to disk. It can also be used by other 186
gears or scripts to easily extract their BIDS data into the workspace of an analysis pipeline. 187

 FlywheelTools

Importantly, the export tool downloads all additional files created by the curate tool by ensuring they 188
have been created with BIDS-valid paths in their metadata. 189

3.1.1.4 fw-heudiconv-validate 190

The validate tool is a wrapper around the popular BIDS Validator package and is used to check if the 191
applied curation results in a BIDS-valid dataset (Gorgolewski et al., 2020). After exporting a dataset 192
with fw-heudiconv-export, the validate tool runs the BIDS Validator on the dataset and returns the 193
verbose output of the errors and warnings given by the BIDS Validator. Additionally, the results of 194
the validator can be tabulated for easy inspection. On the Flywheel GUI, fw-heudiconv-validate also 195
displays a green check mark in the analysis tab for a successful validation, and a red check mark 196
otherwise, allowing for quick visual inspection of BIDS curation status for each session. 197

3.1.1.5 fw-heudiconv-clear 198

The clear tool is used to clear BIDS information cleanly and safely from the project or subjects and 199
sessions queried. This can be useful when a user wants to rerun the curation. The previously created 200
persistent fields can be removed by running fw-heudiconv-clear before re-curating. 201

3.1.2 The Heuristic File 202

The heuristic file is a Python file used as input to the fw-heudiconv-curate command. The file 203
instructs fw-heudiconv on how to programmatically sort and parse through each acquisition object in 204
Flywheel and assign it to a valid BIDS naming template. This is done by checking the attributes of a 205
list of seqInfo objects — which are generated from each DICOM’s header information — against 206
user-defined boolean rules. For example, if a T1-weighted image is present in a dataset, the user may 207
define a string with a BIDS-valid naming template for this type of file, such as: 208

t1w = 'sub-{SubjectLabel}_ses-{SessionLabel}_T1w.nii.gz' 209

Where the SubjectLabel and SessionLabel portions are expected to be automatically generated for 210
each subject and session in the dataset. After the DICOM SeriesDescription field is added to the 211
SeriesDescription attribute of seqInfo, the user can create a simple boolean expression to check if the 212
string ‘T1w’ is in the SeriesDescription. If such a rule is met, this acquisition and its NIfTI file will 213
be assigned to the T1-weighted image naming template. The NIfTI file will ultimately have this 214
BIDS naming added to its metadata and be named correctly when exported to a filesystem. In more 215
complex naming scenarios, fw-heudiconv can flexibly use boolean expressions involving any number 216
of seqInfo attributes, which the user can access in the output of fw-heudiconv-tabulate. 217

In addition to setting naming templates, the heuristic file can also be used to hard-code and assign 218
metadata in BIDS. These data are hard-coded into the metadata of the file object on Flywheel and are 219
assigned by using specially reserved functions and keywords in fw-heudiconv. For example, the 220
heuristic file can be used to point fieldmap scans to their intended sequences using a list: 221

IntendedFor = { 222

fieldmap1: ['sub-{SubjectLabel}_ses-{SessionLabel}_task-rest_bold.nii.gz'] 223

} 224

 FlywheelTools

By reserving select keywords for functions and metadata, heuristic files become versatile tools for 225
defining and manipulating a wide array of metadata in Flywheel BIDS curation. For example, users 226
can make use of the keywords ReplaceSubject() or ReplaceSession() to create functions that 227
dynamically and programmatically manipulate subject or session labels shown in BIDS. The 228
MetadataExtras keyword is used for hardcoding metadata fields found in JSON sidecars, and the 229
AttachToProject() and AttachToSession() keywords can be used to dynamically attach BIDS files to 230
Flywheel objects. 231

Importantly, because this heuristic file is plain text Python code, users are able to version control 232
their files using Git and share these files via Github. Finally, when run on Flywheel as a gear, the 233
heuristic file is automatically attached as an input to the analysis object created by fw-heudiconv-234
curate, allowing users to easily access the version history of their curation. 235

3.1.3 Curation Workflow 236

For most users, the curation workflow follows the sequence detailed above (Figure 2). After 237
DICOMs have been converted to NIfTIs, users can then begin by running fw-heudiconv-tabulate to 238
gather the information stored in the DICOM headers necessary for creating a heuristic. Once the 239
tabulation has been completed, the output file can be opened by any program that can read tabular 240
data. At this stage, users can begin creating a heuristic file and running fw-heudiconv-curate, using 241
the --dry-run flag to test the heuristic changes incrementally with informative logging. When 242
satisfied, users can simply remove the --dry-run flag to apply the changes. The user can then use 243
fw-heudiconv-validate to run the BIDS validator on the dataset or start over by removing all BIDS 244
metadata with fw-heudiconv-clear. 245

Importantly, when running at the command line, all fw-heudiconv tools run on the entire Flywheel 246
project by default, but all come with optional --subject and --session flags to allow the user to specify 247
operations. The recommended workflow at the command line is to first develop and test the heuristic 248
file on a single subject’s session. Often, it is most useful to conduct testing on the session with the 249
most complete data. When testing is complete and curation works as intended, this heuristic can be 250
applied to the full project. When using the Flywheel GUI, gears by default run at the session level. In 251
this case, users can similarly develop and test their heuristic on a single session using the GUI. When 252
satisfied with that session’s curation, the gear can be run from the project level to curate all the 253
available data. This option is beneficial for data provenance, as all of a gear’s commands and inputs, 254
as well as outputs and logs, are stored and attached to each gear run. 255

3.2 FLAUDIT 256

The second module of FlywheelTools is a Flywheel project auditor, named flaudit3. The module is 257
intended to give Flywheel users a broad understanding of their entire Flywheel project, by 258
summarizing the available data and illustrating analysis workflows. The output of this module, a 259
portable HTML report, presents this information using a number of visualizations built in R 260
Markdown using HTML, Javascript, and ggplot2, in two main sections: project overview and project 261
completeness. 262

3.2.1 Architecture & Design 263

	
3 https://github.com/PennLINC/flaudit

 FlywheelTools

Using internal machinery similar to fw-heudiconv-tabulate, flaudit loops over existing data in a 264
project and tabulates information about scanning sequences, BIDS metadata, and gear analyses that 265
have been run. These three tables are saved internally and then passed as input to an R markdown 266
script that generates an interactive HTML report. The data are also saved as output for the user to 267
further access and analyze in their software of choice. 268

3.2.2 Flaudit: Project Overview 269

The overview section of the flaudit report provides a numerical overview of sequences, BIDS data, 270
gear runs, and gear runtimes. 271

The first visualization uses the sequence data input to create a bar chart visualizing the names of the 272
different sequences acquired across the entire Flywheel dataset. This chart is accompanied by an 273
interactive table that users can search to compare values (Figure 3). 274

Next, using the BIDS metadata input, the report provides an interactive tree viewer to examine BIDS 275
curation. In the tree, the nodes branch out from the project to show each sequence acquisition. For 276
each acquisition, if the data has been curated into BIDS, the node itself can also branch out to show a 277
BIDS name template, demonstrating what BIDS name that sequence has been given. Hovering over 278
the BIDS name will display the number of subjects whose data have been named as such (Figure 4). 279

Finally, using the gear analysis data as input, the last section of the overview enumerates the gear 280
analyses that have been run successfully on any session within the project, and enumerates the 281
runtimes for these processes. The results are visualized in a bar chart (Figure 5). 282

3.2.3 Flaudit: Project Completeness 283

As an optional input, flaudit allows users to specify a template subject — a subject from the Flywheel 284
project who serves as an exemplar for other subjects to be compared against. This subject should be 285
chosen based on the fact that they have both complete input data and analyses. This allows flaudit to 286
determine if other subjects in the project have equally complete data or are missing specific raw data 287
or analytic output. The project completion section of the flaudit report consists of three interactive 288
tables. 289

In the first table, it’s assumed that the template subject has acquired a complete set of imaging 290
sequences. These sequences are listed as columns in the table. Each subsequent row is a subject in the 291
project, and each value in the table is a boolean (complete or incomplete) indicating if that subject 292
has each sequence. The table is searchable, meaning that users can simply filter each column for 293
“incomplete” to learn which subjects do not have the same data as the template (Figure 6A). 294
Likewise, the second table illustrates the completeness of BIDS data for other subjects in comparison 295
to the template (Figure 6B). In this case, rows indicate subjects while columns delineate the 296
specified BIDS naming template. Lastly, the third table illustrates completeness of analytic gear runs. 297
Researchers can use this table to compare the analytic output of all other subjects in the project to the 298
analysis pipelines run for the template subject. To ensure uniform versions of pipeline software, the 299
version of a pipeline that was used for each subject must match that of the template subject (Figure 300
6C). 301

4 DISCUSSION 302
FlywheelTools provides new capabilities for the popular and powerful Flywheel platform, allowing 303
researchers to maximize reproducibility and enhance scalability. Specifically, fw-heudiconv provides 304

 FlywheelTools

users a flexible and reproducible way of curating data into BIDS on Flywheel. Complementary 305
function is provided by flaudit, which provides intuitive visual reports of raw, curated, and processed 306
data. 307

Flywheel has been rapidly adopted by major imaging centers due to its ease of use, extensive 308
functionality, scalability, and emphasis on reproducible research. Despite these strengths, at present 309
there have been limited options for conversion of imaging data to BIDS format on Flywheel. This 310
step is absolutely critical, as BIDS provides a standardized format for important imaging metadata. 311
Notably, initial curation to BIDS has frequently been an important gap in workflows for reproducible 312
research. 313

Accordingly, fw-heudiconv provides critical functionality for reproducible and flexible BIDS curation 314
on Flywheel. The combination of containerized code and heuristics that are version controlled with 315
git maximizes reproducibility, ensuring that all curation steps have a clear audit trail. Furthermore, 316
the flexible architecture employed by fw-heudiconv allows workflows to be updated to accommodate 317
both new scanning protocols and the evolving specifications of the BIDS standard. 318

Once data are curated with fw-heudiconv, flaudit allows users to audit the data in a Flywheel project. 319
Specifically, flaudit provides intuitive summaries at each stage of a typical workflow, concisely 320
visualizing raw data, curated data in BIDS, and data processed by containerized analytic gears. These 321
accessible reports allow users to rapidly assess the overall organizational state of a project, while 322
interactive tables allow for more granular inspection of data. This approach facilitates understanding 323
the diverse data types typically collected in multi-modal imaging studies. 324

There are of course limitations of FlywheelTools. First, it should be acknowledged that 325
FlywheelTools is built for the Flywheel platform, and as such does not generalize to other imaging 326
databases that are in use. However, given the rapid adoption of this platform by the imaging 327
community, we anticipate that this toolkit will fill an important need for the many large research 328
institutions that rely upon Flywheel. Second, some understanding of Python is necessary to build the 329
heuristic for fw-heudiconv. We attempt to minimize this issue by providing both extensive 330
documentation and heuristic templates for various uses of fw-heudiconv4, but usage is ultimately a 331
programming task. 332

A significant improvement to FlywheelTools would be automated curation of BIDS data similar to 333
that implemented by ReproNim’s ReproIn workflow5. In the ReproIn workflow, researchers adhere 334
to specific naming conventions when scans are acquired, resulting in DICOMs that can be 335
automatically converted by HeuDiConv with the use of a turnkey heuristic that comes with the 336
software. At present, fw-heudiconv includes a prototype ReproIn heuristic that we plan to expand and 337
further evaluate moving forward. 338

FlywheelTools provides essential functionality to the Flywheel platform. The flexible toolkit allows 339
for curation and description of complex imaging studies. Taken together, the toolkit is designed to 340
accelerate reproducible imaging research at scale. 341

	
4https://fw-heudiconv.readthedocs.io/en/latest/index.html

5 https://www.repronim.org/do.html

 FlywheelTools

 342

5 CONFLICT OF INTEREST 343
The authors declare that the research was conducted in the absence of any commercial or financial 344
relationships that could be construed as a potential conflict of interest. 345

6 AUTHOR CONTRIBUTIONS 346

T.M.T. and M.C. contributed to the design and implementation of the code and software. T.D.S., 347
M.B., and M.C. supervised writing of the manuscript. A.A., M.C., E.R.B., D.D. and W.T. provided 348
substantial software use-cases, software feature requests, test data, and critical bug reports. K.M. and 349
S.L. assisted with software documentation. M.A.E., G.K.A., P.AC., J.A.D., and T.D.S. were involved 350
in proposing, planning, and supervising all the work. 351

7 FUNDING 352

Support was provided by R01MH120482, R01MH112847, R01MH113550, and RF1MH116920. 353
 354

8 ACKNOWLEDGMENTS 355
None. 356

357

 FlywheelTools

9 REFERENCES 358

Banker, Kyle. 2011. MongoDB in Action. USA: Manning Publications Co. 359

Biehl, Matthias. 2016. RESTful Api Design. Vol. 3. API-University Press. 360

Book, Gregory A, Michael C Stevens, Michal Assaf, David C Glahn, and Godfrey D Pearlson. 2016. 361
“Neuroimaging Data Sharing on the Neuroinformatics Database Platform.” Neuroimage 124: 1089–362
92. 363

Botvinik-Nezer, Rotem, Felix Holzmeister, Colin F Camerer, Anna Dreber, Juergen Huber, Magnus 364
Johannesson, Michael Kirchler, et al. 2020. “Variability in the Analysis of a Single Neuroimaging 365
Dataset by Many Teams.” Nature, 1–7. 366

Cieslak, Matthew, Philip A Cook, Xiaosong He, Fang-Cheng Yeh, Thijs Dhollander, Azeez 367
Adebimpe, Geoffrey K Aguirre, et al. 2020. “QSIPrep: An Integrative Platform for Preprocessing 368
and Reconstructing Diffusion Mri.” bioRxiv. 369

Craddock, Cameron, Sharad Sikka, Brian Cheung, Ranjeet Khanuja, Satrajit S Ghosh, Chaogan Yan, 370
Qingyang Li, et al. 2013. “Towards Automated Analysis of Connectomes: The Configurable Pipeline 371
for the Analysis of Connectomes (c-Pac).” Front Neuroinform 42. 372

Esteban, Oscar, Christopher J Markiewicz, Ross W Blair, Craig A Moodie, A Ilkay Isik, Asier 373
Erramuzpe, James D Kent, et al. 2019. “fMRIPrep: A Robust Preprocessing Pipeline for Functional 374
Mri.” Nature Methods 16 (1): 111–16. 375

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., ... & Poldrack, R. 376
A. (2016). The brain imaging data structure, a format for organizing and describing outputs of 377
neuroimaging experiments. Scientific data, 3(1), 1-9. 378

Gorgolewski, C., Hardcastle, N., Teal Hobson-Lowther, Nishikawa, D., Blair, R., Appelhoff, S., 379
Suyash, Constellates, Mainak Jas, Holdgraf, C., Jones, A., Goyal, R., Oostenveld, R., Markiewicz, 380
C., Noack, G., Zito, M., Durnez, J., Traut, N., Naveau, M., … Thomas, A. (2020). Bids-381
standard/bids-validator: 1. 4. 3 (1.4.3) [Computer software]. Zenodo. 382
https://doi.org/10.5281/ZENODO.3688707 383

Halchenko, Yaroslav, Mathias Goncalves, Matteo Visconti di Oleggio Castello, Satrajit Ghosh, 384
Michael Hanke, Matthew Brett, Taylor Salo, et al. 2018. Nipy/Heudiconv: Heudiconv V0.5.1 385
(version v0.5.1). Zenodo. https://doi. org/10.5281/zenodo.1306159. 386

Helmer, Karl G, Jose Luis Ambite, Joseph Ames, Rachana Ananthakrishnan, Gully Burns, Ann L 387
Chervenak, Ian Foster, et al. 2011. “Enabling Collaborative Research Using the Biomedical 388
Informatics Research Network (Birn).” Journal of the American Medical Informatics Association 18 389
(4): 416–22. 390

Herrick, Rick, William Horton, Timothy Olsen, Michael McKay, Kevin A Archie, and Daniel S 391
Marcus. 2016. “XNAT Central: Open Sourcing Imaging Research Data.” NeuroImage 124: 1093–6. 392

Landis, Drew, William Courtney, Christopher Dieringer, Ross Kelly, Margaret King, Brittny Miller, 393
Runtang Wang, Dylan Wood, Jessica A Turner, and Vince D Calhoun. 2016. “COINS Data 394

 FlywheelTools

Exchange: An Open Platform for Compiling, Curating, and Disseminating Neuroimaging Data.” 395
NeuroImage 124: 1084–8. 396

Merkel, Dirk. 2014. “Docker: Lightweight Linux Containers for Consistent Development and 397
Deployment.” Linux J. 2014 (239). 398

Poldrack, Russell A, and Krzysztof J Gorgolewski. 2017. “OpenfMRI: Open Sharing of Task fMRI 399
Data.” Neuroimage 144: 259–61. 400

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R 401
Foundation for Statistical Computing. https://www.R- project.org/. 402

Rogovin, O, Y Zhao, S Chen, Z Wang, O Papaemmanouil, SD Van Hooser, and others. 2020. “NDI: 403
A Platform-Independent Data Interface and Database for Neuroscience Physiology and Imaging 404
Experiments.” 405

Sherif, T., Rioux, P., Rousseau, M.E., Kassis, N., Beck, N., Adalat, R., Das, S., Glatard, T., & Evans, 406
A. (2014). CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging 407
research. Frontiers in neuroinformatics, 8, 54. 408

Vaccarino, Anthony L, Moyez Dharsee, Stephen Strother, Don Aldridge, Stephen R Arnott, Brendan 409
Behan, Costas Dafnas, et al. 2018. “Brain-Code: A Secure Neuroinformatics Platform for 410
Management, Federation, Sharing and Analysis of Multi-Dimensional Neuroscience Data.” Frontiers 411
in Neuroinformatics 12: 28. 412

Van Rossum, Guido, and Fred L. Drake. 2009. Python 3 Reference Manual. Scotts Valley, CA: 413
CreateSpace.	 414

 FlywheelTools

 415

10 FIGURE LEGENDS 416

	417
Figure 1: BIDS-app workflow. BIDS curation on file systems is a common task that can be 418
accomplished by existing tools (heudiconv, dcm2bids, etc) or manually, but mechanisms for BIDS 419
curation on many cloud databases have yet to be developed. FlywheelTools provides this 420
functionality for the Flywheel platform. 421

Figure 2: FlywheelTools workflow. Users first use the tabulate tool to extract sequence information 422
from their data, which they use to develop a heuristic that delineates how sequences are mapped into 423
BIDS. After this, they use the curate tool to convert their data into BIDS, and the validate tool to 424
assess their curation. The export tool can be used to export their BIDS data as necessary. 425

Figure 3: Enumeration of available sequences in a flywheel project. Panel (A) plots the count of 426
files in each collected sequence; in this example, there are 60 files collected for the B0map sequence, 427
as there are 20 subjects and 3 B0map sequences. Panel (B) shows the accompanying interactive table. 428

Figure 4: Interactive tree diagram illustrating BIDS curation. The tree shows how each sequence 429
has been curated into BIDS format; users can hover their mouse over each leaf to show how many 430
files have been curated into each BIDS filename template. 431

Figure 5: Enumeration of gear runs in a Flywheel project. The number of gear runs is shown for 432
various gears. For each gear, the percent of completed versus failed runs is shown. For example, 95 433
percent of the subjects (n=19) were successfully run through fMRI-prep. 434

Figure 6: Project completeness tables compared to the template participant in a Flywheel 435
project. Panel (A) compares the sequences available for each participant to the template subject and 436
identifies missing sequences. For example, this table illustrates that subjects cec4ba54 and f53cd86f 437
did not have DWI sequences collected. Panel (B) similarly shows completeness of BIDS curation. 438
As expected, the two participants who did not have DWI sequences (in A) did not have diffusion data 439
curated into BIDS. Panel (C) shows gear run completion; here, flaudit reports that the same two 440
participants that lacked DWI data did not have a successful run of QSIPrep. Finally, the report notes 441
that participant f53cd86f did not yet complete fMRIPrep or XCPEngine successfully. 442

