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ABSTRACT 
 
Functional neuroimaging is an essential tool for neuroscience research. Pre-processing pipelines 
produce standardized, minimally pre-processed data to support a range of potential analyses. 
However, post-processing is not similarly standardized. While several options for post-processing 
exist, they tend not to support output from disparate pre-processing pipelines, may have limited 
documentation, and may not follow BIDS best practices. Here we present XCP-D, which presents 
a solution to these issues. XCP-D is a collaborative effort between PennLINC at the University of 
Pennsylvania and the DCAN lab at the University at Minnesota. XCP-D uses an open development 
model on GitHub and incorporates continuous integration testing; it is distributed as a Docker 
container or Singularity image. XCP-D generates denoised BOLD images and functional 
derivatives from resting-state data in either NifTI or CIFTI files, following pre-processing with 
fMRIPrep, HCP, and ABCD-BIDS pipelines. Even prior to its official release, XCP-D has been 
downloaded >3,000 times from DockerHub. Together, XCP-D facilitates robust, scalable, and 
reproducible post-processing of fMRI data. 
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INTRODUCTION 
 
Functional neuroimaging using fMRI is an essential tool for human neuroscience research. Widely 
used pre-processing pipelines, such as fMRIPrep (Esteban et al., 2018), Human Connectome 
Project (HCP) pipelines (Glasser et al., 2013), and ABCD-BIDS (Feczko et al., 2021) produce 
standardized, minimally pre-processed data to support a range of potential analyses. Following 
pre-processing, investigators typically perform post-processing, which includes critical steps like 
denoising and generation of derived measures (e.g., functional networks) that are used in 
hypothesis testing. Unlike the highly standardized software available for pre-processing, there is 
far more variability in how researchers approach post-processing, for example censoring data to 
remove high-motion outliers, or despiking data to remove large spikes in images. In general, 
different approaches towards denoising in the post-processing stage can lead to different results 
from the same set of data. Prior work has also established that denoising strategies are quite 
heterogeneous in their effectiveness (Ciric et al., 2017). This may result in findings that cannot be 
replicated, contradictory results, and other such issues that make it harder for the field to progress. 
Here we introduce XCP-D: a scalable, robust, and generalizable software package for post-
processing resting-state fMRI data.  
 
Widely used pre-processing tools such as fMRIPrep build on the Brain Imaging Data Structure 
(BIDS) for organizing and describing neuroimaging data (Gorgolewski et al., 2016). As a BIDS 
App, fMRIPrep builds appropriate pre-processing workflows based on the metadata encoded by 
BIDS. Following pre-processing with fMRIPrep, many labs use custom workflows for post-
processing steps including denoising and generation of derivatives. While such a bespoke approach 
to post-processing may have advantages – such as being tightly aligned with the needs of a specific 
study – it leads to the duplication of effort across labs, negatively impacts reproducibility, and may 
reduce the generalizability of results. One alternative to custom post-processing has been provided 
by the eXtensible Connectivity Pipelines Engine (XCP; Ciric et al., 2018), a widely used (>6,000 
Docker pulls) post-processing package that consumes fMRIPrep output. However, XCP has 
accumulated substantial technical debt over time, is not compatible with other widely used pre-
processing formats (e.g: HCP pipelines), does not support surface-based analyses, and lacks certain 
advanced denoising features provided by other widely used packages such as ABCD-BIDS.  
 
Here, we introduce XCP-D, a collaborative effort between PennLINC (Pennsylvania Lifespan 
Informatics and Neuroimaging Center) and DCAN (Developmental Cognition and Neuroimaging 
Labs) that includes a new Python codebase and important new features. XCP-D focuses on 
consuming data pre-processed by other widely used tools. Specifically, XCP-D supports post-
processing of multiple pre-processed formats, including fMRIPrep, HCP pipelines, and ABCD-
BIDS; this allows XCP-D users to apply the same top-performing denoising strategies to datasets 
that were pre-processed using different software. XCP-D adheres to BIDS derivatives conventions 
throughout and includes new software engineering features to ensure stability and robustness. 
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These include a refactored and highly modular codebase that is built using NiPype (Gorgolewski 
et al., 2011) and incorporates extensive continuous integration (CI) testing. Additionally, XCP-D 
supports CIFTI workflows for surface-based analysis and processing, provides an expanded suite 
of data quality measures, and includes new visual reports. XCP-D thus allows users to leverage 
minimally processed data from diverse data resources, apply uniform post-processing, and 
generate the same derived measures for hypothesis testing. Prior to publication, XCP-D has already 
been pulled from DockerHub over 3000 times.  
 
 
METHODS 
 
Overview 
XCP-D consumes pre-processed resting-state data generated with any of three commonly used 
pre-processing pipelines: fMRIPrep, HCP, or ABCD-BIDS and implements top-performing 
denoising strategies (Ciric et al., 2018) for NIfTI or CIFTI timeseries. The pipeline generates 
resting-state derivatives, including parcellated timeseries and connectivity matrices, using multiple 
popular atlases. Importantly, XCP-D also calculates additional quality assurance measures. 
Finally, XCP-D constructs interactive reports that describe the post-processing methods used and 
facilitate visualization of each step. XCP-D also uses an open, test-driven development model on 
GitHub, and is distributed as a Docker container or Singularity image.  
 
Installation procedures 
Docker  
Docker is an open-source platform for developers that makes the distribution of applications easier 
via packaging of all supporting dependencies into a lightweight, standard form called a “container” 
(Rad et al., 2017). Docker images create a container that includes the complete operating system 
and all necessary dependencies. For every new version of XCP-D, continuous integration testing 
is performed (see Table 1 for a list of tests implemented in XCP-D). If these tests succeed, a new 
Docker image is automatically generated and deployed to DockerHub. To run XCP-D via Docker 
images, Docker Engine must be installed. To pull XCP-D from DockerHub, users must run:  
 

 docker pull pennlinc/xcp_d:<version> 

 
where <version> should be replaced with the desired version or tag of XCP-D that users want 
to download. The image can also be found here: https://registry.hub.docker.com/r/pennlinc/xcp_d  
 
XCP-D can be run by interacting directly with the Docker Engine via the docker run command.  
 
Singularity 
Singularity is an open-source software package designed to allow portable computational 
environments and containers for scientific research (Kurtzer et al., 2017). Many high performance 
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computing (HPC) systems restrict use of Docker, but support Singularity instead. Using 
Singularity version 2.5 or higher, users can create a Singularity image from a Docker image on 
DockerHub:  
 
 singularity build xcp_d-<version>.sif docker://pennlinc/xcp_d:<version> 

 
Design and testing 
We used an open-source, test-driven approach in developing XCP-D. To this end, we integrated 
CircleCI – a web-based continuous integration testing platform – into our development workflow. 
Each new commit to the software is run through a full suite of CI tests (described in Table 1) run 
on pre-selected datasets during each CircleCI instance. Further, we applied branch protection rules 
to the development process: namely, any changes to XCP-D must be approved by a reviewer and 
pass continuous integration testing and full pipeline runs on CircleCI before deployment to the 
main branch that can be accessed by users. Approximately 81% of the code is covered by our tests 
according to CodeCov – which determines how much of the codebase is covered by CI testing.  
 
Workflow 
Post-processing in XCP-D involves multiple customizable steps that are widely used: the removal 
of dummy volumes, despiking, temporal censoring, regression, interpolation, filtering, smoothing, 
supplemented by the calculation of quality assurance variables, and generation of reports 
(Satterthwaite et al., 2013; Ciric et al., 2018; see Figure 1). Note that XCP-D supports post-
processing of fMRI data with a T1 image, a T2 image, or both. 
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Figure 1: XCP-D Workflow. The XCP-D workflow begins after the pre-processing of fMRI data. XCP-D 
requires anatomical data, confounds files, and pre-processed BOLD files. It performs functional denoising 
to produce clean fMRI data and functional derivatives. ReHo: Regional Homogeneity; ALFF: Amplitude of 
Low Frequency Fluctuations. 
 
Through these processes, XCP-D produces multiple functional derivatives, including the dense 
volumetric and/or surface-based denoised timeseries, parcellated timeseries, correlation matrices, 
and derived functional metric maps (such as regional homogeneity and fluctuation amplitude). 
Furthermore, XCP-D also provides detailed quality assurance information regarding both the fMRI 
data and image registration, as well as interactive graphical reports (see Table 2 for a list and 
description of XCP-D outputs).  
 
Many internal operations of the software use TemplateFlow (Ciric et al. 2022), Nibabel (Brett et 
al. 2023), numpy (Harris et al. 2020), and scipy (Virtanen et al. 2020). Below, we describe each 
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of the post-processing modules with accompanying command syntax, relevant information, as well 
as the CI tests for each module. 
 
Ingression of non-BIDS derivatives 
XCP-D supports both BIDS derivatives-compliant pre-processing pipelines (i.e., fMRIPrep) and 
non-BIDS pipelines (i.e., HCP and ABCD-BIDS). In the latter case, XCP-D indexes the outputs 
from the pre-processing pipeline and maps the relevant files into a BIDS derivatives-compliant 
structure in the working directory if the user specifies --input-type as dcan or hcp. 
 
As part of this ingression procedure, XCP-D also extracts minimal confounds. However, this does 
not fully reproduce the confounds that fMRIPrep creates, which limits the denoising strategies 
available for these data. Additionally, XCP-D’s anatomical workflow requires that CIFTI surfaces 
are in fsLR space at 32k density. 
 
Removal of non-steady state volumes 
Some vendors acquire multiple additional volumes at the beginning of a scan to reduce transient 
T1 signals before a steady state is approached (Jenista et al., 2016). These volumes are often 
referred to as “dummy scans'' or “non-steady state volumes''. Additionally, higher levels of 
movement at the start of a scan (e.g., startle due to onset of scanner noise) may also lead 
investigators to remove initial volumes. This is the first post-processing step in XCP-D and occurs 
optionally. XCP-D allows the first n (as supplied by users) number of volumes to be deleted before 
processing. If set to auto, XCP-D will extract non-steady-state volume indices from the pre-
processing derivatives confounds file (only included in fMRIPrep confounds files). Removal of 
dummy volumes is enabled via the –-dummy-scans flag and feeds the truncated confounds 
and image files into the rest of the workflow. This module is tested by evaluating a BOLD file and 
its corresponding confounds file and specifying a varying number of volumes (1-10) to be 
removed. The CI test confirms that the correct number of volumes is dropped from both the image 
and confound timeseries.  
 
Despiking 
Despiking is a process in which large spikes in the BOLD times series are truncated on an adaptive, 
voxel-specific basis. Despiking limits the amplitude of the large spikes but preserves the data 
points with an imputed reduced amplitude to minimize the effect of outliers. Notably, despiking is 
different from temporal censoring as it modifies rather than deletes data – despiking is also 
performed individually for each voxel whereas temporal censoring removes an entire volume. 
XCP-D performs despiking via AFNI’s (Cox et al., 1996) 3dDespike using default settings and the 
–-NEW flag, which uses a new fitting algorithm to despike the data rather than AFNI’s original 
L1 method, due to faster processing speed. For CIFTIs, which are first converted to NIfTIs and 
back during the despiking process via Connectome Workbench (Marcus et al., 2011), the –-
nomask flag is used so that the entire volume is despiked. Despiking is performed when the –-
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despike flag is supplied. Despiking is executed before regression, censoring, and filtering to 
minimize the impact of spikes. Testing for this module involves calculating the maximum and 
minimum intensity values of the data and ensuring that the range between the two has decreased 
after despiking - that is, the minimum value of the data has increased, while the maximum value 
has decreased.  
 
Filtering of realignment parameters 
Recent work has established that respiration can systematically induce fluctuations in the main 
magnetic field (Fair et al., 2020), which can contaminate estimates of head motion. Such artifacts 
can be removed via filtering of the realignment parameters using a low-pass filter for single-band 
images (Gratton et al., 2020) or a notch filter for multiband images (Fair et al., 2020). If users 
specify a low-pass filter, frequencies above band_stop_min (specified in breaths per minute) 
are removed with a Butterworth filter. If users specify a notch filter (as described in Fair et al., 
2020), the frequencies between band_stop_min and band_stop_max are removed. The 
notch filter is applied using scipy’s iirnotch function, and both filters are applied backwards 
and forwards using scipy’s filtfilt function. Motion parameter filtering will only be enabled 
if --motion-filter-type is provided. 
 
Temporal censoring  
Temporal censoring (also known as motion scrubbing) is a process in which data points with 
excessive motion are removed from the fMRI timeseries (Power et al., 2012). To aid the fit of the 
confound regression model, censored data points are removed before regression. The framewise 
displacement (FD) threshold specified by the user (with a default value of 0.3) is used to identify 
volumes to be censored. Temporal censoring can be disabled by setting –-fd-thresh to 0.  
 
FD is calculated from the (optionally filtered) realignment parameters following the procedure 
described in Power et al., 2014. The head radius used to calculate FD may be supplied by the user 
via –-head-radius, set to auto (which estimates the brain radius based on the pre-processed 
brain mask), or by defaulting to 50 mm. The FD timeseries and FD threshold are then used to 
determine the number of high motion outlier volumes. A temporal mask is then generated in .tsv 
format, with 0s corresponding to volumes that were not flagged for censoring, and 1s indicating 
high-motion outlier volumes. 
 
For participants with high motion, it is possible that censoring results in a timeseries with few un-
censored volumes. XCP-D allows the user to specify a minimum run duration (in seconds) of un-
censored data. This minimum time can be specified by the user via –-min-time (with a default 
value of 100, in seconds), which determines the minimum amount of time, in seconds, needed to 
process a given run once high-motion volumes are removed. This feature can be disabled by 
providing a 0 or a negative value.  
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This module is tested by replacing values in the confounds file with values that should be censored 
and ensuring that the image file and the confounds file have had the same number of volumes 
dropped after the censoring module.  
 
Confound selection 
Confound selection occurs when a confounds file is supplied from a pre-processing software. A 
custom confounds file may also accompany or replace this confounds file. The selected nuisance 
regressors could include realignment parameters, mean timeseries from anatomical compartments 
(GM, WM, CSF), the global signal (Fox et al., 2009), CompCor components (Behzadi et al., 2007), 
or independent components from ICA-AROMA (Pruim et al., 2015). Confound configurations can 
be extracted from these parameters and are then used to remove noise from the BOLD image file 
during confound regression. Confound configuration preferences may vary across use cases thus 
XCP-D allows users some flexibility in denoising options (Satterthwaite et al., 2013; Ciric et al., 
2017). Note that at present, users cannot apply aCompCor or AROMA nuisance regressors for 
HCP or ABCD-BIDS inputs; this is a feature that may be added in the future. 
 
The built-in nuisance strategies may be supplemented or replaced with a custom confounds file 
provided by the user. This functionality allows users to perform more advanced regression 
strategies. For example, users may convolve task regressors with a hemodynamic response 
function and provide these regressors in a custom confounds file to regress out task signals and 
treat the denoised data as pseudo-rest (Fair et al., 2007). If users wish to retain specific signals of 
interest in the data, they may include those signals in the custom confounds file, with the associated 
column headers prefixed with “signal__”. This scenario is described in “Confound regression”. 
 
Confound selection is implemented via Nilearn’s (Abraham et al., 2014) load_confound 
functionality. The selected confounds are fed into the beginning of the workflow in .tsv format 
where dummy time is removed - so it is appropriately truncated, and then passed on throughout 
the workflow. Pre-configured confound strategies include those described in a prior benchmarking 
study (Ciric et al., 2018): 
 

● 24P - six realignment parameters, their squares, derivatives, and squares of the derivatives  
● 27P - the white matter, CSF and global signal parameters in addition to those included in 

the 24P model 
● 36P - the squares, derivatives, and squares of the derivatives of white matter, CSF and 

global signal parameters in addition to those included in the 27P model 
● acompcor - the ACompCor parameters, the six realignment parameters, and their 

derivatives 
● acompcor_gsr - the ACompCor parameters, the realignment parameters, their 

derivatives, and global signal 
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● aroma - the AROMA parameters, realignment parameters, their derivatives, white matter, 
and CSF 

● AROMA_gsr - the AROMA parameters, realignment parameters, their derivatives, white 
matter, CSF, and global signal  

● Custom confounds - users provide their own confounds 
 
Confound parameters can be selected by the user via the -p flag and corresponding configuration, 
or -c for custom confounds. Nuisance regressors can also be specified as none to skip this 
denoising step. Confound selection is tested by ensuring that the confounds matrix for certain 
confound configurations and BOLD files have the right number of parameters - for example, 36 
parameters if 36P is selected as the confound configuration.  
 
Confound regression 
Confound regression is used to mitigate motion artifacts in fMRI scans. XCP-D implements 
denoising via linear least squares regression. First, linear trend and intercept regressors are 
appended to the selected confounds so that the data is linearly detrended. Next, high-motion outlier 
volumes are removed from the nuisance regressors and the BOLD data (see section “Temporal 
censoring” above) so that the regression is only performed on low-motion data; the inclusion of 
very-high motion data that is removed via temporal censoring would reduce the effectiveness of 
confound regression. Each of the nuisance regressors, except for the intercept, are additionally 
mean-centered prior to the regression.  
 
In some cases, the selected confounds may be correlated with signals of interest, as in AROMA, 
where ICA components are labeled as “noise” or “signal.” In these cases, including the “noise” 
regressors without modification can result in the removal of variance explained by “signal” 
regressors. To address this issue, XCP-D orthogonalizes all nuisance regressors (except for the 
linear trend and intercept regressors) with respect to any detected signal regressors. This is done 
automatically for nuisance regression strategies that include AROMA regressors. For custom 
confounds derived from spatial ICA components, such as multi-echo denoising with tedana 
(DuPre, Salo et al., 2021; Kundu et al., 2011; Kundu et al., 2013), users must include “signal” 
components in their custom confounds file, prefixed with “signal__”. When columns with this 
prefix are detected in the confounds file, XCP-D will automatically employ this orthogonalization 
procedure. Then, when the confound regression step is performed, the modified nuisance 
regressors (i.e., without the signal regressors) will be mean-centered, censored to remove high-
motion volumes, and finally regressed out of the fMRI data.  
 
Regression consumes the confounds file and BOLD file to be denoised and produces a residual 
timeseries for further analysis. Using the user-selected (see above) confounds, regression occurs 
after despiking and censoring. Confound regression is tested by confirming that the correlation 
between a random voxel and the confounds timeseries has decreased.  
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Interpolation 
For accurate bandpass filtering, the original sampling rate of the time series must be retained. 
Hence, interpolation restores the length of the original timeseries after temporal censoring. It 
occurs after regression, using the temporal mask generated during censoring to determine which 
values have been removed during censoring. Then, it uses Nilearn’s interpolation function to 
interpolate values from high-motion volumes via cubic spline interpolation. Note that interpolation 
for volumes at the beginning and end of the time series is disabled. Instead, XCP-D propagates the 
values from the closest low-motion volume. The BOLD timeseries with the interpolated values is 
then passed to the filtering workflow. Testing of this module involves confirming that the 
difference between the fast Fourier transform (FFT) of an interpolated file and the original file is 
less than the difference between the FFT of a file with an artificial spike planted in it and the 
original file.  
 
Filtering 
Temporal filtering is used in fMRI signal processing to reduce high-frequency and low-frequency 
artifacts in the timeseries. XCP-D applies a Butterworth bandpass filter to BOLD signals after 
regression and interpolation. Functional connectivity between regions of interest is typically 
determined based on synchrony in low-frequency fluctuations (Biswal et al., 1995); therefore, 
removing higher frequencies using a low-pass filter may effectively remove noise from the 
timeseries while retaining signal of interest. High-pass filters can be used to remove very-low-
frequency drift, which is a form of scanner noise, from an acquisition. Any frequencies below the 
low-pass cutoff and above the high-pass cutoff will be counted as pass-band frequencies as in the 
case of our Butterworth filter. These will be retained by the filter when it is applied. High-pass or 
low-pass only filtering is also supported.  
 
The bandpass filter parameters are set from 0.01 to 0.08 Hz with a filter order of 2 by default, as 
used in Power et al., 2014. The filter is calculated using scipy’s butter functionality to calculate 
filtering coefficients, and filtfilt to apply the filter to the data. The filter uses constant 
padding with maximum allowed pad length as one less than the total number of volumes. 
Parameters can be modified in the command line, using the –-lower-bpf, –-upper-bpf 
and –-bpf-order flags. This module occurs after regression and before the creation of 
functional timeseries. It is applied to the unfiltered BOLD file and outputs the filtered image.  
 
Testing of this module involves comparing the output of XCP-D’s Butterworth filtering code to 
the output of scipy’s code. 
After bandpass filtering is performed, the denoised, interpolated, and filtered timeseries is re-
censored, so that only low-motion volumes are retained. This occurs as described above in the 
“Outlier detection and removal'' section.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.11.20.567926doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.20.567926
http://creativecommons.org/licenses/by-nc-nd/4.0/


Parcellated timeseries extraction and calculation of connectivity matrices  
Functional connectivity matrices are a widely used approach to examine the coherence in activity 
between distant brain areas (Hlinka et al., 2011; Biswal et al., 1995). The generation of these 
matrices involves parcellating the brain into regions determined by atlases and then calculating 
correlations between regions. 
 
XCP-D extracts voxel-wise timeseries from the denoised BOLD timeseries and outputs parcellated 
timeseries and correlation matrices for a variety of atlases bundles in the software. The output post-
processed BOLD files, parcellated timeseries, and correlation matrices come from censored data. 
If the user adds the –-dcan-qc flag, then the interpolated version of the post-processed data will 
also be written out, with “desc-interpolated” in the timeseries filename. The local mean timeseries 
within each brain atlas’s region of interest (ROI) is extracted via Nilearn’s 
NiftiLabelsMasker for NIfTIs, and ConnectomeWorkbench’s wb_command --cifti-
parcellate function for CIFTIs. Functional connectivity matrices are estimated using the 
Pearson correlation between all parcels for a given atlas. Before functional connectivity is 
estimated, a coverage threshold (with a default value of 0.5, or 50% coverage) is applied to parcels 
in each atlas. Any parcels with lower coverage than the threshold will be replaced with NaNs. This 
may be useful in the case of partial field-of-view acquisition or poor placing of the bounding box 
during acquisition. Additionally, if the --exact-time flag is used, this parameter will produce 
correlation matrices limited to each requested amount of time (specified in seconds). If there is 
more than the required amount of low-motion data, then volumes will be randomly selected to 
produce denoised outputs with the exact amounts of time requested. If there is less than the 
required amount of ‘good’ data, then the corresponding correlation matrix will not be produced. 
 
The following atlases are implemented in XCP-D: Schaefer 100-1000 (Schaefer et al., 2018), 
Glasser 360 (Glasser et al., 2016), Gordon 333 (Gordon et al., 2016), the subcortical HCP Atlas 
(Glasser et al., 2013) and Tian Subcortical Atlas (Tian et al., 2020). Notably, our atlases have been 
harmonized with QSIPrep (Cieslak et al., 2021) and ASLPrep (Adebimpe et al., 2022) to facilitate 
multi-modal network analyses. This module is tested by confirming that the correlation coefficient 
of a parcellated timeseries is the same as in the connectivity matrix produced, when calculated 
separately in a Python notebook.  
 
ReHo 
Regional Homogeneity (ReHo) is a measure of local temporal uniformity in the BOLD signal 
computed at each voxel of the processed image. Greater ReHo values correspond to greater 
synchrony among BOLD activity patterns measured in a local neighborhood of voxels (Zang et 
al., 2004), with neighborhood size determined by a user-specified radius of voxels. ReHo is 
calculated as the coefficient of concordance among all voxels in a sphere centered on the target 
voxel (Zuo et al., 2013).  
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ReHo is performed on the BOLD file after temporal filtering and the output is written out directly 
to the XCP-D derivatives folder. For NIfTIs, ReHo is always calculated via AFNI’s 3dReho with 
27 voxels in each neighborhood. For CIFTIs, the left and right hemisphere are extracted into GIFTI 
format via Connectome Workbench’s CIFTISeparateMetric. Next, the mesh adjacency 
matrix is obtained, and Kendall's coefficient of concordance (KCC) is calculated (Zhang et al., 
2023), with each vertex having four neighbors. For subcortical voxels in the CIFTIs, 3dReho is 
used with the same parameters that are used for NIfTIs. This module is tested by adding artificial 
noise to an image and confirming that the mean ReHo value declines. 
 
ALFF 
The amplitude of low-frequency fluctuations (ALFF) – also called “fluctuation amplitude” – is a 
measure of regional intensity of BOLD signal fluctuation (Yu-Feng et al., 2006) calculated in each 
voxel of the processed image. Low-frequency fluctuations are of particular importance because 
functional connectivity is most typically computed based on synchronous, low frequency 
fluctuations (Zou et al. 2008).  
 
ALFF is calculated on the BOLD file after filtering and its output can optionally be smoothed (see 
Smoothing). Notably, ALFF is only calculated if bandpass filtering is applied, and motion 
censoring is disabled. ALFF is computed by transforming the processed BOLD timeseries to the 
frequency domain using scipy’s periodogram function. The power spectrum is computed 
within the default 0.01-0.08 Hz frequency band (or the band-pass values optionally supplied by 
the user during filtering), and the mean square root of the power spectrum is calculated at each 
voxel to yield voxel-wise ALFF measures.  
 
This module is tested by first calculating the ALFF of a BOLD file. Then, the FFT of the BOLD 
file is calculated. After adding values to the amplitude of its lower frequencies, it is confirmed that 
the ALFF increases upon being re-computed. 
 
 
Spatial smoothing 
Noise in the BOLD signal – due to physiological signals or scanner noise – can introduce spurious 
artifacts in individual voxels (Mikl et al., 2008). The effects of noise-related artifacts can be 
mitigated by spatial smoothing of the data, which can dramatically increase the signal-to-noise 
ratio (Mikl et al., 2008). However, spatial smoothing is not without its costs: it effectively reduces 
volumetric resolution by blurring signals from adjacent voxels (Mikl et al., 2008).  
 
Smoothing optionally occurs after temporal filtering. FWHM smoothing is implemented in XCP-
D with a default value of 6.0 mm in volumes and surfaces. Additionally, ALFF maps are also 
smoothed if the --smoothing flag is specified by the user. First, the specified FWHM kernel 
(specified in mm) is converted to sigma (standard deviation). Smoothing for NIfTIs is performed 
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via Nilearn’s smooth_img using a Gaussian filter. For CIFTIs, Connectome Workbench’s 
wb_command --cifti-smoothing is used to smooth each hemisphere and the subcortical 
volumetric data. This module is tested by confirming smoothness has increased after data has 
passed through the smoothing workflow, via AFNI for NIfTIs and via Connectome Workbench 
for CIFTIs. 
 
Quality control 
XCP-D calculates multiple quality control measures. These include estimates of fMRI data quality 
before and after regression, as well as indices of co-registration and normalization quality. Selected 
metrics include the following: 

● Summary measures of realignment parameters: mean FD, mean and maximum root-
mean-square displacement (RMS). FD and RMS measure relative contributions of 
angular rotation and uniformity of motion effects across the brain (Yan et al., 2013).  

● DVARS: DVARS is a whole brain measure of the temporal derivative (D) of image 
intensity computed by obtaining the root mean square variance across voxels (VARS; 
Goto et al., 2016.) As such it reflects time-varying signals and large values are often 
attributable to artifacts such as in-scanner motion.  

● fMRI-T1/T2 co-registration quality: Because of the limited spatial resolution and reduced 
anatomic contrast of fMRI images compared to structural images, fMRI images are co-
registered to the structural image prior to normalization to template space. Poor co-
registration can thus impact normalization. XCP-D calculates the Dice similarity index 
(Dice, 1945), overlap coefficient, and Pearson correlation between the fMRI image and 
the T1 image (or T2 image) to determine the quality of the registration. The Dice index 
equals twice the number of voxels common to both images divided by the sum of the 
number of voxels in each image. The overlap coefficient (Vijaymeena & Kavitha, 2016) 
calculates the relative number of non-zero voxels in both images. The Pearson’s 
correlation measures the correlations between the voxels in both images.  

● fMRI-Template normalization quality: Following co-registration, the fMRI image is 
normalized to template space by applying the warp calculated in registration of the 
structural image to the template (Jahn, 2022). XCP-D calculates the dice similarity index 
(Dice, 1945), overlap coefficient, and Pearson correlation coefficient to quantify the 
alignment of the fMRI image to the template.  

 
Visual reports 
XCP-D produces two different user-friendly, interactive .html reports. The first (DCAN-style) 
output is called the “Executive Summary.” The Executive Summary is an interactive web page for 
quick visual inspection of structural and functional registration, surface quality, physiological and 
non-physiological artifacts, and post-processing success (see select elements in Figure 2; a full 
example is provided in Supplemental Figure 1). It is particularly useful for assessing co-
registration, normalization, and surface alignment. For example, it includes an interactive 
BrainSprite (https://github.com/brainsprite/brainsprite) viewer that overlays pial and white matter 
surfaces on the template image. This allows users to quickly assess the quality of the surface 
registration. Further information regarding co-registration and normalization quality is depicted in 
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contour plots. The Executive Summary also includes a carpet plot for all runs, which depicts the 
fMRI timeseries before and after confound regression. These carpet plots are displayed alongside 
the FD plots and DVARS timeseries to allow users to rapidly assess denoising success. 
Additionally, XCP-D also provides a NiPreps style report that depicts similar information in a 
different layout (see Supplemental Figure 2). In both reports, XCP-D also produces a “methods 
boilerplate” that details the methods applied along with citations as relevant for users. This 
automatically generated description of the methods ensures fidelity of reporting and can be directly 
copied into publications’ methods sections. 
 

 
 

Figure 2: Selected elements of the XCP-D Executive Summary. Panel A depicts the BrainSprite viewer 
that overlays white and pial matter on the template, followed by (Panel B) a carpet plot and graphs depicting 
FD and DVARS. FD: Framewise displacement; DVARS: temporal derivative (D) of image intensity 
computed by obtaining the root mean square variance across voxels (VARS).  
 
Anatomical Workflow 
The optional anatomical workflow in XCP-D serves two main purposes. First, it is used to warp 
several surfaces derived from the structural images from fsnative to fsLR space, which is useful as 
part of the visual reports for assessing normalization to the fsLR template. To this end, the 
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workflow generates surf.gii files in fsLR space for the gray matter / pial matter border and the 
white matter/gray matter border. It also generates HCP-style inflated surfaces for visualization 
purposes. The workflow can be enabled via the –-warp-surfaces-native2std flag.  
 
Second, XCP-D will parcellate morphometric surface files – including cortical thickness, depth, 
and curvature – generated in pre-processing by sMRIPrep (Esteban et al., 2020) or HCP pipelines. 
XCP-D parcellates these morphometric files using the same atlases that are used for creating 
functional connectivity matrices as well as other surface features like ALFF and ReHo. This 
functionality facilitates analyses of both fMRI and structural imaging features when data is 
processed using XCP-D.  
 
Concatenation 
XCP-D also offers users the option of concatenating fully denoised timeseries across fMRI runs 
based on the run entity specified (notably, different tasks are not concatenated); this also yields 
QC metrics that are concatenated. Notably, this option should be used with some caution as it will 
double the size of output data in the derivatives folder. Users can concatenate runs by specifying 
the –-combineruns flag.  
 
 
RESULTS 
 
Below, we demonstrate the utility of XCP-D in two ways. First, we provide a detailed walkthrough 
with bundled example data. Second, we apply it to data from three large-scale datasets. 
 
WALKTHROUGH 
 
The XCP-D workflow for processing an fMRIPrep dataset (example subjects) 
The following walkthrough details the workflow for post-processing a dataset using XCP-D on a 
HPC – specifically, a RedHat Enterprise Linux-based system, using Singularity. To do so, we use 
an example dataset that is bundled with the software within the container. This container contains 
three example subjects from a study on executive function, which is available on OpenNeuro at 
https://openneuro.org/datasets/ds004450. These subjects are organized in a BIDS-compatible 
manner with T1s, two resting-state runs, and corresponding field maps for the three subjects. Both 
.nii.gz and .json files are available for each of these scans, along with a dataset_description.json, 
and fMRIPrep derivatives. For the purposes of this walkthrough, commands for a minimal XCP-
D run will be demonstrated.  
 
All commands are run in a directory named XCPD_test. The XCP-D walkthrough container with 
the bundled subjects can be downloaded via Singularity, by running the following bash script:  
 
singularity build xcp_walkthrough.sif docker://pennlinc/xcp_walkthrough:latest 
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XCP-D can then be run on example subjects via Singularity, by running the following bash script:  
 
singularity run --cleanenv -B ~/XCPD_test ~/XCPD_test/xcp_walkthrough.sif 
/data/EF/derivatives/fmriprep ~/XCPD_test/output participant -vv 
 

This script runs XCP-D using all the default options. The --cleanenv flags ensures that 
environment variables from local machines are ignored so that appropriate packages from within 
the container are used, and -B mounts the input files on local devices to the image. The three 
arguments here correspond to the mandatory arguments of: fmriprep directory 
(/data/EF/derivatives/fmriprep), output directory (~/XCPD_test/output), and 
analysis level (participant).  
 
This will produce XCP-D derivatives under the folder XCPD_test/output. The outputs will 
include a dataset description, logs, citation information, processed anatomical and functional 
derivatives, as well as .svg figures. See Supplemental Figure 3 for the expected directory 
structure of output from one example subject. 
 
 
Application of XCP-D to three example datasets 
 
To illustrate the utility of XCP-D to diverse data, we processed a total of 600 subjects from three 
datasets. Specifically, we processed n=200 participants each from the Philadelphia 
Neurodevelopmental Cohort (PNC; Satterthwaite et al., 2014; Satterthwaite et al., 2016), the 
Healthy Connectome Project - Young Adults (HCP-YA; Glasser et al., 2013) sample, and the 
Adolescent Brain Cognitive Development (ABCD; Volkow et al., 2017) study®. Note that the 
ABCD data repository grows and changes over time. The ABCD data used in this report came 
from https://doi.org/10.17605/OSF.IO/PSV5M.   
 
Notably, prior to post-processing with XCP-D, each of these datasets were pre-processed using 
different tools. The PNC was processed using fMRIPrep (Esteban et al., 2018), ABCD was 
processed using ABCD-BIDS (Feczko et al., 2021), and the HCP-YA sample was processed via 
the HCP minimal processing pipelines (Glasser et al., 2013). All testing data had high quality 
structural images and greater than 5 minutes of high-quality resting-state fMRI data. 
 
The following command was used to process the data (via the CIFTI surface-based workflow, with 
the anatomical workflow enabled):  
 

PNC: 
singularity run –cleanenv -B ${PWD} –env FS_LICENSE=${PWD}/code/license.txt pennlinc-
containers/.datalad/environments/xcp/image ${PWD}/inputs/data/fmriprep xcp participant 
–combineruns –nthreads 1 –omp-nthreads 1 –mem_gb 10 –smoothing 2 –min_coverage 0.5 –
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min_time 100 –dummy-scans auto –random-seed 0 –bpf-order 2 –lower-bpf 0.01 –upper-bpf 
0.08 –motion-filter-type lp –band-stop-min 6 –motion-filter-order 4 –head-radius auto 
–exact-time 300 480 600 –despike –participant_label $subid -p 36P -f 0.3 –cifti –warp-
surfaces-native2std –dcan-qc -w ${PWD}/.git/tmp/wkdir -vvv –input-type fmriprep 

 
ABCD: 
singularity run –cleanenv -B ${PWD} pennlinc-
containers/.datalad/environments/xcp/image inputs/data xcp participant –
combineruns –nthreads 1 –omp-nthreads 1 –mem_gb 10 –smoothing 2 –min_coverage 
0.5 –min_time 100 –dummy-scans 6 –random-seed 0 –bpf-order 2 -lower-bpf 0.01 
–upper-bpf 0.08 –motion-filter-type notch –band-stop-min 15 –band-stop-max 25 
–motion-filter-order 4 –head-radius auto –exact-time 300 480 600 –despike –
participant_label $subid -p 36P -f 0.3 –cifti –warp-surfaces-native2std –
dcan-qc -w ${PWD}/.git/tmp/wkdir -v –input-type dcan 

 
HCP-YA: 
singularity run –cleanenv -B ${PWD} pennlinc-
containers/.datalad/environments/xcp/image inputs/data xcp participant –
combineruns –nthreads 1 –omp-nthreads 1 –mem_gb 10 –smoothing 2 –min_coverage 
0.5 –min_time 100 –dummy-scans 7 –random-seed 0 –bpf-order 2 –lower-bpf 0.01 
–upper-bpf 0.08 –motion-filter-type notch –band-stop-min 12 –band-stop-max 18 
–motion-filter-order 4 –head-radius auto –exact-time 300 480 600 –despike –
participant_label $subid -p 36P -f 0.3 –cifti –warp-surfaces-native2std –
dcan-qc -w ${PWD}/.git/tmp/wkdir -v –input-type hcp 
 
XCP-D completed successfully for all participants in all datasets. Among other outputs, XCP-D 
generated functional connectivity matrices (Figure 3) and parcellated cortical thickness 
information for each participant (Figure 4). Two small parcels in the medial temporal lobe cortex 
lacked coverage in the PNC.  Notably, the correlation between the mean connectivity matrices is 
0.93 for ABCD and PNC, 0.90 for ABCD and HCP, and 0.92 for PNC. The correlation between 
cortical thickness measures is 0.90 for ABCD and PNC, 0.95 for ABCD and HCP, and 0.85 for 
PNC and HCP.  
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Figure 3: Mean (Panel A) and standard deviation (Panel B) functional connectivity generated by XCP-D 
for each dataset in our large-scale application, displayed after Fisher’s Z transformation. Data are 
displayed using the Gordon atlas (Gordon et al., 2016). Def: default mode network; SmH: somatomotor 
hands network; SmM: somatomotor mouth network; Vis: visual network; FrP: Frontoparietal network; 
Aud: auditory network; CiP: cinguloparietal network; CiO: cingulo-opercular network; VenA: ventral 
attention network; Sal: salience network; DorA: dorsal attention network 
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Figure 4: The mean (Panel A) and standard deviation (Panel B) of cortical thickness calculated by XCP-
D of each dataset in our large-scale application. Data are displayed using the Gordon atlas (Gordon et al., 
2016).  
 
 
DISCUSSION  
 
Functional imaging is an essential tool for human neuroscience research. In contrast to pre-
processing, where the field has gravitated towards use of standardized pipelines such as fMRIPrep, 
there has been a relative lack of standardization in fMRI post-processing. While several options 
for post-processing exist, they are often incompatible with common pre-processing methods, lack 
standardized output, and may not include software engineering best practices such as CI testing. 
While the steps used to generate the minimally pre-processed data are often quite similar, post-
processing strategies used and derived measures often diverge substantially across data resources. 
XCP-D seeks to fill this gap and provide a post-processing workflow that is compatible with data 
pre-processed with several widely used strategies. XCP-D’s open and modular codebase in Nipype 
includes extensive CI testing, produces many measures of quality control, and yields analysis-
ready derived measures that are named according to the BIDS standard. Together, XCP-D provides 
rigorous, accessible, and generalizable fMRI post-processing. 
  
The derived measures generated by XCP-D include many of the most broadly used features of 
brain function and structure. Functional measures include connectivity matrices from multiple 
atlases as well as voxel- and vertex-wise maps of fluctuation amplitude and (ALFF) and regional 
homogeneity (ReHo). While XCP-D does not include extensive structural image processing or 
image registration, it does consume the structural features generated by pre-processing pipelines, 
rename them according to current BIDS standards, and apply the same parcellations used for the 
functional images. Summarizing functional and structural features in the many contemporary 
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atlases included in XCP – including multi-scale atlases like the Schaefer parcellation (Schaefer et 
al., 2018) – facilitates multi-modal data integration and analysis. Multi-modal analyses are further 
accelerated by the recent integration of this same atlas bundle into our existing pipelines for 
diffusion MRI processing (QSIPrep; Cieslak et al., 2021) and processing arterial spin-labeled MRI 
(ASLPrep; Adebimpe et al., 2022) for calculation of cerebral blood flow.  
  
Beyond such analysis-ready derived features, XCP-D produces an extensive set of quality control 
measures. These measures include indices of both image registration (e.g., Dice coefficient, 
overlap index) and denoising performance (e.g., the correlation of DVARS and motion before and 
after denoising). Together, such measures facilitate scalable quality assurance for large datasets 
and allow users to identify problematic datasets that can be further evaluated using the detailed 
reports generated for each participant. As part of our “glass-box” design philosophy, these single-
participant reports allow users to examine key intermediate steps in the processing workflow. One 
particularly useful feature is the interactive BrainSprite that depicts the fully processed structural 
images along with overlays of the functional images. This visualization allows users to rapidly 
assess the success of image co-registration and atlas normalization. Additionally, the report 
includes tailored carpet plots that display the functional timeseries before and after post-
processing, facilitating rapid visualization of artifacts related to in-scanner motion. Each 
participant’s report closes with an automatically generated boilerplate summary of the methods 
used by XCP-D for the configuration specified, along with relevant citations and references. This 
text enables users to determine if the desired processing occurred as expected and ensures accurate 
methods reporting.  
  
In the design of XCP-D, we integrated multiple software engineering features to ensure stability 
and rigor. First, all XCP-D development is open, version-controlled, and clearly documented via 
detailed pull requests on GitHub. XCP-D implements branch protection rules that require reviews 
from at least one XCP-D developer before pull requests can be merged or changes can be released. 
We have benefitted from substantial community input and strive to quickly respond to bug reports 
from users. Second, XCP-D has a highly modular design in Nipype to reduce code duplication, 
enforce standardized workflows, facilitate integration testing, and allow for extensibility over time. 
Third, XCP-D is a BIDS-App, and we have made every effort to adhere to the standards described 
by BIDS, including the BIDS extension proposals (BEPs) related to derived data and functional 
networks. Fourth, XCP-D modules are subjected to extensive CI testing using CircleCI. These 
tests do not simply check that a file was produced but draw upon diverse example data and 
knowledge of each module’s operation to ensure that processing was executed correctly (for 
example, checking that a spike in the data is no longer present after despiking). These tests make 
the software more sustainable over time and mitigate risk of updates introducing occult errors. We 
track CI coverage using CodeCov; at present, 81% of the XCP-D codebase is covered by CI tests. 
Fifth and finally, XCP-D is containerized and distributed via Docker and Singularity, which wraps 
all dependencies to allow the software to be easily deployed in most computing environments. 
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There are many tools that denoise fMRI data, produce resting-state derivatives, and/or produce 
structural derivatives, including C-PAC (Configurable Pipeline for the Analysis of Connectomes; 
Craddock et al., 2013), CONN (Whitfield-Gabrieli & Nieto-Castanon, 2012), connectomemapper3 
(Tourbier et al., 2022), CCS (Connectome Computation System, Xu et al., 2015), and DPARSF 
(Data Processing Assistant for Resting-State fMRI; Gan & Feng et al, 2010). One major difference 
between these tools and XCP-D is our dedicated focus on consuming data pre-processed by other 
widely used tools such as fMRIPrep. As such, XCP-D fills an important niche in the neuroimaging 
software ecosystem. Much of the post-processing that XCP-D provides can be performed using 
tools included in Nilearn, FSL, AFNI, and other software libraries. However, this would require 
users to assemble a pipeline themselves from component tools, and as such necessitate a higher 
degree of methodological proficiency. Furthermore, such user-assembled custom pipelines 
inevitably result in greater heterogeneity of methods used and usually reduce generalizability 
across efforts. 
 
XCP-D has several limitations. Although XCP-D currently offers multiple denoising options, the 
range of denoising options described in the literature is vast and many are not currently supported. 
For example, XCP-D does not provide dedicated support for physiological confounds such as 
respiration or heart rate measures (Frederick et al., 2012), although these signals can be modeled 
as a “custom confound” supplied by the user. Similarly, we do not currently support denoising 
methods such as phase regression, which suppresses signal from large veins by removing the linear 
fit between magnitude and phase timeseries from the magnitude timeseries (Knudsen et al., 2023). 
Also, XCP-D cannot be used to analyze task data. Such functionality is provided by FitLins 
(Markiewicz, 2022), NiBetaSeries (Kent et al., 2020), and other packages. XCP-D also does not 
support group-level analyses.  
  
These limitations notwithstanding, XCP-D provides generalizable, accessible, and robust post-
processing for fMRI data. XCP-D’s ability to post-process data from ABCD-BIDS, HCP-YA and 
fMRIPrep allows the same denoising, confound regression, and generation of derivates for large-
scale data resources that provide minimally pre-processed data; this could be invaluable for 
combining data across lifespan data resources.  Moving forward, we plan to integrate additional 
advanced denoising methods, provide dedicated methods for handling physiological data, and 
extend the pre-processing data types supported to include infant data pre-processed using 
NiBabies. As an open-source, collaborative software package, we welcome bug reports, feature 
suggestions, pull requests, and contributions from the community. 
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XCP-D STEP TESTING 

Confound selection Confirming that a loaded confound matrix has 
the right shape.  

Removing dummy time Looping through N=1-10 volumes to be 
dropped and confirming that the correct 
number of volumes have been dropped from a 
BOLD file and the corresponding confounds 
file.  

Censoring Replacing values in the confounds file with 
values that should be omitted and confirming 
that the image file and the confounds file have 
had the same number of volumes dropped.  

Despiking Confirming that the maximum value of the 
data has decreased, and the minimum value of 
the data has increased after despiking. 

Confound regression Confirming that the correlation between a 
random voxel and the confounds timeseries has 
decreased after regression. 

Interpolation Confirming that the difference between the fast 
Fourier transform (FFT) of an interpolated file 
and the original file is less than the difference 
between the FFT of a file with a spike planted 
in it and the original file. 

Filtering Comparing output of the XCP-D code after 
filtering to the output of SciPy’s code directly 
in a separate Python notebook.  
 

Functional timeseries and connectivity 
matrices 

Confirming that the correlation coefficient of a 
parcellated timeseries is the same as the 
connectivity matrix produced. (Parcellations 
were also performed manually in a separate 
Python notebook and compared to results from 
XCP-D.) 

ReHo Adding artificial noise to an image and 
confirming that the mean ReHo value 
decreases.  

ALFF Computing the FFT of a BOLD file, adding to 
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the amplitude of its lower frequencies and 
confirming the ALFF increases. 

Residual BOLD and resting-state derivatives 
smoothing 

Confirming that smoothness has increased 
after the module - via AFNI for NIfTIs and via 
Connectome Workbench for CIFTIs.  

Quality control Visually inspecting the quality check reports. 

 
Table 1: Continuous integration tests for different XCP-D stages.  

 
 
 

FILENAME FILE TYPE DESCRIPTION 

xcp_d/sub-

<label>[_ses-

<label>]_executive_s

ummary.html 

 

Report Executive summary per 
session 

xcp_d/sub-

<label>.html 

 

Report NiPreps summary per 
participant 

xcp_d/sub-

<label>/[ses-

<label>/]anat/<sourc

e_entities>_space-

<label>_desc-

preproc_T1w.nii.gz 

Anatomical Pre-processed T1w in MNI 
space 

xcp_d/sub-

<label>/[ses-

<label>/]anat/<sourc

e_entities>_space-

<label>_desc-

preproc_T2w.nii.gz 

Anatomical Pre-processed T2w in MNI 
space 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.11.20.567926doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.20.567926
http://creativecommons.org/licenses/by-nc-nd/4.0/


xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
<label>_dseg.nii.gz 
 

Anatomical Pre-processed dseg in MNI 
space 
 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_den-32k_hemi-
<L|R>_desc-
hcp_midthickness.sur
f.gii 

Anatomical Reconstructed surfaces warped 
to fsLR space at 32k density 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_den-32k_hemi-
<L|R>_desc-
hcp_inflated.surf.gi
i 

Anatomical Reconstructed surfaces warped 
to fsLR space at 32k density 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_den-32k_hemi-
<L|R>_desc-
hcp_vinflated.surf.g
ii 

Anatomical Reconstructed surfaces warped 
to fsLR space at 32k density 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_den-32k_hemi-
<L|R>_desc-
pial.surf.gii 

Anatomical Reconstructed surfaces warped 
to fsLR space at 32k density 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_den-32k_hemi-

Anatomical Reconstructed surfaces warped 
to fsLR space at 32k density 
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<L|R>_desc-
smoothwm.surf.gii 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_den-32k_hemi-
<L|R>_sulc.shape.gii 

Anatomical Sulcal depth in fsLR space at 
32k density 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_den-32k_hemi-
<L|R>_curv.shape.gii 

Anatomical Sulcal curvature in fsLR space 
at 32k density 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_den-32k_hemi-
<L|R>_thickness.shap
e.gii 

Anatomical Cortical thickness in fsLR 
space at 32k density 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_atlas-
<label>_den-
32k_desc-
sulc_morph.tsv 

Anatomical Parcellated sulcal depth 
estimates 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-
fsLR_atlas-
<label>_den-
32k_desc-
curv_morph.tsv 

Anatomical Parcellated sulcal curvature 
estimates 

xcp_d/sub-
<label>/[ses-
<label>/]anat/<sourc
e_entities>_space-

Anatomical Parcellated cortical thickness 
estimates 
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fsLR_atlas-
<label>_den-
32k_desc-
thickness_morph.tsv 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_desc-

denoised_bold.nii.gz 

or 
<source_entities>_sp

ace-fsLR_den-

91k_desc-

denoised_bold.dtseri

es.nii 

Functional Denoised BOLD file 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_desc-

denoisedSmoothed_bol

d.nii.gz  

or 
<source_entities>_sp

ace-fsLR_den-

91k_desc-

denoisedSmoothed_bol

d.dtseries.nii 

Functional Smoothed, denoised BOLD 
file 

xcp_d/sub-
<label>/[ses-
<label>/]func/<sourc
e_entities>_space-
<label>_desc-

Functional Interpolated BOLD file; 
generated only with the --
dcan-qc flag 
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interpolated_bold.ni
i.gz  
or  
<source_entities>_sp
ace-fsLR_den-
91k_desc-
interpolated_bold.dt
series.nii 

xcp_d/ space-

<label>_atlas-

<label>_dseg.nii.gz  

or space-
<label>_atlas-

<label>_dseg.dlabel.

nii 

Functional  Atlases used for data 
parcellation 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_atlas-

<label>_coverage.tsv 

or 
<source_entities>_sp

ace-fsLR_atlas-

<label>_den-

91k_coverage.tsv and 
<source_entities>_sp

ace-fsLR_atlas-

<label>_den-

91k_coverage.pscalar

.nii 

Functional Coverage information. 
Produced in .tsv and .pscalar 
format for CIFTIs 

xcp_d/sub-

<label>/[ses-

Functional Timeseries for functional data, 
after atlas parcellation. 
Produced in .tsv and .ptseries 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.11.20.567926doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.20.567926
http://creativecommons.org/licenses/by-nc-nd/4.0/


<label>/]func/<sourc

e_entities>_space-

<label>_atlas-

<label>_timeseries.t

sv  

or 
<source_entities>_sp

ace-fsLR_atlas-

<label>_den-

91k_timeseries.tsv 

and 
<source_entities>_sp

ace-fsLR_atlas-

<label>_den-

91k_timeseries.ptser

ies.nii 

format for CIFTIs 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_atlas-

<label>_measure-

pearsoncorrelation_c

onmat.tsv or 
<source_entities>_sp

ace-fsLR_atlas-

<label>_den-

91k_measure-

pearsoncorrelation_c

onmat.tsv and 
<source_entities>_sp

ace-fsLR_atlas-

Functional Connectivity matrix for 
functional data, after atlas 
parcellation. Produced in .tsv 
and .pconn format for CIFTIs 
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<label>_den-

91k_measure-

pearsoncorrelation_c

onmat.pconn.nii 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_atlas-

<label>_measure-

pearsoncorrelation_d

esc-

<INT>volumes_conmat.

tsv  

or 
<source_entities>_sp

ace-fsLR_atlas-

<label>_den-

91k_measure-

pearsoncorrelation_d

esc-

<INT>volumes_conmat.

tsv 

Functional Connectivity matrix for 
functional data, after atlas 
parcellation. Correlation 
matrices with the desc-
<INT>volumes entity are 
produced if the --exact-
time parameter is used. 
 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_reho.nii.gz  

or 
<source_entities>_sp

ace-fsLR_den-

91k_reho.dscalar.nii 

Functional ReHo image for BOLD data 
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xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_atlas-

<label>_reho.tsv  

or 
<source_entities>_sp

ace-fsLR_atlas-

<label>_reho.tsv 

Functional Parcellated ReHo image 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_alff.nii.gz  

or 
<source_entities>_sp

ace-fsLR_den-

91k_alff.dscalar.nii 

Functional ALFF image for BOLD data 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_smooth_alff.

nii.gz  

or 
<source_entities>_sp

ace-fsLR_den-

91k_desc-

smooth_alff.dscalar.

nii 

Functional Smoothed ALFF image 
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xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<source_entities>_sp

ace-<label>_atlas-

<label>_alff.tsv  

or 
<source_entities>_sp

ace-fsLR_atlas-

<label>_alff.tsv 

Functional Parcellated ALFF image 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_space-

<label>_desc-

linc_qc.csv  

or 
<source_entities>_sp

ace-fsLR_desc-

linc_qc.csv 

 

Quality check Quality control metrics, 
including motion and 
registration information  

xcp_d/sub-
<label>/[ses-
<label>/]func/<sourc
e_entities>[_desc-
filtered]_motion.tsv 
 

Quality check A tab-delimited file with seven 
columns: one for each of the 
six filtered motion parameters, 
as well as 
“framewise_displacement”. If 
no motion filtering was 
applied, this file will not have 
the desc entity. This file 
includes the high-motion 
volumes that are removed in 
most other derivatives. 

xcp_d/sub- Quality check A tab-delimited file with one 
column: 
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<label>/[ses-

<label>/]func/<sourc

e_entities>_outliers

.tsv 

 

“framewise_displacement”. 
The 
“framewise_displacement” 
column contains zeros for low-
motion volumes, and ones for 
high-motion outliers. This file 
includes the high-motion 
volumes that are removed in 
most other derivatives. 

xcp_d/sub-

<label>/[ses-

<label>/]func/<sourc

e_entities>_design.t

sv 

Quality check A tab-delimited file with one 
column for each nuisance 
regressor, including an 
intercept column, a linear 
trend column, and one-hot 
encoded regressors indicating 
each of the high-motion outlier 
volumes. This file includes the 
high-motion volumes that are 
removed in most other 
derivatives. 
 
 

xcp_d/sub-
<label>/[ses-
<label>/]func/<sourc
e_entities>_desc-
dcan_qc.hdf5 
 

DCAN-style quality check This file is in .hdf5 format 
(readable by h5py), and 
contains binary censoring 
masks from 0.0 to 1 mm FD in 
0.01 steps. This file contains: 
 
FD_threshold: a number >= 0 
that represents the FD 
threshold used to calculate the 
metrics in this list 
 
frame_removal: a binary 
vector/array the same length as 
the number of frames in the 
concatenated time series, 
indicates whether a frame is 
removed (1) or not (0). 
 
format_string (legacy): a 
string that denotes how the 
frames were excluded 
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total_frame_count: a whole 
number that represents the 
total number of frames in the 
concatenated series 
 
remaining_frame_count: a 
whole number that represents 
the number of remaining 
frames in the concatenated 
series 
 
remaining_seconds: a whole 
number that represents the 
amount of time remaining after 
thresholding 
 
remaining_frame_mean_FD: 
a number >= 0 that represents 
the mean FD of the remaining 
frames 
 

Table 2: This table describes outputs from a run of XCP-D.  
 
 
 

OPTION TYPE DESCRIPTION DEFAULT OPTIONAL 

fmri_dir Positional argument The root folder of a 
pre-processed fMRI 
output 

None No 

output_dir Positional argument The output path for 
XCP-D 

None No 

analysis_leve
l 

Positional argument The analysis level 
for XCP-D, must be 
specified as 
participant 

None No 

--version Named argument Show program’s 
version number and 
exit 

None Yes 

--
participant_l

Options for filtering 
BIDS queries 

A space delimited 
list of participant 

None Yes 
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abel, --
participant-
label 

identifiers or a 
single identifier (the 
sub- prefix can be 
removed) 

-t, --task-
id, 
--task_id  

Options for filtering 
BIDS queries 

Select a specific 
task to be selected 
for the post-
processing (users 
can only specify one 
at a time) 

None Yes 

--bids-
filter-file 

Options for filtering 
BIDS queries 

A .JSON file 
defining BIDS input 
filters. XCP-D 
allows users to 
choose which pre-
processed files will 
be post-processed 
with the --bids-
filter-file 
parameter. This 
argument must 
point to a .JSON 
file, containing 
filters that will be 
fed into PyBIDS. 
 
The keys in this 
.JSON file are 
unique to XCP-D. 
They are our 
internal terms for 
different inputs that 
will be selected 
from the pre-
processed dataset. 
 
"bold" determines 
which pre-processed 
BOLD files will be 
chosen. You can set 
a number of entities 
here, including 
session, task, 
space, 

None Yes 
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resolution, and 
density.  

-m, --
combineruns 

Options for filtering 
BIDS queries 

This option 
concatenates 
derivatives across 
runs, for each task 
separately 

False Yes 

-s, --cifti Options for CIFTI 
processing 

Post-process CIFTI 
instead of NIfTI - 
this is set to true 
automatically for 
HCP and DCAN 
input types 
 
 

False Yes 

--nthreads Options for resource 
management 

Maximum number 
of threads across all 
processes 

2 Yes 

--omp-
nthreads, --
omp_nthreads 

Options for resource 
management 

Maximum number 
of threads per 
process 

1 Yes 

--mem-gb, --
mem_gb 

Options for resource 
management 

Upper bound 
memory limit for 
XCP-D processes 

None Yes 

--use-plugin, 
--use_plugin 

Options for resource 
management 

Nipype plugin 
configuration file. 
For more 
information, see 
https://nipype.readth
edocs.io/en/0.11.0/u
sers/plugins.html.  

None Yes 

-v, --verbose Options for resource 
management 

Increases log 
verbosity for each 
occurrence; debug 
level is -vvv 

0 Yes 

--input-type, 
--input_type 

Input flag The pipeline used to 
generate the pre-
processed 
derivatives. The 

fmriprep Yes 
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default option is 
fmriprep. The 
hcp and dcan 
options are also 
supported.  
 

--smoothing Parameters for post-
processing 

FWHM, in 
millimeters, of the 
Gaussian smoothing 
kernel to apply to 
the denoised BOLD 
data. This may be 
set to 0. 

6 Yes 

--despike Parameters for post-
processing 

Despike the 
NIfTI/CIFTI before 
processing 

False Yes 

-p, --
nuisance-
regressors, -
-
nuisance_regr
essors 

Parameters for post-
processing 

Nuisance 
parameters to be 
selected. See Ciric 
et. al (2017). 
 
Possible choices: 
27P, 36P, 
24P, 
acompcor, 
aroma, 
acompcor_gsr, 
aroma_gsr, 
custom, none 

36P 
 

Yes 

-c, --
custom_confou
nds, --
custom-
confounds 

Parameters for post-
processing 

Custom confounds 
to be added to 
nuisance regressors. 
Must be a folder 
containing 
confounds files, in 
which case the file 
with the name 
matching the pre-
processing 
confounds file will 
be selected. 

None Yes 

-- Parameters for post- Coverage threshold 0.5 Yes 
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min_coverage, 
--min-
coverage 

processing to apply to parcels 
in each atlas. Any 
parcels with lower 
coverage than the 
threshold will be 
replaced with NaNs. 
Must be a value 
between 0 and 1, 
indicating 
proportion of the 
parcel. 

--min_time, -
-min-time 

Parameters for post-
processing 

Post-censoring 
threshold to apply to 
individual runs in 
the dataset. This 
threshold 
determines the 
minimum amount of 
time, in seconds, 
needed to post-
process a given run, 
once high-motion 
outlier volumes are 
removed. This will 
have no impact if 
censoring is 
disabled (i.e., if the 
FD threshold is 0 or 
negative). This 
parameter can be 
disabled by 
providing a 0 or a 
negative value. 

100 Yes 

--dummy-
scans, --
dummy_scans 

Parameters for post-
processing 

Number of volumes 
to remove from the 
beginning of each 
run. If set to auto, 
XCP_D will extract 
non-steady-state 
volume indices 
from the pre-
processing 
derivatives 
confounds file. 

0 Yes 
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--random-
seed, --
random_seed 
 
 

Parameters for post-
processing 

Initialize the 
random seed for the 
workflow 

None Yes 

--disable-
bandpass-
filter, --
disable_bandp
ass_filter 

Filtering parameters  Disable bandpass 
filtering. If 
bandpass filtering is 
disabled, then ALFF 
derivatives will not 
be calculated. 

True Yes 

--lower-bpf, 
--lower_bpf 

Filtering parameters  Lower cut-off 
frequency (Hz) for 
the Butterworth 
bandpass filter to be 
applied to the 
denoised BOLD 
data. Set to 0.0 or 
negative to disable 
high-pass filtering. 
See Satterthwaite et 
al., 2013. 

0.01 Yes 

--upper-bpf, 
--upper_bpf 

Filtering parameters  Upper cut-off 
frequency (Hz) for 
the Butterworth 
bandpass filter to be 
applied to the 
denoised BOLD 
data. Set to 0.0 or 
negative to disable 
low-pass filtering. 
See Satterthwaite et 
al. (2013). 

0.08 Yes 

--bpf-order, 
--bpf_order 

Filtering parameters  Number of filter 
coefficients for the 
Butterworth 
bandpass filter 

2 Yes 

--motion-
filter-type, 
--
motion_filter
_type 

Filtering parameters  Type of band-stop 
filter to use for 
removing 
respiratory artifact 
from motion 

None Yes 
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regressors. If not 
set, no filter will be 
applied. 
 
Possible choices: 
lp, notch. 
 
If the filter type is 
set to notch, then 
both band-stop-
min and band-
stop-max must 
be defined. If the 
filter type is set to 
lp, then only 
band-stop-min 
must be defined. 

--band-stop-
min, --
band_stop_min 

Filtering parameters  Lower frequency 
for the band-stop 
motion filter, in 
breaths-per-minute 
(bpm). Motion 
filtering is only 
performed if 
motion-
filter-type is 
defined by the user. 
If used with the lp 
motion-filter-type, 
this parameter 
essentially 
corresponds to a 
low-pass filter (the 
maximum allowed 
frequency in the 
filtered data). This 
parameter is used in 
conjunction with 
motion-
filter-order 
and band-stop-
max. 

None Yes 

--band-stop- Filtering parameters Upper frequency for None Yes 
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max, --
band_stop_max 

the band-stop 
motion filter, in 
breaths-per-minute 
(bpm). Motion 
filtering is only 
performed if 
motion-
filter-type is 
defined by the user. 
This parameter is 
only used if 
motion-
filter-type is 
set to notch. This 
parameter is used in 
conjunction with 
motion-
filter-order 
and band-stop-
min. 

--motion-
filter-order, 
--
motion_filter
_order 

Filtering parameters Number of filter 
coefficients for the 
band-stop filter 

4 Yes 

-r, --
head_radius, 
--head-radius 

Censoring options 
for regression 

Head radius for 
computing FD. The 
default is 50mm, 
but 35mm is 
recommended for 
infants. A value of 
auto is also 
supported, in which 
case the brain radius 
is estimated from 
the pre-processed 
brain mask by 
treating the mask as 
a sphere 

50 Yes 

-f, --fd-
thresh, --
fd_thresh 

Censoring options Framewise 
displacement 
threshold for 
censoring 

0.3 Yes 
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--exact-time, 
--exact_time 

Censoring options If used, this 
parameter will 
produce correlation 
matrices limited to 
each requested 
amount of time. If 
there is more than 
the required amount 
of low-motion data, 
then volumes will 
be randomly 
selected to produce 
denoised outputs 
with the exact 
amounts of time 
requested. If there is 
less than the 
required amount of 
‘good’ data, then 
the corresponding 
correlation matrix 
will not be 
produced. 

None Yes 

-w, --
work_dir, --
work-dir 

Other options Path where 
intermediate results 
should be stored 

working_
dir 

Yes 

--clean-
workdir, --
clean_workdir 

Other options Clears working 
directory of 
contents. Use of this 
flag is not 
recommended when 
running concurrent 
processes of XCP-
D. 

False Yes 

--resource-
monitor, --
resource_moni
tor 

Other options Enable Nipype’s 
resource monitoring 
to keep track of 
memory and CPU 
usage 

False Yes 

--notrack 
 

Other options Opt out of sending 
tracking information 

False Yes 

--fs-license- Other options Path to FreeSurfer None Yes.  
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file license key file. Get 
it (for free) by 
registering at 
https://surfer.nmr.m
gh.harvard.edu/regis
tration.html  

Users can 
alternatively 
mount the 
license and 
set an 
environment 
variable. 

--warp-
surfaces-
native2std, -
-
warp_surfaces
_native2std 

Experimental 
options 

If used, a workflow 
will be run to warp 
native-space 
(fsnative) 
reconstructed 
cortical surfaces 
(surf.gii files) 
produced by 
Freesurfer into 
standard (fsLR) 
space. These surface 
files are primarily 
used for visual 
quality assessment. 
By default, this 
workflow is 
disabled. 
 
IMPORTANT: This 
parameter can only 
be run if the --
cifti flag is also 
enabled. 
 

False Yes 

--dcan-qc, --
dcan_qc 

Experimental 
options 

Generate files with 
interpolated data 
and generate .hdf5 
format QC files, 
along with the 
BrainSprite figure 

False Yes 

 
Table 3: XCP-D command-line options. 
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