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a b s t r a c t 

Diffusion MRI is the dominant non-invasive imaging method used to characterize white matter organization in 

health and disease. Increasingly, fiber-specific properties within a voxel are analyzed using fixels. While tools for 

conducting statistical analyses of fixel-wise data exist, currently available tools support only a limited number 

of statistical models. Here we introduce ModelArray, an R package for mass-univariate statistical analysis of 

fixel-wise data. At present, ModelArray supports linear models as well as generalized additive models (GAMs), 

which are particularly useful for studying nonlinear effects in lifespan data. In addition, ModelArray also aims 

for scalable analysis. With only several lines of code, even large fixel-wise datasets can be analyzed using a 

standard personal computer. Detailed memory profiling revealed that ModelArray required only limited memory 

even for large datasets. As an example, we applied ModelArray to fixel-wise data derived from diffusion images 

acquired as part of the Philadelphia Neurodevelopmental Cohort ( n = 938). ModelArray revealed anticipated 

nonlinear developmental effects in white matter. Moving forward, ModelArray is supported by an open-source 

software development model that can incorporate additional statistical models and other imaging data types. 

Taken together, ModelArray provides a flexible and efficient platform for statistical analysis of fixel-wise data. 
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. Introduction 

Diffusion MRI (dMRI) is the dominant method used to non-invasively

tudy white matter organization in the human brain. The most com-

only used method for modeling the diffusion signal is diffusion tensor

maging (DTI; Basser and Pierpaoli, 1996 ). However, DTI cannot effec-

ively model two or more crossing fibers within a given voxel; crossing

bers are thought to comprise up to ∼90% of white matter (WM) vox-

ls ( Jeurissen et al., 2013 ; Schilling et al., 2018 ; Yeh et al., 2013 ). One

ethod for addressing crossing fibers that is increasingly ascendant is
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xel-based analysis (FBA; Raffelt et al., 2017 ; Dhollander et al., 2021 ).

 fixel refers to a specific fiber population in a voxel; with FBA, multiple

istinct fiber populations can be estimated within a voxel and multiple

ber-specific properties can be quantified ( Raffelt et al., 2015 , 2017 ;

hollander et al., 2021 ). An example fixel-wise image is shown in Fig. 1 .

imilar to voxel-wise images, each fixel can have associated measure(s),

ust like a voxel-wise image represents a measure at each voxel. How-

ver, there are also distinct differences between fixels and voxels: unlike

he regular 3D voxel grid, there can be zero, one, or more fixels within

 single voxel. In other words, the specific information regarding a
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Fig. 1. Schematic of ModelArray and its com- 

panion converter ConFixel. The original fixel- 

wise data (.mif files; see the example fixel-wise 

image) are first converted into an HDF5 file 

(.h5) using ConFixel (top of the left box). Mod- 

elArray provides easy access to fixel-wise data 

in the HDF5 file ( “accessor ”). When performing 

statistical analysis of each fixel (top of the right 

box), to reduce memory usage, only a limited 

block of fixel-wise data is read into the mem- 

ory. Using the phenotypes of interest (e.g.,: age, 

sex; provided by a CSV file), ModelArray fits a 

statistical model and calculates statistical out- 

put for each fixel. After iterating across fixels, 

the result matrix is generated (bottom of the 

right box) and saved to the original HDF5 file 

on disk by ModelArray ( “write ”). Finally, Con- 

Fixel converts the result matrix in this HDF5 

file into a list of .mif files ready to be viewed 

(bottom of the left box). The fixels in the 

fixel-wise image are colored by fixel orienta- 

tion (red: left–right, green: anterior–posterior, 

blue: inferior–superior), and background image 

is the fiber orientation distribution (FOD) tem- 

plate. 
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arying number of fixels at each spatial location is not simply an-

ther image dimension (i.e., four dimensions instead of three); it creates

nique challenges in the analysis of fixel-wise data ( Dhollander et al.,

021 ). 

The FBA pipeline typically includes two parts. First, fixel-wise

ata is generated for each participant in a sample and quantified

ccording to standard measures like fiber density (FD), fiber-bundle

ross-section (FC), or their combination – fiber density and cross-

ection (FDC). Second, the high-dimensional fixel-wise data from a

ample is often analyzed in template space using mass-univariate

ypothesis testing; this often relies upon connectivity-based fixel

nhancement (CFE; Raffelt et al., 2015 ) as implemented in MR-

rix ( https://www.mrtrix.org/ ; Tournier et al., 2019 ). Like threshold-

ree cluster enhancement (TFCE) for voxel-wise data ( Smith and

ichols, 2009 ), CFE is a statistics enhancement method that can be ap-

lied to fixel-wise data. Instead of using simple 3D voxel neighborhoods

n TFCE, CFE incorporates the fixel-to-fixel connectivity information to

efine the cluster extent in fixel-wise data. 

However, the statistical models supported by MRtrix for FBA are cur-

ently limited to the general linear model (GLM). This may not be op-

imal for modeling nonlinear effects which are often of interest in lifes-

an studies (e.g., Bethlehem et al., 2022 ; Lebel et al., 2012 ). Ideally,

 statistical analysis toolset should be extensible to incorporate diverse

tatistical models. ( https://www.R-project.org ; R Core Team, 2021 ) is a

opular open-source statistical programming software, and it supports a

yriad of statistical functionality. R is also widely used by statisticians,

ith a constantly expanding repertoire of functionality. Generalized ad-

itive models (GAMs; Wood, 2001 , 2004 ) are among the most widely

sed approaches to model nonlinear effects of interest in R. GAMs can

igorously model both linear and nonlinear effects by applying a penalty

hat helps avoid over-fitting; this approach is particularly valuable in

igh-dimensional data settings – cases when hundreds of thousands of

xels are present – where it is difficult to conduct detailed model di-

gnostics. Providing extensibility to diverse statistical models in R for

he analysis of fixel-wise data is the primary motivation for developing

odelArray. 

In addition, ModelArray also aims for memory efficiency. The mem-

ry required for statistical analysis of neuroimaging data usually scales

y image resolution and sample size (e.g., Raffelt et al., 2015 ). These
2 
emory requirements impede the statistical analysis of large-scale data

esources that include thousands of participants; e.g., the Philadelphia

eurodevelopmental Cohort (PNC; Satterthwaite et al., 2014 ), the Hu-

an Connectome Project (HCP; Van Essen et al., 2013 ), or the Healthy

rain Network (HBN; Alexander et al., 2017 ). When faced with such

arge data resources, investigators often opt to reduce the dimension-

lity of the data and use regional summary measures, even if it is not

cientifically optimal. ModelArray aims to facilitate running large-scale

xel-wise statistical analysis on a typical personal computer (e.g., a lap-

op). 

To address these limitations, we introduce ModelArray ( https://

ennlinc.github.io/ModelArray/ ), a memory-efficient R package for sta-

istical analysis of fixel-wise data. To maximize memory efficiency, Mod-

lArray does not load the entire fixel-wise data into the memory. Instead,

t only reads a limited block of data when needed by leveraging the Hi-

rarchical Data Format 5 (HDF5) file format and DelayedArray package

n R ( Pagès et al., 2021 ), At present, ModelArray supports linear mod-

ls and GAMs, but it is by design extensible and can incorporate many

tatistical models implemented in R. To demonstrate ModelArray’s scal-

bility, functionality, and extensibility, we profiled its memory usage

nd applied it to examine nonlinear patterns of brain development using

xel-wise data from the PNC ( n = 938). As described below, ModelArray

llows for efficient and flexible analysis of fixel-wise data in large scale

ata resources. 

. Materials and methods 

.1. Overview 

ModelArray is an R package for mass-univariate hypothesis testing of

xel-wise data that is designed to be scalable for large datasets. We chose

 as the platform as it is among the most widely used platforms for sta-

istical computing. This feature facilitates the potential to easily incor-

orate diverse statistical models. ModelArray takes the fixel-wise data

s input, after it has been converted to the HDF5 format by its compan-

on software ConFixel ( https://github.com/PennLINC/ConFixel ). Fixel-

ise data with metrics such as FD, FC, and FDC can be calculated

n existing software such as MRtrix ( Tournier et al., 2019 ). ModelAr-

ay performs statistical analysis for each fixel based on the statistical

https://www.mrtrix.org/
https://www.R-project.org
https://pennlinc.github.io/ModelArray/
https://github.com/PennLINC/ConFixel
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ormula a user provides, and finally saves statistical output as images via

onFixel. These output images can then be viewed in widely-used visu-

lization tools such as MRView from MRtrix ( https://www.mrtrix.org/ ;

ournier et al., 2019 ). 

.2. Software design and memory efficiency 

We capitalized upon the R package DelayedArray ( Pagès et al., 2021 )

o maximize memory efficiency. Of note, the term “memory ” is used in

his paper to refer to the computer’s memory (RAM) used by software

including data loaded into the memory), and “disk ” or “disk space ”

efers to the hard disk space where the files (e.g., an HDF5 file) are

tored. ModelArray wraps fixel-wise data on disk into a DelayedArray

bject, allowing common array operations such as indexing (e.g., ex-

racting values of a specific fixel from a matrix) or transposing to be

erformed without loading the on-disk object into memory. DelayedAr-

ay objects store their component data in an HDF5 file, and operations

n a DelayedArray object are executed in a memory-efficient, “delayed ”

ay (where most R operations are processed on-demand and en masse ).

he result is a memory-efficient and easy-to-use R interface for a large

nd hierarchical on-disk dataset. After being generated by ConFixel (see

elow), an HDF5 file of fixel-wise data contains a scalar matrix (fixels

y participants), basic information of fixels and voxels (e.g., lookup ta-

les of the directions of fixels and the coordinates of voxels that contain

xels), and, once calculated by ModelArray, one or more result matri-

es (fixels by statistical metrics). Leveraging DelayedArray, HDF5 for-

at, and the supporting R package HDF5Array ( Pagès, 2021 ), the on-

isk fixel-wise data can be accessed and manipulated while minimizing

emory requirements. 

.3. ModelArray workflow 

ModelArray is packaged with the companion software ConFixel for

onverting fixel-wise data to the expected file format (see Fig. 1 ). Specif-

cally, ConFixel is Python-based command-line interface software, and it

onverts between the original MRtrix image format (.mif) and the HDF5

le format (.h5) used for ModelArray. After the file format conversion,

odelArray generates a ModelArray-class object for representing the

n-disk HDF5 file. ModelArray uses the S4 Object Oriented Program-

ing (OOP) model which gives users easy access to the scalar matrix,

he source .mif file list, one or more results matrices (if any), and the

le path to the HDF5 file. When fitting models, ModelArray iterates

cross all fixels in the scalar matrix but only reads a limited block of

ata for each current fixel in order to reduce memory usage. For each

xel, the software fits a model for the participant-level phenotypes of in-

erest – such as age, sex, or diagnosis, which are loaded from a separate

SV file provided by the user – and generates the statistical outputs for

ach fixel, such as p -values, coefficient estimations, and t -statistics. Af-

er generating the result matrix of fixel-wise statistics, ModelArray will

alculate corrected p -values using the False Discovery Rate (FDR) and

xport the final result matrix back into the input HDF5 file. Finally, Con-

ixel converts the HDF5 file’s results matrix into a list of .mif files that

re readable by widely-used visualization tools such as MRView from

Rtrix ( https://www.mrtrix.org/ ; Tournier et al., 2019 ). 

.4. ModelArray functions 

ModelArray provides functions for model fitting and writing

tatistical results. At present, ModelArray supports linear models

 ModelArray.lm() ) as well as GAMs with and without penalized

plines ( ModelArray.gam() ). Model fitting can be accelerated

y requesting more CPU cores for parallel computing. ModelArray

rites the rich statistical output of R into an HDF5 file using the

riteResults() function. This HDF5 file is then converted to a list

f .mif files with ConFixel for viewing, as described above. Default sta-

istical output from ModelArray includes several maps for each model
3 
erm (e.g., coefficient, t -statistic, raw and FDR-corrected p -values), as

ell as maps regarding the overall model fit (e.g., adjusted R -squared,

aw and FDR-corrected p -values from the model F -test in linear models).

ew statistical models can be easily added by any GitHub contributor

ollowing the same workflow as existing ones ( ModelArray.lm()
nd ModelArray.gam() ); see developer documentation at:

ttps://pennlinc.github.io/ModelArray/articles/doc_for_developer.html

hus, ModelArray is extensible to many diverse statistical methods

sed in R. 

.5. Evaluation data 

To evaluate ModelArray, we used the fixel-wise data generated from

he Philadelphia Neurodevelopmental Cohort (PNC; Satterthwaite et al.,

014 ). Here we provide a brief summary of the data and methods in-

luding participant inclusion, image acquisition, image quality assur-

nce, diffusion MRI preprocessing, and fixel-based analysis. In total, we

ncluded n = 938 participants (521 female, 417 male) aged 8–23 years

ld. Participants were excluded due to lack of diffusion imaging data,

bnormalities in brain structure, major health conditions, missing B0

eld map, poor image quality, etc. All the dMRI data underwent a rig-

rous manual and automated quality assessment as previously described

 Roalf et al., 2016 ). 

MRI scans were acquired on a Siemens TIM Trio 3T scanner. Diffu-

ion MRI scans were acquired with a twice-refocused spin-echo (TRSE)

ingle-shot echo-planar imaging (EPI) sequence. The sequence included

4 diffusion-weighted images of b = 1000s/mm 

2 as well as 7 inter-

persed b = 0 images; these images were acquired over two scan runs.

he in-plane resolution was 1.875 ×1.875 mm 

2 , slice thickness was

 mm without gap. In addition, a B0 field map was also acquired for

istortion correction of dMRI data. In-scanner motion during the dMRI

can was quantified as the root mean squared displacement (mean rel-

tive RMS); this was calculated from 7 b = 0 volumes interspersed over

he course of the dMRI scan ( Roalf et al., 2016 ). Motion was included

s a covariate when modeling age effects using GAMs (described be-

ow). Diffusion images were processed with QSIPrep ( https://github.

om/PennBBL/qsiprep ; Cieslak et al., 2021 ). This process included

P-PCA denoising (using dwidenoise from MRtrix; Veraart et al.,

016 ), Gibbs unringing (using mrdegibbs from MRtrix; Kellner et al.,

016 ), B1 field inhomogeneity correction (using dwibiascorrect
rom MRtrix with the N4 algorithm; Tustison et al., 2010 ), signal drift

orrection ( Vos et al., 2017 ), susceptibility distortion correction (us-

ng prelude from FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FUGUE ),

ddy current-induced correction and head motion correction (using

ddy from FSL, with outlier replacement; Andersson and Sotiropou-

os, 2016 ; Andersson et al., 2016 ). Finally, the images were resampled

o AC-PC alignment with 1.25 mm isotropic voxels. 

Following preprocessing, fixel-based analysis was performed using

Rtrix ( https://www.mrtrix.org/ , version v3.0RC3) ( Dhollander et al.,

021 ; Raffelt et al., 2017 ; Tournier et al., 2019 ). Briefly, study-specific

esponse functions for single-fiber white matter, gray matter and cere-

rospinal fluid (CSF) were calculated via a robust and fully auto-

ated unsupervised method ( Dhollander et al., 2016 , 2019 ) using

ata from 30 representative participants across ages (15 M/15F). Fiber

rientation distributions (FODs) for all participants were then esti-

ated using Single-Shell 3-Tissue Constrained Spherical Deconvolu-

ion (SS3T-CSD) ( Dhollander and Connelly, 2016 ) from MRtrix3Tissue

 https://3Tissue.github.io ), a fork of MRtrix3 ( Tournier et al., 2019 ).

 study-specific FOD template was generated, and participants’ FOD

mages were registered to this study template. After defining fixels,

DC was quantified and chosen as the metric of interest as it com-

ines both FD and FC and may be more sensitive than FD or FC

lone ( Dhollander et al., 2021 ). Finally, the FDC values were smoothed

ith “connected ” nearby fixels to increase the signal-to-noise ratio

 Raffelt et al., 2015 ). To smooth the data, a whole-brain probabilis-

ic tractogram with 2 million streamlines was generated from the FOD

https://www.mrtrix.org/
https://www.mrtrix.org/
https://pennlinc.github.io/ModelArray/articles/doc_for_developer.html
https://github.com/PennBBL/qsiprep
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FUGUE
https://www.mrtrix.org/
https://3Tissue.github.io
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emplate, and a fixel-fixel connectivity matrix based on this tractogram

as computed. Lastly, FDC values were smoothed based on this matrix.

his procedure yielded fixel-wise data in template space for each partic-

pant, which included 602,229 fixels. This fixel-wise data was used by

odelArray for memory profiling and application of GAM. 

.6. Memory profiling 

We evaluated the memory efficiency of ModelArray. Memory pro-

ling was completed using a Linux system by Working Set Size (WSS)

ools for Linux ( https://www.brendangregg.com/wss.html ). We used a

irtual machine on a standalone computer to avoid interference from

ther users, with memory allocated to the virtual machine = 55 Giga-

ytes (GB) and total RAM on the computer = 64 GB. Specifically, the

esident set size (RSS) – real memory pages currently mapped – was

aptured by WSS and recorded. We sampled the RSS once every sec-

nd for both parent and any child processes (if more than one CPU core

as used). The total RSS from all processes was calculated by summing

he interpolated RSS values at each second, and the maximum RSS used

ver time was calculated. 

We used a simple linear model for memory profiling: FDC = inter-

ept + age. To evaluate how memory usage scaled with data size, we ex-

mined the full sample ( n = 938) as well as subsamples of different sizes

 n = 30, n = 100, n = 300, n = 500, and n = 750). Furthermore, mem-

ry profiling over different parallelization factors was also performed.

uring the memory profiling for ModelArray, up to four CPU cores were

ade available. In all cases, memory profiling was run three times for

ach use case, and the median value was reported. Note that the mem-

ry profiling and the application of GAM (next section) were done in

ocal R, without using the Docker image of ModelArray. 

.7. Application using generalized additive models 

The memory benchmarking studies were conducted using linear

odels. However, in addition, we also demonstrated the use of GAMs

n ModelArray for modeling nonlinear developmental effects. Notably,

xisting tools such as MRtrix only support GLMs and do not easily allow

sers to model nonlinear developmental effects using GAMs. This appli-

ation illustrates the extensibility of ModelArray to incorporate diverse

tatistical models. 

For this application, data from all participants ( n = 938) was used.

ge was modeled as a smooth term s(age) with four basis functions

 k = 4); sex and in-scanner motion (mean relative RMS displacement)

ere included as covariates. As in prior work ( Pines et al., 2022 ), the

ffect size of the age term was quantified as 𝑅 

2 
𝑎𝑑 𝑗 ,𝑓𝑢𝑙𝑙 

− 𝑅 

2 
𝑎𝑑 𝑗 ,𝑟𝑒𝑑 𝑢𝑐𝑒𝑑 

, where

he 𝑅 

2 
𝑎𝑑 𝑗 ,𝑓𝑢𝑙𝑙 

was the adjusted R-squared in the full model, and 𝑅 

2 
𝑎𝑑 𝑗 ,𝑟𝑒𝑑 𝑢𝑐𝑒𝑑 

as that in a reduced model that did not include the age term. 

.8. Open-source software development and release 

ModelArray has been developed on GitHub with version controls and

ll code is openly available on GitHub (see Data and code availability

tatements ). Continuous Integration (CI) testing is used to ensure stabil-

ty and quality assurance. Specifically, we use CircleCI to perform unit

ests for all major features of ModelArray. These tests ensure the con-

istency between the statistical results calculated in ModelArray fitting

oop and those calculated in standard R. Once updated code is commit-

ed to GitHub, CircleCI automatically builds the software and runs unit

ests. If there are any errors, CircleCI will alert the developers to this

ailure immediately, assuring that updates do not alter software perfor-

ance. 

To enhance the portability of ModelArray and its companion

onverter ConFixel, we also provide a Docker image of ModelAr-

ay and ConFixel (publicly available at https://hub.docker.com/r/

ennlinc/modelarray_confixel ). With this Docker image, users do not

eed to install ModelArray, ConFixel or their dependent R or Python
4 
ackages. Documentation of how to use this Docker image is available

t https://pennlinc.github.io/ModelArray/articles/container.html . This

ocker image is automatically built by CircleCI and pushed to Docker

ub. 

.9. Data and code availability statements 

ModelArray documentation can be found at https://pennlinc.

ithub.io/ModelArray . All code used to perform memory profiling

nd application of GAMs is available at https://github.com/PennLINC/

odelArray _ paper . The source code for ModelArray is available at

ttps://github.com/PennLINC/ModelArray , and the source code for

onFixel is available at https://github.com/PennLINC/ConFixel . The

ersion of ModelArray used for benchmarking and demonstration

as commit SHA-1 0911c4f. We also provide a Docker image of

odelArray and ConFixel (available at https://hub.docker.com/r/

ennlinc/modelarray_confixel ). The PNC dataset used in this paper is

vailable on dbGAP ( https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

in/study.cgi?study_id = phs000607.v3.p2 ). As part of the software tuto-

ial, example fixel-wise data from 100 PNC participants is openly shared

n OSF ( https://doi.org/10.17605/OSF.IO/JVEHY ). 

.10. Ethics statement 

No new data were collected specifically for this paper. The Philadel-

hia Neurodevelopmental Cohort (PNC; Satterthwaite et al., 2014 ) was

pproved by IRBs of the University of Pennsylvania and Children’s Hos-

ital of Philadelphia. All adult participants in the PNC provided in-

ormed consent to participate; minors provided assent alongside the in-

ormed consent of their parents or guardian. 

. Results 

.1. Software walkthrough 

Before using ModelArray, two files need to be prepared by the

ser: an HDF5 (.h5) file of fixel-wise data (example filename here:

xample.h5 ), and a CSV file of participant’s phenotypes of interest

e.g., age, sex, etc.; example filename here: example.csv ). The HDF5

le can be obtained by applying ConFixel to convert the original fixel-

ise data (.mif files) into required HDF5 file format. Although ConFixel

s implemented in Python, it is used via a command-line interface. After

nstallation, users can directly run data conversion in a terminal con-

ole, and there is no need to open a Python console. An example of

he usage of ModelArray is displayed in Fig. 2 . After loading the pack-

ge ModelArray in R (code line #3 in Fig. 2 ), a ModelArray-class ob-

ect modelarray was created with the function ModelArray() ; it
epresents the fixel-wise data in the HDF5 (.h5) file on disk, including

he scalar matrix (fixels by participants) (code line #5). As the entire

ata was not loaded into memory, this object only required less than 1

egabytes (MB) for complete n = 938 evaluation data, much less than

he HDF5 file size on the disk (2.1 GB). After the data frame of pheno-

ypes was loaded into R (code line #6), mass-univariate analyses using

inear models and GAMs were performed with ModelArray.lm()
nd ModelArray.gam() , respectively (code line #9–10). The statis-

ical outputs lm.outputs and gam.outputs were saved back to

he original HDF5 file with the function writeResults() (code line

13–14). These outputs saved in the HDF5 file can be converted back

o .mif files by ConFixel for viewing. 

For further details, as part of the comprehensive online documen-

ation, please see the “Walkthrough ” of ModelArray and ConFixel

 https://pennlinc.github.io/ModelArray/articles/walkthrough.html ). 

his walkthrough can be used in conjunction with openly-shared

xel-wise data from 100 PNC participants, which is available on OSF

 https://doi.org/10.17605/OSF.IO/JVEHY ). 

https://www.brendangregg.com/wss.html
https://hub.docker.com/r/pennlinc/modelarray_confixel
https://pennlinc.github.io/ModelArray/articles/container.html
https://pennlinc.github.io/ModelArray
https://github.com/PennLINC/ModelArray_paper
https://github.com/PennLINC/ModelArray
https://github.com/PennLINC/ConFixel
https://hub.docker.com/r/pennlinc/modelarray_confixel
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2
https://doi.org/10.17605/OSF.IO/JVEHY
https://pennlinc.github.io/ModelArray/articles/walkthrough.html
https://doi.org/10.17605/OSF.IO/JVEHY
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Fig. 2. Example R code for executing analysis using ModelArray. ModelArray functions are highlighted in green. 

Fig. 3. Memory required by ModelArray does 

not vary by sample size. The maximal mem- 

ory required by a linear model executed using 

ModelArray.lm() was evaluated when 

analyzing a range of sample sizes. All models 

were performed with a parallelization factor of 

4. 
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.2. ModelArray is memory-efficient and robust to dataset size 

We profiled the memory usage of ModelArray over a range of input

ata sizes (e.g., number of participants) and parallelization settings. As

 first step, we evaluated both the full dataset ( n = 938) as well as five

maller sub-samples. This initial evaluation was completed using four

PU cores. As the number of participants analyzed increased, ModelAr-

ay memory usage only changed minimally ( Fig. 3 ). 

Next, we examined how parallelization options impacted memory

se. As expected, when ModelArray requested more CPUs for analysis of

amples of either small ( n = 30, Fig. 4A ) or large number of participants

 n = 938, Fig. 4B ), the memory required scaled by the parallelization
5 
actor. However, even when 4 CPU cores were requested, ModelArray

onsumed less than 3GB of memory. 

.3. ModelArray captures nonlinear developmental effects 

As a final illustration of ModelArray’s functionality and extensibility

o diverse statistical models, we also examined nonlinear developmen-

al effects in the PNC using GAMs. Robust nonlinear age effects can be

bserved in white matter tracts including the corpus callosum (CC) and

racts in the brainstem even at very high statistical thresholds ( p -value

f s(age) < 1 × 10 − 15 , Fig. 5 ). To visualize the nonlinear age effects, a

luster in CC was defined with above statistical threshold, and a GAM
Fig. 4. ModelArray is memory-efficient even 

under different parallelization configurations. 

Maximal memory usage for a linear model run 

using ModelArray.lm() was evaluated 

across a sample of n = 30 ( A ) and n = 938 ( B ) 

with varying numbers of CPU cores requested. 
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Fig. 5. ModelArray allows the estimation of 

nonlinear effects. Fixel-wise GAM fitted with 

ModelArray.gam() revealed nonlinear 

FDC changes with age in childhood and ado- 

lescence ( n = 938). The GAM also included sex 

and motion quantification as covariates. ( A ) 

Fixels whose FDC was significantly associated 

with age ( p -value of s(age) < 1 × 10 − 15 ); fixels 

are colored by effect size of s(age). Background 

image is the FOD template. ( B ) GAM fit for FDC 

averaged in the 2D slice of the cluster in CC 

highlighted in panel A by a white arrow. 
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y

as fit for FDC averaged in an example 2D slice of this cluster (high-

ighted in Fig. 5A by a white arrow). The averaged FDC of these fixels

ncreased throughout childhood and adolescence but then plateaued in

oung adulthood ( Fig. 5B ). The effect size (change in adjusted R 

2 ) of

ge in this fitted GAM was 0.204. 

. Discussion 

Despite the advantages of representing diffusion imaging data as fix-

ls, FBA is a relatively new framework compared to voxel-based analy-

is, and relatively few analytic tools are currently available for statisti-

al analysis of fixel-wise data. ModelArray is an R package for mass-

nivariate statistical analysis of fixel-wise data. As discussed below,

odelArray allows for both linear and nonlinear modeling of fixel-wise

ata in large datasets while only requiring modest amounts of memory.

.1. Extensibility to diverse statistical models 

Brain changes across the lifespan are often nonlinear. One of the

ost-widely used statistical models to capture both linear and nonlin-

ar effects is the GAM. GAMs use smooth functions to flexibly model

inear and nonlinear effects; these smooth functions can be penalized to

void over-fitting ( Wood, 2004 , 2011 ). The incorporation of GAMs in

odelArray and the extensibility to other models available in R repre-

ent an advance over existing tools, which at present only support the

LM. It should be noted that GLM in existing tools can also fit non-

inear models using a polynomial function; however, such an approach

ay not support the penalization of nonlinearity to avoid over-fitting

as in GAMs). As ModelArray is built within R, using GAMs is easy with

tandard model syntax. More importantly, ModelArray has the poten-

ial to leverage the myriad of statistical models that R provides. In-

eed, additional statistical models can be added to ModelArray using

he same workflow described in the developer documentation ( https://

ennlinc.github.io/ModelArray/articles/doc_for_developer.html ). This

xtensibility will allow for ongoing enhancements – by both the orig-

nal developers and the broader community – to extend ModelArray’s

unctionality to a wide variety of statistical models. 

Some previous FBA studies focused on specific macroscopic WM

athways, calculated the average of fixel-wise metrics (e.g., FDC) in spe-

ific regions of interest, and built statistical models upon the average

alues in software such as R to facilitate the use of diverse statistical

odels (e.g., Singh et al., 2022 ; Genc et al., 2020 ; Chahal et al., 2021 ).

odelArray offers opportunities to directly apply statistical models that

 provides, without the need of this data reduction step. ModelArray

lso allows users retrieve statistical metrics for each fixel without data

imensionality reduction. 

.2. Scalability to large-scale data resources 

Large-scale neuroimaging datasets enhance statistical power and the

eliability of findings in studies of individual differences ( Marek et al.,
6 
022 ). However, as data size grows, memory requirements often become

uite large when performing group-level statistical analysis. To address

his challenge, we designed ModelArray to minimize memory require-

ents by only reading data into memory as needed. Our benchmark-

ng studies illustrated that ModelArray memory requirements were low

ven when analyzing hundreds of participants, and only had minimal

hange when the number of participants increased. This scalability fa-

ilitates fixel-wise statistical analyses of large-scale data resources even

n a laptop or a workstation that only has a limited amount of memory.

t also makes the exploration of statistical models easy and cheap. This

emory efficiency is limited to the statistical analysis step provided by

odelArray; steps such as preprocessing dMRI data and preparing fixel-

ise data may require more memory than personal laptops or worksta-

ions can provide. However, these processing steps are out of the scope

f ModelArray and can be performed on High Performance Computing

HPC) clusters. 

.3. Limitations and future directions 

Several limitations of ModelArray should be noted. First, ModelAr-

ay is configured to only analyze fixel-wise data. Moving forward, it

ay be generalized to allow for analyses of other imaging data types

uch as voxel (NIfTI) and surface (CIFTI) data, akin to other group-level

nalysis resources that are compatible with different data types, e.g.,

ermutation Analysis of Linear Models (PALM; Winkler et al., 2014 )

rom FSL ( https://fsl.fmrib.ox.ac.uk/fsl/fslwiki ). Such extensions could

everage ModelArray’s modular I/O interface, which would only require

dditional companion converters (i.e., ConVoxel instead of ConFixel). 

Second, it is important to note the differences between Mod-

lArray and existing tools for statistical analysis of fixel-wise

ata, e.g., fixelcfestats for FBA from MRtrix ( Raffelt et al.,

015 ; Tournier et al., 2019 ). In contrast to CFE implemented in

ixelcfestats from MRtrix, ModelArray does not incorporate in-

ormation of fixel-fixel connectivity, which limits the ability of Mod-

lArray to conduct statistical inference exploiting connectivity infor-

ation. However, the control of multiple comparisons using methods

uch as FDR is commonly used in large-scale studies and is currently

mplemented in ModelArray. Future releases of ModelArray may in-

orporate CFE. It should be noted that, users should be careful and

ware of the differences when interpreting the statistical results from

ixelcfestats from MRtrix and those from ModelArray, as the for-

er one seeks to control family-wise error, whereas ModelArray’s de-

ault behavior aims to control the FDR. 

. Conclusion 

ModelArray is a memory-efficient R package for fixel-wise statistical

nalysis. It offers both linear and nonlinear modeling with substantial

xtensibility. Taken together, ModelArray facilitates the statistical anal-

sis of fixel-wise data in large-scale dMRI datasets. 

https://pennlinc.github.io/ModelArray/articles/doc_for_developer.html
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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