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ABSTRACT 

 

Human cortical maturation has been posited to be organized along the sensorimotor-association 

(S-A) axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor 

cortices to transmodal association cortices. Here, we investigate the hypothesis that the 

development of functional connectivity during childhood through adolescence conforms to the 

cortical hierarchy defined by the S-A axis. We tested this pre-registered hypothesis in four large-

scale, independent datasets (total n = 3,355; ages 5-23 years): the Philadelphia 

Neurodevelopmental Cohort (n = 1,207), Nathan Kline Institute-Rockland Sample (n = 397), 

Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1,126). In 

each dataset, the development of functional connectivity systematically varied along the S-A 

axis. Connectivity in sensorimotor regions increased, whereas connectivity in association 

cortices declined, refining and reinforcing the cortical hierarchy. These robust and generalizable 

results establish that the sensorimotor-association axis of cortical organization encodes the 

dominant pattern of functional connectivity development.    
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INTRODUCTION   

 

The mature human brain is endowed with extensive functional diversity,1–4 which gives 

rise to the expansive behavioral and cognitive repertoire uniquely found in humans. Such 

functional diversity expands during neurodevelopment. A substantial degree of this diversity is 

understood to be due to variation among the capabilities of sensorimotor and association 

cortices.5 Sensory and motor cortices are functionally specific and support externally oriented 

processes, such as perception and movement. In contrast, association cortices are functionally 

flexible and integrative and are recruited for abstract cognition and internally-directed 

mentation.6,7 Differences in functional capacities between sensorimotor and association cortices 

are thought to stem in part from regional differences in functional connectivity profiles,5 which 

may in turn arise from differential refinement of connectivity during brain development.6 

Mapping spatial variation in the development of functional connectivity can ultimately provide 

insight into how the brain’s developmental program gives rise to diverse functional capacities. 

Here, we sought to test the hypothesis that the development of cortico-cortical functional 

connectivity varies across the cortical hierarchy.   

 In contrast to the maturation of cortical morphology8–10 and white matter,11,12 there is not 

a widely agreed-upon pattern of functional connectivity development. While there is clear 

variation in functional connectivity profiles across the cortex,5,13 studies characterizing how such 

variation arises in development have yielded inconclusive results. For instance, one study 

described the dorsal attention network as globally decreasing in integration14 whereas another 

reported strongly increasing connectivity with sensorimotor networks15 during development. 

Furthermore, different networks have been reported to have directionally opposite overall 

changes in functional connectivity during development, for instance default mode network 

segregation16,17 and somatomotor integration,15,16,18 without an interpretative framework that 

could explain such findings. Given that brain development in youth shapes brain organization in 

adults, one promising approach is to use known properties of hierarchical cortical 

organization19,20 to contextualize developmental changes.   

A major axis of hierarchical cortical organization is the sensorimotor-association (S-A) 

axis, which spans from primary visual and somatomotor cortices to transmodal association 

cortices.19 The S-A axis describes a pattern of cortical organization that aligns with hierarchies of 

cortical anatomy (regional variation in feed-forward versus feed-back projections),21,22 cortical 

function (from sensation to introspection),7  and cortical evolution (degree of cortical expansion 

in humans).23 Furthermore, while the S-A axis aligns with the principal gradient of functional 

connectivity in the adult brain,5 it remains unknown as to whether development of functional 

connectivity varies systematically along this axis. Previous studies have shown that hierarchical 

organization emerges gradually in development24 and that cortical maturation may be organized 

along this axis.19,25 These studies suggest that spatial variability in the development of functional 

connectivity may also be parsimoniously captured by the S-A axis.  

Consistent with this idea, we recently reported that age-related changes in between-

network coupling varied according to a network’s position on the cortical hierarchy.18 

Specifically, sensorimotor networks integrated (i.e. increased in connectivity) with other 

networks,  whereas association networks segregated (i.e. decreased in connectivity) from other 

networks through childhood and adolescence. These findings suggest that divergent development 

of functional connectivity integration and segregation occur along the S-A axis and may 

contribute to inter-regional diversity in function.   
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While this earlier study included a large sample, generalizability was limited as it only 

included data from a single site. As such, our earlier results fit within an existing literature 

marked by heterogeneity. This heterogeneity is a symptom of the broader reproducibility crisis in 

translational neuroimaging. Small samples of high-dimensional functional MRI (fMRI) data 

have been repeatedly shown to lead to spurious, inconsistent, or exaggerated findings.26,27 As a 

result, there is an urgent need for translational neuroimaging to adopt practices that have been 

shown to yield reproducible and generalizable findings: study preregistration, independent 

replication samples, standardized processing pipelines, and adequately powered sample sizes.26–

29 Recent work using structural MRI has endeavored to map the trajectories of brain growth and 

morphometry throughout the lifespan using multiple large-scale datasets, taking an important 

step toward reproducible human neuroscience that is generalizable to the population.29   

Here, we sought to define highly generalizable and reproducible spatiotemporal patterns 

of functional connectivity brain development in youth. In this pre-registered study,30 we analyzed 

four independent, large-scale datasets (total n = 3,355) of youth ages 5-23 years old using 

standardized processing pipelines.31–33 To maximize generalizability, we sought to include data 

from diverse populations and different sites that were collected using disparate acquisition 

parameters. We hypothesized that the development of functional connectivity would diverge 

across the S-A axis, linking developmental variability of functional connectivity in youth to 

hierarchical feature variability and functional diversity in adulthood. Specifically, we predicted 

that unimodal sensorimotor cortices would exhibit increasing connectivity with age while 

transmodal association cortices would tend to show weakening connectivity (replicating Pines et 

al).18 As described below, this large-scale study represents a rigorous effort to define 

fundamental patterns of functional connectivity development across the cortical hierarchy and 

provides robust evidence for an S-A axis of human cortico-cortical functional connectivity 

maturation.   

 

RESULTS 

 

To characterize the developmental refinement of cortico-cortical functional connectivity, 

we used resting-state and task functional MRI from four independent datasets (total n = 3,355). 

The Philadelphia Neurodevelopmental Cohort (PNC; n = 1,207) was used as the discovery 

cohort.34 Findings were replicated in three other large-scale developmental datasets: Nathan 

Kline Institute-Rockland Sample (NKI; n = 397), Human Connectome Project: Development 

(HCP-D; n = 625), and Healthy Brain Network (HBN; n = 1,126).35–37 We examined functional 

connectivity (FC) strength as our primary functional connectivity metric. FC strength was 

quantified as the mean edge strength between a given region and all other cortical regions. 

Individual edge strength was characterized by the Pearson correlation between timeseries for 

each pair of regions. All measures were harmonized across sites in multi-site datasets.38,39   

First, we sought to establish whether the spatial distribution of developmental changes in 

FC strength replicated across the four datasets. Second, we investigated whether developmental 

changes in FC strength varied along the S-A axis. We also examined whether spatial variation in 

FC strength increasingly resembled the S-A axis with age. Finally, we aimed to delineate 

hierarchical patterns of functional segregation and integration using average between- and 

within-network connectivity as well as edge-level connectivity. To model linear and non-linear 

developmental changes in each functional connectivity metric, we fitted generalized additive 

models (GAMs) for each brain region, with age as a smooth term and sex and in-scanner head 
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motion as linear covariates. Our primary cortical parcellation was the Schaefer 200 atlas with a 

7-network partition based on the 7 Yeo network solution.13,40 The schematic shown in 

Supplementary Figure 1 summarizes the parameter space for each dataset. All results were 

evaluated across multiple cortical parcellations and network partitions as sensitivity analyses 

(Supplementary Figure 2).  

 

Spatial patterns of functional connectivity development replicate across four large datasets 

We first examined how the cortex-wide distribution of FC strength changes with age and 

whether age-specific distributions were consistent across four independent datasets. To visualize 

the spatial patterning of FC strength across the cortex at specific ages, we generated model-

predicted values of FC strength from regional GAMs at 1-year intervals between age 8 and 23 

for all datasets. The refinement of FC strength across the cortex appeared highly similar across 

all four datasets (Figure 1a-d). FC strength was positive in somatomotor cortices in childhood 

and increased in these cortices with age. In contrast, FC strength in association cortices was less 

positive in childhood and decreased with age. This decrease resulted in low or negative FC 

strength values in transmodal association cortices by early adulthood, suggestive of weakly anti-

correlated connectivity with most brain regions. Furthermore, the cortical distribution of FC 

strength increasingly resembled the S-A axis with age.  

  Next, we sought to characterize the magnitude and direction of developmental changes in 

FC strength across the cortex and evaluate the extent to which these changes were similar across 

datasets. To quantify the overall magnitude of regional age effects, the effect size of each age 

spline was computed as the change in adjusted R2 (ΔR2
adj) between a full model and reduced 

model with no age term. A quantitative analysis confirmed remarkably high consistency in age 

effects across the four independent datasets. Specifically, spatial Pearson’s correlations between 

FC strength age effects for each pair of datasets range from 0.49-0.88 (mean correlation = 0.71, 

pspin < 0.01 for NKI-HBN; pspin < 0.0001 for all other spatial correlations; Figure 2a).  

We hypothesized that these replicable age effects of FC strength would spatially align 

with the sensorimotor-association (S-A) axis (Figure 2b), which spans from primary and 

unimodal sensorimotor cortices to heteromodal and paralimbic transmodal association cortices. 

The S-A axis rank for each cortical region represents that region’s relative position along a 

dominant feature axis that spatially corresponds with anatomical, functional, and evolutionary 

hierarchies of the cortex.20 Lower ranking regions are involved in externally oriented perception 

and action whereas higher ranking regions support higher-order cognitive, social, and emotional 

psychological functions.7,41  The age effect of FC strength showed a spatial pattern across the 

cortical surface that was similar in all four datasets and qualitatively resembled the S-A axis 

(Figure 2c). Somatomotor cortices exhibited positive age effects, indicating increases in FC 

strength with age, whereas association cortices displayed negative age effects, indicating 

decreasing FC strength through development. Taken together, these results emphasize that 

development of functional connectivity strength is highly generalizable across datasets. 
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Figure 1. The spatial distribution of functional connectivity strength is highly similar across all four 

datasets and is refined with age. In the Philadelphia Neurodevelopmental Cohort (PNC), (a) functional 

connectivity strength (FC strength) is highest in somatomotor cortices in childhood and increases in these 

cortical areas with age. In contrast, FC strength in association cortices is lower in childhood and tends to 

decrease with age, resulting in negative FC strength values in transmodal association cortices by early 

adulthood. Similar spatial patterns of FC strength are seen in (b) Nathan Kline Institute-Rockland Sample 

(NKI), (c) Human Connectome Project: Development (HCP-D), and (d) Healthy Brain Network (HBN). 

In a-d, the predicted value of FC strength in each region is shown at ages 8, 14, and 22 across the four 

datasets. Generalized additive models (GAMs) were fitted independently for each cortical region and used 

to predict the fitted value of FC strength at each age. Each row of plots corresponds to results from a 

given dataset. Columns represent the FC strength map at each age. Results are shown in the Schaefer 200 

atlas.40  
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Figure 2. Functional connectivity strength developmental effects replicate across four large datasets. 

(a) The Pearson correlation plot of the age effect maps shows high spatial correlation among all four 

datasets (pspin < 0.01 for NKI-HBN; pspin < 0.0001 for all other spatial correlations). (b) The sensorimotor-

association (S-A) axis is an axis of cortical organization that spans continuously from primary and unimodal 

sensorimotor cortices (sensorimotor pole; dark blue, lowest ranks), to multimodal cortices (middle axis; 

yellow; middle ranks), and finally to transmodal association cortices (association pole; dark red, highest 

ranks).19 (c) The spatial pattern of FC strength age effects is reproducible across datasets and resembles the 

S-A axis. Age effects are shown on the cortical surface for PNC, NKI, HCP-D, and HBN with yellow 

indicating increasing FC strength with age and purple indicating decreasing FC strength with age. All 

regions outlined in black display significant changes in FC strength (QFDR < 0.05).  

 

 

Development of functional connectivity varies along the sensorimotor-association axis 

We next sought to systematically assess the extent to which the development of 

functional connectivity aligns with the S-A axis. To delineate developmental trajectories of FC 

strength in every individual brain region, we visualized the age smooth functions produced by 

each regional GAM. We hypothesized that dissociable patterns of FC strength developmental 

trajectories would be found along the S-A axis.  

We found a spectrum of developmental trajectories that varied continuously according to 

a region’s position on the S-A axis (Figure 3a-d). Lower ranking regions (blue; sensorimotor 

pole) exhibited linear increases in FC strength, middle ranking regions (yellow; middle axis) 

generally showed flatter trajectories, whereas highest ranking regions (red; association pole) 

displayed decreasing FC strength throughout development. To further illustrate this variability, 

we examined developmental trajectories for large-scale networks that represented each third of 

the S-A axis: the somatomotor network (representing the sensorimotor end of the axis), the 
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ventral attention network (representing the middle of the axis), and the default mode network 

(representing the association end of the axis; Figure 3e-p). Networks were defined using the 

Schaefer 7-network partition based on the Yeo 7-network solution.13,40 Across all datasets, brain 

regions in the somatomotor network, involved in motor tasks and sensation, increased in FC 

strength with age and did not plateau, indicating ongoing integration with other brain regions 

(Figure 3e-h). Middle axis brain regions in the ventral attention network are situated between 

cortices that carry out externally-oriented processes (e.g., perception) and those involved in 

internally-oriented processes (e.g. self-referential thought).6 Ventral attention brain regions 

exhibited flatter trajectories and tended to show overall increases in FC strength with age 

(Figure 3i-l). The default network, which is linked to abstract or self-referential processing, is 

located in transmodal association cortex. Brain regions in this network decreased in FC strength 

through development (Figure 3m-p). Developmental trajectories of FC strength were strikingly 

similar across all four large-scale datasets.   

Given the observed differences in developmental trajectories across the S-A axis, we next 

sought to directly quantify the degree to which developmental effects aligned with the S-A axis. 

We found that age-related changes in FC strength were largely explained by a brain region’s 

position in the S-A axis, with high replicability across all datasets (Figure 4a-d; PNC: r = -0.71, 

pspin < 0.0001; NKI: r = -0.56, pspin < 0.0001; HCP-D; r = -0.62, pspin < 0.0001; HBN: r = -0.72, 

pspin < 0.0001). FC strength of lower-order regions became more positive with age, whereas FC 

strength of higher-order regions became more negative. Sensitivity analyses using resting-state 

fMRI data alone yielded consistent results (Supplementary Figure 3d-f; PNC: r = -0.68,  

pspin < 0.0001; HCP-D: r = 0.63, pspin < 0.0001; HBN: r = -0.73, pspin < 0.0001). These results 

provide robust and generalizable evidence that FC strength development significantly and 

systematically varies across the S-A axis. 
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Figure 3. Functional connectivity strength shows dissociable patterns of maturation across the 

sensorimotor-association axis. (a-d) Functional connectivity strength (FC strength) developmental 

trajectories vary continuously along the S-A axis. Each line represents an individual region’s FC strength 

developmental trajectory (zero-centered), modeled using generalized additive models. Colors indicate the 

rank of a given region along the S-A axis. (e-p) The plots display the developmental trajectories for 

regions from three representative functional networks: the somatomotor (e-h), ventral attention (i-l), and 

default networks (m-p). Regions in the somatomotor network generally show increasing FC strength 

through development. Regions in the ventral attention network exhibit both increasing and decreasing FC 

strength with age. Regions in the default network predominantly show decreasing FC strength during 

development. 
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Figure 4. Development of functional connectivity aligns with the sensorimotor-association axis.  

(a) The rank of each region in the S-A axis explains the majority of variance in age effects in the 

Philadelphia Neurodevelopmental Cohort (PNC; r = -0.71, pspin < 0.0001). These findings are replicated in 

additional independent datasets, including (b) Nathan Kline Institute-Rockland Sample (NKI; r = -0.56, 

pspin < 0.0001), (c) Human Connectome Project: Development (HCP-D; r = -0.62, pspin < 0.0001), and (d) 

Healthy Brain Network (HBN; r = -0.72, pspin < 0.0001). The age effect of FC strength for each region 

(Schaefer 200) is plotted against the given region’s rank in the S-A axis. Regions that do not display 

significant change in FC strength over development are colored in gray (QFDR > 0.05) and were included in 

the correlation. Note that axes were adjusted to best visualize all datasets; a total of 5 data points across all 

datasets were excluded for visualization. 

 

 Functional connectivity strength increasingly aligns with the S-A axis with age  

  Our results show that FC strength age effects tend to be in opposite directions at the 

sensorimotor and association ends of the S-A axis, suggesting that FC strength differentiates 

across the axis with age. This interpretation is supported by our findings that the spatial pattern 

of FC strength resembled the S-A axis more at age 22 and 14 than at age 8 (Figure 1). As such, 

an outcome of this hierarchical developmental scheme may be that spatial variation in FC 

strength becomes increasingly organized along the S-A axis with age. We therefore aimed to test 
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the extent to which spatial variation in FC strength was aligned with the S-A axis throughout the 

course of child and adolescent human development. 

 We performed an age-resolved analysis in which we calculated model-predicted FC 

strength at approximately 1-month intervals between age 5 and 22 years (as available per 

dataset). At each 1-month age interval, we correlated regional FC strength with S-A axis rank, 

producing age-specific correlation values that captured the extent to which regional differences 

in FC strength were accounted for by a region’s location in the S-A axis. We found that the 

across-cortex spatial correlation between fitted FC strength and S-A axis ranks strengthened 

from age 5 to 22 across all datasets (Figure 5a-d), indicating that the spatial patterning of FC 

strength increasingly resembled the S-A axis with age. This finding confirms that the S-A axis 

gradually captures more regional heterogeneity in cortico-cortical functional connectivity 

profiles throughout child and adolescent brain development. 
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Figure 5. The spatial distribution of functional connectivity strength increasingly aligns with the 

sensorimotor-association axis with age. An age-resolved analysis reveals that variation in regional FC 

strength becomes more aligned with the S-A axis over the course of development. Plots show age-specific 

correlation values between FC strength and S-A axis ranks across regions, which converge to a strong 

absolute correlation of approximately 0.6 by early adulthood. (a) Across regions, the absolute correlation 

between fitted FC strength and S-A axis ranks strengthens from age 8 to 22 in the PNC. This increase in 

spatial alignment is replicated in (b) NKI (ages 6-22), (c) HCP-D (ages 5-22), and (d) HBN (ages 5-22). 

Model-predicted values of functional connectivity strength were generated from regional GAMs at 1-month 

intervals between the youngest and oldest ages in each dataset. Reliable estimates of the correlation value 

at each age were obtained by sampling 10,000 draws from the posterior fitted FC strength value predicted 

by each region’s GAM smooth function. We computed age-specific correlations between fitted FC strength 
values across regions and S-A axis ranks for all 10,000 draws. The median correlation value (r) computed 

across all draws is represented by the black line. The 95% credible interval around the median correlation 

value is shown in the gray band.   

 

Hierarchical developmental changes in functional segregation and integration 

We have found that S-A axis rank is strongly associated with how FC strength changes in 

development. However, while FC strength summarizes overall connectivity of a given region to 

the rest of the brain, it does not capture differences in connectivity based on network 

organization. Average between- and within-network connectivity are constituent components of 

FC strength and can provide insight into functional network segregation and integration, which 
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in turn can elucidate system-specific developmental patterns of connectivity strengthening and 

weakening. Average between- and within-network connectivity were calculated as the mean 

edge strength of a given region to all other regions outside of and within that region’s network, 

respectively. Functional network segregation may be reflected by decreasing between-network 

connectivity and increasing within-network connectivity, whereas functional network integration 

may be represented by increases in both between-network connectivity and within-network 

connectivity.   

First, we evaluated whether regional age effects for average between-network 

connectivity and within-network connectivity also varied along the cortical hierarchy. We found 

that both average between-network connectivity age effects and within-network connectivity age 

effects were associated with a region’s S-A axis rank, revealing that both contributed to the 

developmental alignment of FC strength along the S-A axis. However, between-network 

connectivity developmental effects were more strongly related to the S-A axis (Figure 6a-d; 

PNC: r = -0.66, pspin < 0.001; NKI: r = -0.50, pspin < 0.001; HCP-D: r = -0.55, pspin < 0.001; HBN: 

r = -0.70, pspin < 0.001) than within-network connectivity developmental effects (Figure 6e-h; 

PNC: r = -0.49, pspin < 0.001; NKI: r = -0.31, pspin < 0.001; HCP-D: r = -0.31, pspin < 0.001; HBN: 

r = -0.37, pspin < 0.001). Opposite sign age effects for average between-network connectivity 

were seen in sensorimotor and association cortices; age effects for average within-network 

connectivity were largest in sensorimotor cortices. This may contribute to the difference in 

alignment of between- versus within-network effects to the S-A axis. These results suggest that 

low-order regions tend to integrate with many other cortical regions, whereas segregation of high 

S-A rank regions appears to be driven by decreases in between-network connectivity rather than 

changes in within-network connectivity.  

Following this analysis, we further investigated the extent to which developmental 

changes in functional connectivity were dependent upon the identities of both brain regions 

forming the functional connection. To do this, we performed an edge-level analysis of functional 

connectivity. We modeled the effect of each combination of S-A axis rank (representing pairs of 

brain regions) on edge-level age effects by using a bivariate smooth interaction. Results across 

all datasets revealed that sensorimotor-to-sensorimotor edges tended to strengthen with age, 

whereas connections between sensorimotor and association regions weakened (Figure 7a-d). 

Association-to-association connections also weakened with development but less prominently. 

Overall, these results indicate that lower S-A rank (i.e., sensorimotor) brain regions tend to 

integrate with all other brain regions, but particularly with other low S-A rank regions. In 

contrast, higher S-A rank (i.e., associative) brain regions tend to segregate with age, with 

connections to the opposite end of the S-A axis weakening the most. Brain regions in the middle 

axis integrate with lower S-A rank parcels but segregate from higher S-A rank parcels.  
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Figure 6. Hierarchical developmental change in average between-network and within-network 

connectivity. Regional development of average between-network connectivity and average within-network 

connectivity varies along the S-A axis. (a-d) The age effect of average between-network connectivity is 

highly aligned with the S-A axis in all four datasets (PNC: r = -0.66, pspin < 0.001; NKI: r = -0.50, pspin < 

0.001; HCP-D: r = -0.55, pspin < 0.0001; HBN: r = -0.70, pspin < 0.001). (e-h) The age effect of average 

within-network connectivity is aligned with the S-A axis in PNC (r = -0.49, pspin < 0.001) and in replication 

datasets (NKI: r = -0.31, pspin < 0.001; HCP-D: r = -0.31, pspin < 0.001.; HBN: r = -0.37, pspin < 0.001), but 

not as strongly. Results are shown in the Schaefer 200 atlas with 7-network partition based on the 7 Yeo 

network solution.13,40 Note that axes were adjusted to best visualize all datasets. A total of 3 data points 

across all datasets were excluded for between-network connectivity and a total of 4 data points across all 

datasets were excluded for within-network connectivity. 
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Figure 7. Edge-level age effects confirm divergent connectivity refinement along the sensorimotor-

association axis. (a) The schematic summarizes the progression of refinement during functional 

connectivity development in edge-level functional connectivity for each end of the S-A axis. (b-e) 

Topographical plots display edge-level connectivity age effects as a function of S-A axis rank. Colors 

indicate the magnitude and direction of the age effect at each region-to-region connection. The 

topographical plots from all four datasets show that the developmental refinement of edge-level 

connectivity is characterized by strengthening of sensorimotor-to-sensorimotor connections and weakening 

of sensorimotor-to-association connections. Association-to-association connections also moderately 

weaken in development.  
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DISCUSSION 

 

We leveraged four independent, large-scale neuroimaging datasets to characterize 

fundamental spatiotemporal patterns of functional brain development across the cortical 

hierarchy. Specifically, we delineated a robust and highly generalizable alignment between the 

development of functional connectivity and the S-A axis. Age-related changes in functional 

connectivity strength varied along this axis, with a prominent dissociation between sensorimotor 

and association regions at opposite poles of the axis. As a result of these hierarchically organized 

developmental changes, the spatial distribution of functional connectivity strength increasingly 

aligns with the S-A axis with age—linking developmental variability throughout youth to 

cortical organization in adulthood. Together, these results resolve heterogeneous findings in the 

field and provide strong evidence that the S-A axis encodes the dominant pattern by which 

cortico-cortical functional connectivity develops. Our findings underscore the promise of highly 

generalizable and replicable patterns of functional brain development in future studies of human 

brain maturation in health and disease.  

Due to inconsistencies in prior findings42–46 and the lack of an interpretative 

developmental framework, no unifying description of functional connectivity maturational 

patterns has been agreed upon. For instance, both increasing43,44,47 and decreasing15,16  between-

network connectivity have been observed in higher-order brain regions such as those involved in 

the default and frontoparietal networks. Even when results are not directly contradictory, the 

field has lacked a coherent interpretation that accounts for such heterogeneity. While prominent 

earlier work has suggested that long-range connectivity strengthens and short-range connectivity 

weakens in development,48 this was later shown to be largely driven by motion artifact.49,50  It 

should be noted that such heterogeneity regarding fundamental patterns of functional brain 

development is relatively unique compared to widespread agreement on the direction of 

developmental changes in cortical thickness, which decreases in childhood and adolescence, and 

white matter fractional anisotropy, which increases throughout development.11,51–55 Here, we 

sought to resolve heterogeneity in the field by studying functional connectivity development 

using an explicit, empirically-grounded interpretive framework – that brain development 

conforms to and shapes hierarchical cortical organization along the S-A axis – while taking 

rigorous measures to promote replicability and generalizability.  

We recently introduced a model of human cortical development which posited that the S-

A axis of brain organization also represents a major spatial and temporal axis of 

neurodevelopment.19 By showing that functional connectivity refinement varies continuously 

across the S-A axis, our findings provide strong empirical evidence for this developmental 

model. Our results, which were conducted on four independent, large-scale datasets, are timely 

in the context of recent, urgent calls for reproducible research.26,27 A well-documented cause of 

the reproducibility crisis is small sample sizes for high-dimensional fMRI data that yield low 

statistical power.26,28 Recent work has also shown that false positive findings may in part be due 

to inconsistent and custom processing and analysis pipelines,26,56,57 leading to high analytical 

flexibility and the potential for selective reporting.57 Further, generalizability of neuroimaging 

findings has been limited due to single site data using similar imaging parameters57 as well as 

limited demographic diversity.58  These factors may be a source of heterogeneity and 

discrepancies in prior work, restricting the field’s understanding of functional brain 

development.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.20.549090doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.20.549090
http://creativecommons.org/licenses/by-nc-nd/4.0/


We addressed these challenges by applying rigorous measures to establish the 

replicability and generalizability of our findings. In addition to leveraging four large-scale, 

independent datasets to replicate all findings, we publicly pre-registered our hypotheses, 

analyses, and datasets.30 We employed standardized, containerized, and publicly available image 

processing pipelines to all datasets according to our preregistration to reduce analytical 

flexibility, limit degrees of freedom, and minimize selective reporting.56,57 To confirm that 

findings were consistent across analytical choices, we conducted sensitivity analyses using four 

different cortical parcellations and two different community structures. Findings were also robust 

to type of MRI scan (rest-only versus concatenated task-rest fMRI). Lastly, our results were 

robust to differences in dataset characteristics, scanning parameters, analytical approaches, and 

demographics, bolstering confidence in the generalizability of these results.  

Across datasets, we found that cortices at the sensorimotor third of the S-A axis exhibited 

marked increases in connectivity through development. These cortices became more 

interconnected with other sensorimotor cortices and with middle axis regions, which include 

attention systems. Our findings suggest increased functional integration of sensorimotor regions 

and facilitation of cross-system coherence6 in the age window studied. In previous work, 

sensorimotor cortices have been shown to undergo segregation in infancy and early 

childhood;59,60  we did not observe these effects, potentially due to the age of participants in our 

sample. However, the literature contains disparate accounts of how sensorimotor systems 

develop in later development. Studies have observed both decreasing45 and stable61 sensorimotor 

connectivity. Other studies have reported increases in sensorimotor connectivity after mid-

childhood,6,18  particularly to sensorimotor and attention regions,18,62 which our findings support. 

Such sensorimotor integration has been shown to be negatively associated with cognition63 and 

has been linked to cognitive decline in aging and neurodegenerative diseases.64–66 Thus, our 

results suggest a lifespan process that may begin in adolescence.  

In contrast to the developmental increase in connectivity that we observed in 

sensorimotor regions, we found that connectivity declined with age in higher-order association 

regions. We observed segregation of association regions that appeared to be driven by decreasing 

average between-network connectivity. While both developmental integration43,44,47 and 

segregation15,16  of association cortices have been observed in previous literature, our findings 

generally agree with prior work reporting that association regions such as the prefrontal cortex 

tend to display decreases in between-network connectivity14 and increases in within-network 

connectivity.16,48,61 Segregation may support efficient information transmission, reduce cross-

modal interference, facilitate specialized processing,67–69 and has been consistently shown to be 

positively correlated with executive function during development.14,16,18,67,70  The maturation of 

association cortices observed in this age window may occur during a critical period of protracted 

plasticity.71 

Lastly, we found that the middle of the S-A axis exhibited an intermediate pattern of 

connectivity refinement between the two poles of the S-A axis. The middle axis primarily 

consists of cortices involved in the ventral attention and dorsal attention networks.72 Middle axis 

cortices exhibited both increasing and decreasing connectivity, with greater between-network 

connectivity than higher-order cortices, consistent with prior literature.14 Specifically, middle-to-

sensorimotor connections strengthened whereas middle-to-association connections attenuated 

with development. Strengthened connectivity between dorsal attention systems to lower-order 

visual cortices has been shown to be positively associated with reasoning ability,62 possibly by 

facilitating top-down, goal-driven attention.6 In contrast, connectivity between default mode and 
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attention networks has been reported to be negatively associated with age and cognition.62,73 Of 

note, while we have summarized our findings focused on three major divisions of the S-A axis 

(sensorimotor end; middle; association end), it is important to recognize that developmental 

effects and connectivity changes were continuously graded along the entire axis. Taken together, 

our results suggest that the spectrum of developmental connectivity refinement along the S-A 

axis produces heterogeneous modes of inter-regional functional connectivity, which ultimately 

support diverse brain functions.  

Our study suggests that the different developmental programs across the cortex lead to 

the differentiation of association from sensorimotor connectivity profiles. Our findings are 

consistent with recent work that showed increasing differentiation between association and 

sensorimotor cortex functional connectivity profiles from childhood through adolescence.24 We 

also found that functional connections between association and sensorimotor regions weakened 

the most during development. Attenuated connectivity may support the functioning of higher-

order cortices, such as those in the default mode network that support internal mentation, by 

reducing interference from sensorimotor cortices that provide extraneous input from the 

environment.74 Differentiation across the S-A axis may lead to developmental strengthening of 

the cortical hierarchy, whereas segregation between the regions situated at the ends of the S-A 

axis may facilitate perceptual decoupling in higher-order cortices.  

 Several limitations of this study should be noted. First, we used cross-sectional 

neuroimaging data, precluding our ability to examine within-person development. Future work 

should employ longitudinal data to characterize within-person changes in functional connectivity 

and alignment of developmental change with S-A axis.75 Second, BOLD signal from fMRI is 

sensitive to confounding factors such as head motion, which is a major challenge when studying 

children and adolescents.49 We mitigated the impact of head motion by using top-performing 

preprocessing pipelines and by including head motion as a covariate in all analyses.76 Third, the 

age window in the present study does not capture the dramatic changes in functional connectivity 

that occur in very early childhood, such as the segregation of sensorimotor cortices.59   

 In conclusion, we provide robust evidence from four datasets that functional connectivity 

is refined in development along the hierarchy defined by the S-A axis. These results strongly 

support the hypothesis that the S-A axis is not only an axis of brain organization, but also of 

brain development. Our findings also suggest that functional connectivity development refines 

and helps to strengthen the cortical hierarchy, with implications for functional diversity 

throughout the human cortex. Our findings resolve prior inconsistencies in the field and provide 

a broadly generalizable account of human functional brain development. This work comes along 

with other efforts to promote reproducibility in translational neuroimaging, such as a recent 

paper using large-scale structural MRI datasets to develop brain growth charts with generally 

stable centile scores.29 Our highly reproducible findings support the feasibility of creating 

analogous functional brain growth charts. Moving forward, such generalizable patterns of 

functional brain development may be important for understanding not just healthy brain 

development, but also how deviations from normative hierarchical patterns of development may 

confer risk for diverse psychopathology.  

 

  

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.20.549090doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.20.549090
http://creativecommons.org/licenses/by-nc-nd/4.0/


METHODS 

 

Participants 

Data were drawn from four large-scale datasets: the Philadelphia Neurodevelopmental 

Cohort (PNC; n = 1,207), Nathan Kline Institute-Rockland Sample (NKI; n = 397), Human 

Connectome Project: Development (HCP-D; n = 625), and Healthy Brain Network (HBN; n = 

1,126). 

The PNC34 is a community sample of children and adolescents from the greater 

Philadelphia area collected for studying brain development, which originally included n = 1,559 

participants with fMRI data. Demographic and neuroimaging data from 1,207 participants ages 

8-23 from the PNC were included in this study after inclusion criteria were applied 

(Supplementary Figure 4). All study procedures were approved by the Institutional Review 

Boards of both the University of Pennsylvania and the Children’s Hospital of Philadelphia. 

NKI37 is a community-ascertained lifespan sample (ages 6-85) designed to reflect U.S. 

demographic distributions and included n = 1,268 participants in the original sample. 

Participants ages 6-22 with demographics and neuroimaging data (n = 397) were included in this 

study. The Institutional Review Board approved this project at the Nathan Kline Institute. 

  HCP-D35 is a study that aims to characterize healthy brain development in children and 

adolescents whose sample design parallels the demographics of youth in the U.S. Participants 

were recruited across four sites: University of Minnesota, Harvard University, Washington 

University in St. Louis, and University of California-Los Angeles. The original sample included 

n = 652 participants with fMRI data. After applying inclusion criteria, we used demographic and 

neuroimaging data from 625 participants ages 5-22. All study procedures were approved by a 

central Institutional Review Board at Washington University in St. Louis. 

HBN36 aims to characterize the phenotypic heterogeneity in developmental 

psychopathology and consists of a community sample of children and adolescents residing in the 

New York City area. Families who have concerns about psychiatric symptoms in their children 

were encouraged to participate through a community-referred recruitment model. Participants 

were scanned at four sites: Staten Island Flagship Research Center, Rutgers University Brain 

Imaging Center, CitiGroup Cornell Brain Imaging Center, and CUNY Advanced Science 

Research Center. The original sample included n = 2,255 youth with fMRI data. Demographic 

and neuroimaging data from 1,126 participants ages 5-22 from HBN were used in this study. The 

study was approved by the Chesapeake Institutional Review Board. 

In all studies, written informed consent was obtained for all study participants. For 

participants under the age of 18, written consent was provided by legal guardians and assent was 

obtained from participants. Demographic information for all datasets may be found in Table 1.  
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Dataset N 
Female 

(%) 

Age Range 

(Mean, 

SD) 

 Race (self-reported) 

Asian Black Other/Mixed White Missing 

PNC 1207 
646 

(53.5%) 

 

8-23 

(15.4±3.5)  

 

11 

(0.9%) 

513 

(42.5%) 

132  

(10.9%) 

551 

(45.7%) 

0 

(0%) 

NKI 397 
186 

(46.9%) 

6-22 

(14.5±4.4) 

34 

(8.5%) 

82 

(20.7%) 

11 

(2.8%) 

258 

(65.0%) 

12 

(3.0%) 

HCP-D 625 
337 

(53.9%) 

5-22 

(14.5±4.1) 

48 

(7.7%) 

69  

(11%) 

97 

(15.5%) 

395 

(63.2%) 

16 

(2.6%) 

HBN 1126 
439 

(40%) 

5-22 

(11.6±3.5) 

33 

(2.9%) 

139 

(12.3%) 

307 

(27.3%) 

498 

(44.2%) 

149  

(13.2%) 

 

Table 1. Demographic characteristics for each dataset. The Philadelphia Neurodevelopmental 

Cohort (PNC) served as the discovery dataset. Replication datasets included the Nathan-Kline 

Institute-Rockland Sample (NKI), the Human Connectome Project: Development (HCP-D), and 

the Healthy Brain Network (HBN). Demographic data on race was self-reported. The racial 

category “Other/Mixed” includes individuals identifying with more than one race, as well as 

individuals identifying as American Indian or Alaska Native, Hispanic or Latino, or Native 

Hawaiian or Other Pacific Islander.  

 

Sample construction 

 

Age Exclusion 

For each dataset, participants ages 5-23 were included in our study. In the PNC, HCP-D, and 

HBN, no additional participants were excluded since all participants were within the age window 

studied. Data from n = 844 individuals were excluded from NKI’s original lifespan sample of n = 

1,268 due to participants being outside the desired age window.   

 

Medical Exclusion 

Exclusion criteria included the presence of medical conditions affecting brain function (when 

assessed) or gross neurological abnormalities, as well as MRI scanner contraindications. In the 

PNC, n = 146 were excluded from the sample of n = 1,559, and n = 21 participants were 

excluded from the original sample of n = 652 in HCP-D. Medical exclusion data was not 

available for NKI and HBN. 

 

T1 Exclusion 

We excluded low-quality T1-weighted images that did not survive manual quality assurance 

(when possible, based on available data). For the PNC, three highly trained raters provided 

manual ratings of whether images were usable or not based on artifacts. Thirty-nine participants 

were excluded for T1 quality in the PNC. For NKI and HBN, the Swipes for Science web 

application77  was used to perform visual quality control. Raters chose to pass or fail an image 

based on visual inspection of the general quality of the image and the blurriness between the 

white and gray matter boundary.78 An additional n = 5 participants were excluded from NKI due 
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to poor T1 quality. For HBN, 586 participants were excluded for T1 quality. No additional 

participants were excluded in HCP-D; T1 exclusion was completed by the team that collected the 

data.  

  

fMRI Motion Exclusion 

We excluded task and rest fMRI scans with high in-scanner head motion, as defined as mean 

framewise displacement ≥ 0.3. Participants were excluded at this stage if all fMRI scans for a 

given participant failed head motion exclusion. For the PNC, an additional n = 112 participants 

were excluded for high in-scanner motion. In NKI, n = 18 participants were excluded; in HCP-D, 

n = 2 participants were excluded; and in HBN, n = 354 participants were excluded for high in-

scanner head motion. In PNC, HCP-D, and HBN, task and rest scans that survived head motion 

exclusion were concatenated to maximize scan time. NKI collected only resting-state fMRI and 

was not concatenated. Note that because NKI had multiple sessions of MRI scans available, we 

utilized scans from the session with the greatest number of scans surviving T1 and head motion 

exclusion for subsequent analyses. 

 

Scan Time Exclusion 

Lastly, we excluded participants with less than 7 minutes of concatenated resting-state and task 

fMRI data. In the PNC, an additional n = 55 participants were excluded for having a total scan 

time of less than 7 minutes. Six additional participants were excluded in NKI; n = 4 participants 

were excluded in HCP-D; and n = 189 participants were excluded in HBN.  

 

Supplementary Figure 4 summarizes sample selection and inclusion/exclusion criteria for each 

dataset.  

     

MRI data acquisition 

T1-weighted structural MRI and resting-state and task fMRI data from all four datasets 

were used in this present study. Imaging acquisitions for PNC, NKI, HCP-D, and HBN34–37,79 

have been described extensively elsewhere, and details are summarized in Supplementary 

Tables 1-3.  

After image processing (described below), denoised time-series from resting-state and 

task functional MRI data were concatenated for each dataset as available. This approach was 

informed by studies showing that functional networks are largely similar between task and rest 

states and that individual variability rather than task-dependent variability accounts for the 

majority of variation in functional connectivity.80 Furthermore, scan length improves reliability 

of functional connectivity regardless of whether the data is derived from resting-state or task 

scans and helps better identify individual differences.81 The range and median timeseries length 

and maximum number of volumes for concatenated resting-state and task fMRI scans that 

survived quality control are summarized in Table 2 for each dataset.   
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Dataset Range (minutes) 
Median Timeseries 

Length (minutes) 

Maximum Number 

of Volumes 

PNC 8.35 – 33.25  28.25   665 

NKI 7.75 – 24.10  24.10 1424 

HCP-D 7.47 – 42.67  42.67 3200 

HBN 8.33 – 23.33 18.33   1750 

 

Table 2. fMRI timeseries length for each dataset. For each dataset, resting-state and task fMRI 

scans were concatenated after undergoing image processing and T1 and head motion quality 

control. The range and median timeseries length and maximum number of volumes for each 

dataset are shown here. Note that NKI only obtained resting-state fMRI and thus only rest scans 

were concatenated.  

 

Image processing 

Preprocessing of T1-weighted images and functional MRI timeseries used fMRIPrep 20.2.3 

(PNC and NKI) and 22.0.2 (HCP-D and HBN). A newer release of fMRIPrep was used for HCP-

D and HBN to allow for topup-based susceptibility distortion correction given the acquisition of 

reverse phase encoding directions. Following pre-processing with fMRIPrep, post-processing 

used the eXtensible Connectivity Pipelines - Developmental Cognition and Neuroimaging (XCP-

D).31–33,82  

 

Structural data preprocessing. Structural images underwent correction for intensity non-

uniformity with N4BiasFieldCorrection from ANTs 2.3.3,83,84 skull-stripping with 

a Nipype implementation of ANTs brain extraction workflow, and brain tissue segmentation 

with fast FSL 5.0.9 (PNC and NKI) and 6.0.5.1 (HCP-D and HBN).85  Brain surfaces were then 

reconstructed using FreeSurfer 6.0.1 (PNC and NKI) and 7.2.0 (HCP-D and HBN).86 Volume-

based spatial normalization of the T1-weighted image to two standard spaces 

(MNI152NLin6Asym, MNI152NLin2009cAsym) was performed through nonlinear registration 

with ANTs. 

 

Functional data preprocessing. A skull-stripped reference BOLD volume was generated through 

fMRIPrep. A B0 field map was then estimated based on a phase-difference map calculated with a 

dual-echo GRE (gradient-recall echo) sequence (in PNC) or was estimated based on two or more 

echo-planar imaging (EPI) references with topup from FSL and aligned with rigid-registration to 

the target EPI reference run (HBN and HCP-D).87 The phase-difference B0 field map in PNC 

was converted to a displacements field map with FSL’s fugue and SDCflows tools. Susceptibility 

distortion correction (SDC) was omitted in all NKI participants, six participants (13 scans) in 

HBN, and 34 participants (72 scans) in PNC as these participants did not have fieldmaps. 

The BOLD reference was then co-registered with rigid transformations (6 degrees of 

freedom) to the T1-weighted reference using bbregister in FreeSurfer. Head-motion parameters 

with respect to the BOLD reference were calculated before any spatiotemporal filtering 

using FSL’s mcflirt.88 BOLD runs were slice-time corrected using 3dTshift from AFNI 

2016020789 and resampled onto their original, native space by applying a single, composite 
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transform to correct for head-motion and susceptibility distortions. The BOLD time-series were 

also resampled onto the fsaverage surface and into standard space, generating a preprocessed 

BOLD run in MNI152NLin6Asym space. Furthermore, to project BOLD timeseries onto the 

fsLR cortical surface, grayordinate files90 containing 91k samples (32k vertices per hemisphere) 

were generated using the highest-resolution fsaverage as the intermediate standardized surface 

space.  

 

Functional data postprocessing. Outputs of fMRIPrep were post-processed by XCP-D 0.0.8 

(NKI), 0.3.0 (HCP-D), and 0.3.2 (PNC and HBN). XCP-D82 is an extension of the eXtensible 

Connectivity Pipeline Engine (XCP)31,32 and was developed to mitigate motion-related artifacts 

and noise in functional MRI data from developmental cohorts. First, outlier detection was 

performed. In order to identify high-motion outlier volumes, framewise displacement was 

calculated91 with a head radius of 50 mm. Volumes with framewise displacement greater than 

10.0 mm were flagged as outliers and excluded from nuisance regression.91 Then, the BOLD 

data were despiked, mean-centered, and linearly detrended. Thirty-six confounds were estimated 

based from the preprocessed timeseries in fMRIPrep: six motion parameters, mean global signal, 

mean white matter signal, mean CSF signal with their temporal derivatives, and the quadratic 

expansion of six motion parameters, tissues signals and their temporal derivatives.31,76 The 36 

nuisance regressors were regressed from the BOLD data using linear regression as implemented 

in Scikit-Learn 0.24.2 (NKI), Scikit-Learn 1.1.3 (HCP-D), or nilearn 0.9.2 (PNC and HBN).    

  Processed functional timeseries were extracted from residual BOLD using Connectome 

Workbench90 for the following atlases: the Schaefer 17-network 200 and 400 parcel atlas,40 the 

HCP-MMP atlas,92 and the Gordon atlas.93  The Schaefer 200 atlas was used as the primary atlas 

and Schaefer 400, HCP-MMP, and Gordon atlases were used in sensitivity analyses. Lastly, 

parcellated rest and task fMRI timeseries were concatenated and the Pearson correlation between 

concatenated timeseries was computed for every pair of cortical regions. 

 

Quantification of functional connectivity metrics  

To examine developmental changes in global functional connectivity profiles, we 

computed functional connectivity (FC) strength as our primary measure of interest. Furthermore, 

to gain insight into developmental changes in functional segregation and integration, we 

quantified average between- and within-network connectivity and edge-level connectivity as 

secondary measures.  

  FC strength was then calculated for each cortical parcel by averaging its timeseries 

Pearson correlation with all other parcels. Hence, FC strength represents the mean edge strength 

of a given region with all other regions, without thresholding. Average between-network 

connectivity was defined as the mean edge strength (Pearson correlation) of a given region and 

all other regions not in that region’s network. Average within-network connectivity was defined 

as the mean edge strength (Pearson correlation) of a given region and all other regions within 

that region’s network. We examined functional connectivity at the edge level by extracting the 

Pearson correlation between timeseries for each pair of regions.  

 

Harmonization of imaging data  

 Harmonization of functional connectivity metrics in multi-site data (HCP-D and HBN) 

was performed to ensure the imaging measures were comparable across sites.94–96 To do so, we 

applied an extension of Correcting Covariance Batch Effects (CovBat) where the biological 
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covariate of age was modeled as a smooth term via a generalized additive model in both the 

initial mean-correction stage and the covariance-correction stage, similar to ComBat-GAM.38,39 

Sex and in-scanner motion were included as covariates as well. This algorithm was chosen to 

remove any covariance-related batch effects that have been shown to be present in functional 

connectivity data while simultaneously respecting the non-linear downstream modeling 

approach.  

 

Developmental models 

To model both linear and non-linear associations between functional connectivity metrics 

and age, generalized additive models (GAM) were fit using the mgcv package in R.97–101 GAMs 

were fit for each parcellated cortical region with a given functional connectivity metric (e.g., FC 

strength) as the dependent variable, age as a smooth term, and both sex and in-scanner motion as 

linear covariates:  

Connectivity ~ s(age) + βsex + βhead motion (Equation 1). 

  

In-scanner head motion was quantified as the mean framewise displacement averaged 

across all functional runs included for each subject. That is, the average mean framewise 

displacement of the concatenated task and rest scans surviving T1 and head motion exclusion 

was used as a covariate. Age was modeled using thin plate regression splines as the smooth term 

basis set with the maximum basis complexity (k) set to 3 to avoid overfitting. This basis 

complexity consistently resulted in the lowest model Akaike information criterion (AIC) across 

cortical regions and datasets. The GAM smooth term for age produces a smooth function (or 

spline) resulting from a linear combination of weighted basis functions. This spline represents a 

given region’s developmental trajectory for a functional connectivity metric. To examine the 

spatial distribution of FC strength at specific ages, we generated fitted values of FC strength 

from the GAM at ages 8, 14, and 22 using the ‘fitted_values’ function in the gratia package. 

To quantify the age effect as in prior work,18 for each brain region or edge, the effect size 

of age-related change was quantified by the change in adjusted R2 (ΔR2
adj) between a full model 

and reduced model with no age term. The significance of the association between the functional 

connectivity metric and age was assessed using analysis of variance (ANOVA) to compare the 

full and reduced models. To characterize the direction of the effect (increasing or decreasing 

functional connectivity with age), we evaluated the sign of the age coefficient from an equivalent 

linear model.18,102 Multiple comparisons were controlled for with false discovery rate (FDR) 

correction; Q<0.05. All statistical analyses were conducted in R 4.1.2. 

 

Correspondence of developmental effects to the sensorimotor-association axis 

 

Alignment of functional connectivity metric age effects to the S-A axis 

To quantify the association between S-A axis ranks and observed developmental effects, we 

used Spearman’s rank correlations. The S-A axis was previously derived from the average 

cortical hierarchy across multiple brain maps19 and was obtained from 

https://github.com/PennLINC/S-A_ArchetypalAxis for this study. The vertex-level S-A axis was 

parcellated with study atlases to yield regional S-A axis ranks. 

After comparing the two parcellated cortical feature maps (i.e. S-A axis and age effect maps) 

using Spearman’s correlation, we tested for statistical significance using spin-based spatial 

permutation tests using the ‘rotation_parcellation’ algorithm in R.103 The spin-based spatial 
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permutation test, or “spin test,” mitigates issues with distance-dependent spatial autocorrelation 

that is prominent in neuroimaging data. The spin test generates a null distribution by rotating 

spherical projections of one feature map at the cortical surface. This approach preserves the 

spatial covariance structure of the data.104 Here, we generated a null distribution based on 10,000 

spherical rotations. The spin tests compute a p-value (pspin) by comparing the empirically 

observed correlation to the null.  

 We additionally investigated how the S-A rank of the cortical regions on each end of a 

functional connection is associated with developmental strengthening or weakening of the 

connection. To evaluate how the development of edge-level connectivity differs across the 

sensorimotor-association axis, we examined age-related changes in connectivity across edges by 

fitting a bivariate smooth interaction. The effect of S-A axis rank on edge-level age effects was 

modeled using a tensor product smooth to create topographical plots:18,105  

ΔR2
adj ~ te(SA.rankparcel1, SA.rankparcel2) (Equation 2). 

 

Age-resolved analysis of FC strength alignment with the S-A axis  

Lastly, we performed an age-resolved analysis to examine how the spatial distribution of FC 

strength aligns with the S-A axis across the broad age range studied. This analysis was 

performed to gain insight into whether the spatial patterning of functional connectivity across the 

cortical mantle becomes increasingly hierarchical through development.  

 We first computed smooth functions from the GAM model for each region as described 

above. We then calculated the model-predicted FC strength at approximately 1-month intervals 

between age 5 and 22 years (as available per dataset), which corresponds to 200 unique ages. 

The values of FC strength across the cortex at each age was then correlated with the S-A axis 

rank of each brain region, quantifying the relationship between a region’s FC strength and its 

position on the S-A axis and yielding age-specific correlations across the entire age window.  

To determine a point estimate and 95% credible interval for age-specific correlation values, 

we used a Bayesian approach. In this approach, we first created a multivariate normal 

distribution based on the normal distributions of each covariate’s coefficients. We then sampled 

from this posterior distribution 10,000 times to estimate uncertainty around the model 

parameters, fitted FC strength values, and ultimately the FC strength-to-SA-axis correlation 

value to generate credible intervals at each age. Specifically, using the posterior distribution of 

each region’s fitted GAM, we took 10,000 draws to generate 10,000 simulated age smooth 

functions and fitted values of FC strength for each region. For each draw, we correlated the fitted 

value of FC strength with S-A axis rank at each of the 200 sampled ages. This generated a 

distribution of correlation values at each age, which was then used to determine the median 

correlation value and 95% credible interval of the correlation values for each age.  

  

Sensitivity Analysis 

To investigate whether our findings were robust to analytic choices, such as type of MRI 

scan (concatenated task and rest scans versus rest only) and atlas used for cortical parcellation, 

sensitivity analyses were performed. First, for a sensitivity analysis using only resting-state data 

while excluding fMRI acquired during task conditions, PNC, HCP-D, and HBN were analyzed. 

Main analyses for NKI were completed with only resting-state fMRI due to absence of task 

scans, and thus NKI was not included in this sensitivity analysis. We included participants with 

at least 6 minutes of resting-state fMRI. We analyzed data from 998 participants (549 females) 

from PNC, 611 participants (328 females) from HCP-D, and 842 participants (342 females) from 
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HBN. The maximum scan time for resting-state scans was 11.2 minutes (224 volumes) for PNC, 

25.5 minutes (1912 volumes) for HCP-D, and 10.15 minutes (750 volumes) for HBN.  

Second, analyses were evaluated using additional cortical parcellations. Our primary 

parcellation utilized the Schaefer 200 atlas; secondary atlases included the Schaefer 400 atlas, the 

Gordon atlas, and the HCP-MMP atlas.40,92,93 For analyses of secondary outcome measures that 

require community structure, namely average between- and within-network connectivity, we 

evaluated both the Yeo 7 and 17-network partitions associated with the Schaefer atlas. 

 

DATA AND CODE AVAILABILITY 

This paper analyzes publicly available data from four datasets: the Philadelphia 

Neurodevelopmental Cohort, accessible from the Database of Genotypes and Phenotypes 

(phs000607.v3.p2) at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000607.v3.p2; Nathan Kline Institute-Rockland Sample is available 

at https://openneuro.org/datasets/ds001021/versions/1.0.0; Human Connectome Project: 

Development is available for download through the NIMH Data Archive (https://nda.nih.gov/); 

and Healthy Brain Network is accessible through 

http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/.  

  All analysis code is available at https://github.com/PennLINC/network_replication, with 

detailed description and guide to the code can be found at  

https://pennlinc.github.io/network_replication/.  
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SUPPLEMENTARY FIGURES 

 
 

Supplementary Figure 1. Diagram depicting the parameter space for each dataset. 

Functional connectivity metrics were computed for each of the four datasets in this study, 

including Philadelphia Neurodevelopmental Cohort (PNC), Nathan-Kline Institute-Rockland 

Sample (NKI), Human Connectome Project: Development (HCP-D), and Healthy Brain Network 

(HBN). The primary functional connectivity metric was functional connectivity strength, 

computed as the mean edge strength of a given region and all other network regions. Secondary 

measures of functional connectivity were regional measures of average between- and within-

network connectivity. Average between-network connectivity was calculated as the mean edge 

strength of a given region and all other network regions that are not in that region’s community. 

Average within-network connectivity was calculated as the mean edge strength of a given region 

and all other network regions within that region’s network community. The primary parcellation 

for all functional connectivity metrics was the Schaefer 200 atlas; the 7-network partition was the 

primary partition for between- and within-network analyses.13,40 For functional connectivity 

strength, sensitivity analyses were conducted in three additional atlases: HCP-MMP, Gordon, 

and Schaefer 400 atlases.40,92,93 Sensitivity analyses for between- and within-network 

connectivity were conducted in Gordon, Schaefer 200 (17-network solution), and Schaefer 400 

(7- and 17-network solutions).  
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Supplementary Figure 2. Sensitivity analysis with secondary parcellations to examine 

functional connectivity strength development provides convergent results. We computed 

functional connectivity strength from concatenated resting-state and task fMRI for additional 

parcellations: HCP-MMP, Gordon, and Schaefer 400 atlases in all datasets. Sensitivity analyses 

with additional parcellations were completed in all datasets; representative results from 

sensitivity analyses in the PNC are depicted here. (a-c) Similar to our main findings using the 

primary parcellation (Schaefer 200 atlas), dissociable patterns of functional connectivity strength 

developmental trajectories can be seen along the S-A axis across all secondary parcellations. (d-

f) The strong alignment between the age effect of functional connectivity strength and a given 

region’s rank on the S-A axis is consistent across parcellations (HCP-MMP: r = -0.72, pspin < 

0.0001; Gordon: r = -0.71, pspin < 0.0001; Schaefer 400: r = -0.69, pspin < 0.0001).  
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Supplementary Figure 3. Sensitivity analysis using only resting-state fMRI to examine 

developmental changes in functional connectivity strength provide convergent results. 

Consistent with our main findings using concatenated rest and task fMRI data, the development 

of rest-defined functional connectivity strength varies continuously along the S-A axis. (a-c) In 

the PNC, HCP-D, and HBN, regions in the sensorimotor pole generally show increases in 

functional connectivity strength whereas regions in the association pole show decreases in 

functional connectivity strength through development. Each line represents the functional 

connectivity strength (zero-centered) for each region throughout development, modeled using 

generalized additive models. (d) The rank of each region in the S-A axis explains the majority of 

variance in age effects in the PNC (r = -0.68, pspin < 0.0001). These findings were replicated in 

additional independent datasets, including (e) HCP-D (r = -0.63, pspin < 0.0001), and (f) HBN (r 

= -0.73, pspin < 0.0001). The age effect of functional connectivity strength for each region 

(Schaefer 200) is plotted against the given region’s rank in the S-A axis.     
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Supplementary Figure 4. Flow diagram depicting sample selection and inclusion and 

exclusion criteria. Data were taken from four large neuroimaging datasets: Philadelphia 

Neurodevelopmental Cohort (PNC), Nathan-Kline Institute-Rockland Sample (NKI), Human 

Connectome Project: Development (HCP-D), and Healthy Brain Network (HBN). We included 

participants ages 5-23 as available for each dataset. Participants were excluded for medical 

conditions affecting brain function or gross neurological abnormalities, poor T1 quality, and 

excessive in-scanner head motion. Furthermore, participants without at least 7 minutes of scan 

time after concatenating available rest and task fMRI scans were excluded. Note that NKI only 

collected resting-state fMRI. Furthermore, NKI collected neuroimaging data for each participant 

over multiple sessions. Scans from the session with the greatest number of surviving scans after 

head motion exclusion were selected for analysis.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.20.549090doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.20.549090
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 
Table S1. Scanning site and MRI platform information for each dataset.  
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  Table S2. Image acquisition parameters for T1-weighted images and field maps for each 

dataset.  
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Table S3. Image acquisition parameters for resting-state and task fMRI for each dataset.   
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