
1 
 

 
Abstract: 243 words 

Significance: 117 words 
Introduction: 521 words 
Discussion: 1208 words 

Number of Figures: 6 
 
 

Developmental coupling of cerebral blood flow and fMRI fluctuations in youth 
 
 
Erica B. Baller, M.D., M.S.a,b, Alessandra M. Valcarcel, Ph.D.c,⟊, Azeez Adebimpe, Ph.D.a,b, 
Aaron Alexander-Bloch, M.D., Ph.D.b, Zaixu Cui, Ph.D.a,b, Ruben C. Gur, Ph.D.b,d,f, Raquel E. 
Gur, M.D., Ph.D.b,d,f, Bart L. Larsen, Ph.D.a,b, Kristin A. Linn, Ph.D.c, Carly M. O’Donnell, 
B.A.c, Adam R. Pines, B.A.a,b, Armin Raznahan, Ph.D.e, David. R. Roalf, Ph.D.b, Valerie J. 
Sydnor, B.A.a,b, Tinashe M. Tapera, M.S.a,b, M. Dylan Tisdall, Ph.D.f, Simon Vandekar, Ph.D.g, 
Cedric H. Xia, M.D., Ph.D.a,b, John A. Detre, M.D.d, Russell T. Shinohara, Ph.D.c,h*, Theodore 
D. Satterthwaite, M.D., M.A.a,b,h* 
 
a Penn Lifespan Informatics and Neuroimaging Center (PennLINC) 
b Department of Psychiatry, University of Pennsylvania 
c Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, 
Epidemiology, and Informatics, University of Pennsylvania 
d Department of Neurology, University of Pennsylvania 
e National Institute of Mental Health, NIH, IRP 
f Department of Radiology, University of Pennsylvania 
g Department of Biostatistics, Vanderbilt University 
h Center for Biomedical Image Computing and Analytics (CBICA) 
⟊ Currently employed by Genentech 
*co-senior authors who contributed equally 
 
Conflict of interest: The authors declare no competing financial interests. 
 
Acknowledgements: This work was supported by grants from the National Institute of Mental 
Health (NIMH; Grant Numbers: R01MH112847 to TDS and RTS; R01MH120482, and 
R01MH113550 to TDS; R01 MH123550-01 to RTS; R01MH107235 to RCG; 
2T32MH019112-29A1 to EBB; T32MH014654 to BLL; F31 MH123063-01A1 to ARP; 
R01MH120174, R01MH119185, and R56AG066656 to DRR; DGE-1845298 to VJS. The PNC 
was funded by RC2 grants MH089983 and MH089924 to REG from the NIMH.  
 
Corresponding author:  
Theodore D. Satterthwaite, M.D. 
Richards Building, 5th Floor, Suite 5A  
3700 Hamilton Walk 
Philadelphia, PA 19104-6085 
Email: sattertt@pennmedicine.upenn.edu 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454179doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454179
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

 
 
ABSTRACT 
 

To support brain development during youth, the brain must balance energy delivery and 

consumption. Previous studies in adults have demonstrated high coupling between cerebral blood 

flow and brain function as measured using functional neuroimaging, but how this relationship 

evolves over adolescence is unknown. To address this gap, we studied a sample of 831 children 

and adolescents (478 females, ages 8-22) from the Philadelphia Neurodevelopmental Cohort who 

were scanned at 3T with both arterial spin labeled (ASL) MRI and resting-state functional MRI 

(fMRI). Local coupling between cerebral blood flow (CBF, from ASL) and the amplitude of low 

frequency fluctuations (ALFF, from fMRI) was first quantified using locally weighted 

regressions on the cortical surface. We then used generalized additive models to evaluate how 

CBF-ALFF coupling was associated with age, sex, and executive function. Enrichment of effects 

within canonical functional networks was evaluated using spin-based permutation tests. Our 

analyses revealed tight CBF-ALFF coupling across the brain. Whole-brain CBF-ALFF coupling 

decreased with age, largely driven by coupling decreases in the inferior frontal cortex, precuneus, 

visual cortex, and temporoparietal cortex (pfdr <0.05). Females had stronger coupling in the 

frontoparietal network than males (pfdr <0.05). Better executive function was associated with 

decreased coupling in the somatomotor network (pfdr <0.05). Overall, we found that CBF-ALFF 

coupling evolves in development, differs by sex, and is associated with individual differences in 

executive function. Future studies will investigate relationships between maturational changes in 

CBF-ALFF coupling and the presence of psychiatric symptoms in youth. 
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SIGNIFICANCE: The functions of the human brain are metabolically expensive and reliant on 

coupling between cerebral blood flow and neural activity. Previous neuroimaging studies in 

adults demonstrate tight physiology-function coupling, but how this coupling evolves over 

development is unknown. Here, we examine the relationship between blood flow as measured by 

arterial spin labeling and the amplitude of low frequency fluctuations from resting-state magnetic 

resonance imaging across a large sample of youth. We demonstrate regionally specific changes 

in coupling over age and show that variations in coupling are related to biological sex and 

executive function. Our results highlight the importance of CBF-ALFF coupling throughout 

development; we discuss its potential as a future target for the study of neuropsychiatric diseases. 
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INTRODUCTION 

The functions of the human brain are metabolically expensive: despite only weighing 1.5 

kg on average, the brain comprises a disproportionate one-fifth of bodily energetic requirements 

(1–3). To meet such large metabolic demands, the brain receives 20% of cardiac output (4,5). In 

healthy subjects, the relationship between brain activity and cerebral blood flow (CBF), or 

neurovascular coupling, is tightly linked at the local level (6–8). Under normal circumstances, 

metabolites produced during neuronal activity cause vasodilation in the microvasculature, and 

thus a localized increase in blood flow, to increase glucose and oxygen delivery to active cells 

(6,9). By coupling metabolic demand (neural activity) and supply (blood flow), the 

neurovascular unit maintains appropriate energy balance (9).  

To measure neurovascular coupling in vivo, proxies for both localized blood flow and 

regional brain activity are required. Neurovascular coupling has thus been most frequently 

characterized by relating two neuroimaging-derived measures: CBF and the amplitude of low 

frequency fluctuations in resting-state blood oxygen level dependent (BOLD) fMRI (ALFF; 10–

12). CBF can be measured reliably and without radiation exposure using arterial spin labeled 

(ASL) MRI (11–13), producing a quantitative measure of blood supply. Although BOLD signal 

partly reflects changes in CBF, low amplitude fluctuations as measured by ALFF are thought to 

represent spontaneous brain activity and to underlie intrinsic functional connectivity (14), 

providing a non-invasive proxy of neuronal function (15,16).  

Neurovascular coupling as measured by CBF-ALFF changes in aging, with younger 

adults displaying higher coupling than healthy older adults (9,10). Sex differences in coupling in 

adults have also been described (17). Furthermore, decreases in the typically strong coupling 

between CBF and ALFF have been reported in degenerative and metabolic diseases (9,18,19). 
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Notably, these diseases are associated with significant cognitive impairments, further 

highlighting the importance of the integrity of this coupling relationship.  

Despite this growing literature, notable gaps remain. First, prior studies have examined 

the relationship between CBF and ALFF primarily at the whole-brain level, yielding a global 

measure of coupling (20). While informative, such an approach obscures potentially important 

regional variation in the coupling between CBF and ALFF. Second, previous studies have 

focused on neurovascular coupling only in healthy and medically ill adults (9,18,19,21). To our 

knowledge, no prior research has explored how the relationship between blood flow and brain 

function evolves during childhood, adolescence, and young adulthood. Thus, it is presently 

unclear how the balance between metabolic demand and supply changes as neurodevelopment 

unfolds. 

Here, we sought to define the local relationship between CBF and ALFF on a regional 

basis, and to determine how CBF-ALFF coupling evolves over development. To do this, we 

capitalized on data from the Philadelphia Neurodevelopmental Cohort: a large scale, community-

based study of brain development that included both ASL MRI and fMRI (22,23). We 

characterized the CBF-ALFF relationship using recently developed tools for inter-modal 

coupling analysis that allow us to describe the local relationships between these two imaging 

modalities (24,25). As described below, we extend prior findings demonstrating that blood flow 

and neural function are strongly related across the brain. Importantly, we also describe how 

CBF-ALFF coupling evolves in youth, differs by sex, and is related to executive function.  
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MATERIALS AND METHODS 

Experimental Design 

Participants 

Participants were drawn from the Philadelphia Neurodevelopmental Cohort (PNC). As 

previously described, a total of 9,498 participants aged 8-22 years received cognitive assessment 

and clinical phenotyping, and a subset of 1,601 youths also completed neuroimaging as part of 

the PNC (22,26). For this report, we excluded participants with missing data, participants 

currently being treated with psychoactive medication, individuals with medical disorders that 

could impact brain function, and participants with poor image quality (see below). Eight-hundred 

thirty-one subjects met criteria and were included in the study (Figure 1). The average age of 

participants was 15.6 years (standard deviation (SD) = 3.4). Forty-two percent (n = 353) were 

male and 58% were female (n = 478). The institutional review boards of both the University of 

Pennsylvania and the Children’s Hospital of Philadelphia approved all study procedures. 

 

Figure 1. Sample construction. 1,601 participants had neuroimaging scans acquired as part of the 
PNC. A total of 831 participants were included in the study after excluding participants who 
failed rigorous quality assessment for poor T1 quality (n = 61), resting state fMRI quality (n = 
450), ASL quality (n = 54), and medical and psychiatric comorbidities (n = 205). 
 

PNC Sample (n = 1,601)

Poor T1 (n = 61)

Poor rs-fMRI (n = 450)

Poor ASL (n = 54)

Final sample (n = 831)

Health exclude (n = 205)

n = 1540

n = 1090

n = 1036
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Cognitive assessment 

Cognition was assessed using the University of Pennsylvania Computerized 

Neurocognitive Battery (CNB) (27). Accuracy of neurocognitive performance was measured 

across all tests included in the CNB, with raw measures of accuracy being normalized across the 

entire PNC. Executive function (EF) was summarized using a previously published factor 

analysis of the CNB (28). Each participant’s z-score from this factor analysis was used to 

evaluate associations between executive function and CBF-ALFF coupling. 

 

Image acquisition 

PNC imaging was acquired at a single site with a 3T Siemens Tim Trio scanner with a 

32-channel head coil (Erlangen, Germany), as previously described (22). To minimize motion, 

prior to data acquisition, subjects’ heads were stabilized in the head coil using one foam pad over 

each ear and a third over the top of the head. 

High-resolution structural images were acquired to facilitate alignment of individual 

subject images into a common space. Structural images were acquired using a 3D-encoded 

magnetization-prepared, rapid-acquisition gradient-echo (MPRAGE) T1-weighted sequence 

(TR = 1810 ms; TE = 3.51 ms; FoV = 180 × 240 mm; matrix size =192 x 256, number of slices = 

160, slice thickness/gap = 1mm/0; resolution 0.9375 × 0.9375 × 1 mm).  

 Approximately 6 minutes of task-free functional data were acquired for each subject 

using a blood oxygen level-dependent (BOLD-weighted) 2D EPI sequence (TR = 3000 ms; 

TE = 32 ms; FoV = 192 × 192 mm; matrix size = 64x64; number of slices = 46; slice 

thickness/gap=3mm/0; resolution 3 mm isotropic; 124 volumes). A fixation cross was displayed 

as images were acquired. Subjects were instructed to stay awake, keep their eyes open, fixate on 
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the displayed crosshair, and remain still. Brain perfusion was imaged with a 3D-encoded spin-

echo pseudocontinuous arterial spin labeling (pCASL) sequence (TR = 4000 ms; TE = 15 ms; 

FoV = 220 × 220 mm; matrix size = 96x96; number of slice = 20; slice thickness/gap = 5/1mm; 

resolution 2.3 x 2.3 x 6 mm; 80 volumes).  

 

Statistical Analyses 

Image processing 

 The structural images were processed using FreeSurfer (version 5.3) to allow for the 

projection of functional timeseries to the cortical surface (29). Resting-state fMRI scans were 

processed using a top-performing preprocessing pipeline implemented using the eXtensible 

Connectivity Pipelines (XCP) (30), which includes tools from FSL (31,32) and AFNI (33). This 

pipeline included (1) correction for distortions induced by magnetic field inhomogeneity using 

FSL’s FUGUE utility, (2) removal of the initial 4 volumes for resting-state fMRI, (3) 

realignment of all volumes to a selected reference volume using FSL’s MCFLIRT, (4) 

interpolation of intensity outliers in each voxel’s time series using AFNI’s 3dDespike utility, (5) 

demeaning and removal of any linear or quadratic trends, and (6) co-registration of functional 

data to the high-resolution structural image using boundary-based registration. Images were de-

noised using a 36-parameter confound regression model that has been shown to minimize 

associations with motion artifact while retaining signals of interest in distinct sub-networks (30). 

This model included the six framewise estimates of motion, the mean signal extracted from 

eroded white matter and cerebrospinal fluid compartments, the mean signal extracted from the 

entire brain, the derivatives of each of these nine parameters, and quadratic terms of each of the 

nine parameters and their derivatives. Both the BOLD-weighted time series and the artifactual 
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model time series were temporally filtered using a first-order Butterworth filter with a passband 

between 0.01 and 0.08 Hz to avoid mismatch in the temporal domain (34). The voxel-wise ALFF 

was computed as the sum over frequency bins in the low-frequency (0.01 - 0.08 Hertz) band of 

the power spectrum using a Fourier transform of the time-domain signal (14).  

 As part of image quality assurance, T1-weighted images were excluded for low quality 

and/or low quality in FreeSurfer reconstruction, as rated by three independent reviewers (35). 

ASL images were excluded if they had excessive motion (mean relative displacement > 0.5 mm), 

low temporal signal-to-noise ratio (tSNR < 30), poor image coverage, or an excessive number of 

voxels that had ceiling intensity values at some point in the timeseries (36,37). Task-free BOLD 

scans were excluded if the mean relative root mean square (RMS) framewise displacement was 

higher than 0.2 mm, or if there were more than 20 frames with motion exceeding 0.25 mm (22). 

To obtain CBF maps from ASL MRI, images were also processed with tools from XCP 

(38). CBF was quantified from control-label pairs in the following equation:  

 

where f is CBF, ΔM is the difference signal between the control and label acquisitions, R1a is the 

longitudinal relaxation rate of blood, τ is the labeling time, ω is the postlabeling delay time, α is 

the labeling efficiency, λ is the blood/tissue water partition coefficient, and M0 is approximated 

by the control image intensity (38). We set α = 0.85, λ = 0.9 g/mL, τ = 1.6 s, and ω = 1.2 s. 

Participant-level CBF images were co-registered to the corresponding T1-weighted image using 

boundary-based registration with six degrees of freedom (39). Given that T1 relaxation time 

differs according to age and sex (40–42), the T1 relaxation parameter was modeled on an age- 
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and sex-specific basis (43). This has been shown to enhance the accuracy and reliability of 

results in developmental samples (36,44). 

The CBF and ALFF maps for each individual were projected to the participant’s 

anatomic surface and smoothed with a 6 mm full-width half-maximum (FWHM) kernel. The 

smoothed data were normalized to the fsaverage5 template, which has 10,242 vertices on each 

hemisphere (18,715 vertices in total after removing the medial wall).  

CBF-ALFF coupling 

Coupling maps were generated at the cortical surface using methods as previously 

described in detail (24). For each vertex, a 15-mm FWHM neighborhood was defined and a 

locally weighted regression where ALFF was predicted by CBF was fit. This was repeated at all 

vertices within each subject, generating one CBF-ALFF coupling map where each vertex was 

represented by the coupling regression slope (Figure 2). A group mean coupling map was also 

generated by averaging the mean t-statistic of each individual's CBF-ALFF slope at a given 

vertex. 
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Figure 2. Analysis of CBF-ALFF coupling. CBF-ALFF coupling analysis involves both 
calculation of within-subject coupling and across-subject comparisons to assess individual 
differences. A) For each subject, a neighborhood for each vertex was identified.  B) Locally 
weighted regressions of ALFF onto CBF were calculated. C) Locally weighted regressions were 
repeated at each vertex, resulting in a participant-level coupling map. D-E) After subject-level 
coupling maps were calculated, statistical analyses related covariates of interest (e.g., Age, Sex, 
and Executive Function) to participant-level coupling maps using generalized additive models 
(GAMs). F) GAMs were fit at each vertex, yielding a group-level statistical map describing 
individual differences. 

 

Statistical analyses and hypothesis testing 

We sought to evaluate how neurovascular coupling develops and relates to biological sex 

and executive function. CBF-ALFF coupling maps for each participant were used for statistical 

analyses. Generalized additive models (GAMs) were used to calculate linear and nonlinear age 

and sex effects at each vertex using the following model: 

 Couplingvertex = spline(age) + sex + CBF motion + ALFF motion + error 

This approach allowed for flexible modeling of both linear and nonlinear effects. For 

significance testing, smooth terms were fitted as fixed degrees of freedom regression splines (k = 

4). We also fit the model with an age-by-sex interaction; however, it was not significant and thus 

removed from the model. To assess the relationship between coupling and executive function 
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accuracy, we fit a second model which included a linear executive accuracy term in addition to 

the above model’s covariates (spline of age, sex, CBF and ALFF motion, and error). GAMs were 

estimated using the R package `mgcv` in CRAN (45). All analyses controlled the False 

Discovery Rate (FDR) at Q < 0.05.  

In addition to these analyses of effects at each vertex, we also evaluated the relationship 

between whole-brain coupling and age nonlinearly. We first computed a single mean t-statistic 

per subject by averaging the t-statistics for the slope at each vertex that met FDR correction, and 

then used a GAM to estimate the relationship between each subject’s mean coupling and age. To 

test for windows of significant change across the age range, we calculated the first derivative of 

the smooth function of age from the GAM model using finite differences, and then generated a 

simultaneous 95% confidence interval of the derivative using the R package `gratia` (45–47). 

Intervals of significant change were identified as areas where the simultaneous confidence 

interval of the derivative did not include zero.  

 

Network enrichment analyses via spin testing 

 Given that patterns of neural activity differ across functional networks (48), we sought to 

characterize whether effects of interest tended to be located within specific functional brain 

networks (49,50). To do this, we conducted network enrichment analyses. Specifically, we 

evaluated whether mean coupling and significant associations with variables of interest (age, sex, 

executive function) were preferentially located in one or more of the seven large-scale functional 

networks defined by Yeo et al (49). To account for the different size of each network and the 

spatial autocorrelation of brain maps, statistical testing used a conservative spin-based spatial 

permutation procedure (51). Briefly, statistical maps from association testing were projected onto 
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a sphere, which was rotated 1,000 times per hemisphere to create a null distribution. For the 

mean coupling enrichment analysis, the test statistic was the mean t-value for each of the seven 

networks from Yeo et al. For the regression analyses, the test statistic was the proportion of 

vertices that survived FDR correction. Networks were considered to have significant enrichment 

if the test statistic in the observed data was in the top 5% of the null distribution derived from 

permuted data.  

 

Code availability 

Code for all primary statistical analyses is available at: 

https://github.com/PennLINC/IntermodalCoupling 

 

RESULTS 

CBF and ALFF are significantly coupled 

 Replicating previous findings in adults, we observed robust CBF-ALFF coupling 

throughout the brain (Figure 3A). Coupling was strongest in association cortices, including 

frontal, parietal, and temporal cortex (pfdr < 0.05). Network enrichment analysis using spin-based 

permutation tests revealed enrichment of CBF-ALFF coupling in the default mode network (p = 

0.045), with nominally higher coupling in the frontoparietal network (p = 0.056; Figure 3B).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454179doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454179
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

 

Figure 3. Mean CBF-ALFF coupling. A) CBF-ALFF coupling is robust throughout the brain, 
with maximal coupling in the medial and lateral prefrontal cortex, parietal cortex, posterior 
cingulate and precuneus. B) We used a spin-based spatial permutation test that accounted for 
spatial autocorrelation to evaluate enrichment of CBF-ALFF coupling in canonical functional 
networks. This revealed enrichment in the default mode network (p = 0.045) with a trend in the 
frontoparietal network (p = 0.056). Star (*) represents statistical significance (p < 0.05) and caret 
(^) represents a non-significant trend (p < 0.1). The black bars represent the observed values, 
whereas the violin plots reflect the null distributions. 
 

CBF-ALFF coupling declines with adolescent development 

 Next, we evaluated associations between CBF-ALFF coupling and age. We utilized a 

generalized additive model to rigorously evaluate both linear and nonlinear developmental 

effects, while controlling for in-scanner motion and sex. We found that whole-brain mean 

coupling decreased across development (F3,828 = 60.0, p < 0.0001; Figure 4A). Analysis of the 

derivative of this spline revealed that coupling significantly decreased between 11.6 years and 

20.5 years of age, with a peak decline observed during mid-adolescence at age 16. Fitting this 

model at each vertex revealed widespread declines in CBF-ALFF coupling across much of the 

cortex, with peak effects present in the posterior temporal cortex (pfdr < 0.05; Figure 4B). 

Analyses using spin-based permutation testing revealed enrichment of age-related declines in 
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coupling within the dorsal attention network (p = 0.014; Figure 4C). In contrast to these 

spatially extensive declines in coupling, only small regions in bilateral temporal cortices (75 

vertices total) showed increased coupling with age.  

 

Figure 4. CBF-ALFF coupling evolves with age. Linear and non-linear age effects of CBF-
ALFF were flexibly modeled within a generalized additive model at each vertex, while 
controlling for sex and in-scanner motion; multiple comparisons were controlled using the False 
Discovery Rate (Q < 0.05). A) Mean cortical CBF-ALFF coupling declines with age in a non-
linear fashion (F3,828 = 60.0, p < 0.0001). Data points represent the mean CBF-ALFF coupling (Z) 
for each subject (n = 831) across all vertices that met statistical correction (pfdr < 0.05). B) 
Vertex-level CBF-ALFF declines were prominent in the posterior temporal cortex, parietal 
cortex, and dorsolateral prefrontal cortex. For visualization purposes, Fsigned refers to the F-value 
from the generalized additive models, with the sign representing directionality (e.g., negative 
numbers represent lower coupling with age). C) Spin testing revealed enrichment of age effects 
within the dorsal attention network (p = 0.014). Star (*) represents statistical significance. Black 
bars represent the observed values, whereas the violin plots reflect the null distributions. 
 

CBF-ALFF coupling is higher in females within the frontoparietal network 

 Having established significant declines in CBF-ALFF coupling with age, we next 

evaluated sex differences while controlling for both linear and nonlinear effects of age (as well 

as in-scanner motion). We found that females had stronger coupling than males in bilateral 

dorsolateral prefrontal cortex, medial frontal cortex, anterior cingulate cortex, and precuneus. In 

contrast, females had lower coupling in the cuneus and lateral temporal cortex (pfdr < 0.05; 

A B

Co
up

lin
g
(Z
)

Age (Years)

10

8

6

4

0

2

10 15 20 Fsigned

Left Right
C

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454179doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454179
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

Figure 5A). Spin testing revealed that sex differences in coupling were enriched within the 

frontoparietal network (p = 0.034; Figure 5B).  

 
Figure 5. Sex differences in CBF-ALFF coupling.  A) CBF-ALFF coupling is higher in 
females than males in the bilateral dorsolateral prefrontal cortex, medial frontal cortex, anterior 
cingulate cortex, and precuneus. CBF-ALFF coupling differences between females and males 
were modeled using generalized additive models, while adjusting for both linear and nonlinear 
age effects as well as in-scanner motion; multiple comparisons were controlled using the False 
Discovery Rate (Q < 0.05). Brain regions where females had greater coupling than males are 
shown in red, whereas areas where males have greater coupling than females are shown in blue. 
B) Spin testing revealed significant enrichment of sex differences within the frontoparietal 
network (p = 0.034). Star (*) represents statistical significance. Black bars represent the observed 
values, whereas the violin plots reflect the null distributions. 
  

CBF-ALFF coupling is associated with executive function 

 As a final step, we evaluated the relationship between CBF-ALFF coupling and executive 

function. Throughout, we controlled for linear and nonlinear age effects, sex, and in-scanner 

motion. We found that better executive function was related to higher coupling in default mode 

regions including the posterior cingulate cortex, medial prefrontal cortex, and left 

temporoparietal junction. Furthermore, lower executive function was also related to more 

coupling in bilateral motor cortex and primary auditory cortex, including Heschl’s gyrus (pfdr < 
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0.05; Figure 6A). Spin testing revealed enrichment of significant associations with executive 

function within the somatomotor network (p = 0.040; Figure 6B).  

 

Figure 6. CBF-ALFF coupling is related to executive function. A) The relationship of CBF-
ALFF coupling to executive function showed regional variation, with both positive and negative 
associations. Generalized additive models were used to calculate the relationship between CBF-
ALFF coupling and executive function while controlling for linear and nonlinear age effects, sex 
effects, and in-scanner motion; multiple comparisons were accounted for using the False 
Discovery Rate (Q < 0.05). Higher coupling in parts of the default mode were associated with 
better executive functioning, while higher coupling in parts of the somatomotor network were 
associated with reduced executive functioning. Brain regions with positive associations are 
shown in red, whereas areas with negative associations are shown in blue. B) Spin testing 
revealed that associations between executive function and coupling were significantly enriched 
in the motor network (p = 0.040). Star (*) represents statistical significance (p < 0.05). Black 
bars represent the observed values, whereas the violin plots reflect the null distributions. 
 

DISCUSSION  

Using a recently developed statistical method for assessing inter-modal coupling and a large 

sample of youth, we demonstrated significant CBF-ALFF coupling across the cortex. 

Furthermore, we identified age-related declines in coupling that were broadly distributed across 

cortex and were enriched in the dorsal attention network. In addition, we found that sex 

differences in CBF-ALFF coupling were enriched within the frontoparietal network. Finally, we 

highlighted the relevance of CBF-ALFF coupling for cognition by showing significant 
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associations between CBF-ALFF with executive function. Taken together, these results extend 

prior results in adults and demonstrate that CBF-ALFF coupling undergoes a process of 

developmental calibration that is relevant for cognition.  

Neurovascular coupling is thought to reflect the interrelationship between nutrient demand 

and supply, whereby neuronal activity influences local changes in blood flow (6,7,21,52). At the 

cellular level, researchers have demonstrated a close relationship between blood flow and neural 

function that is usually facilitated by communicating astrocytes, where ionic gradients and 

metabolic biproducts from firing neurons lead to local vasodilation of cerebral arterioles (53,54). 

As such, high coupling could be conceptualized as an optimized, high fidelity system, where 

local activity of the vascular unit is influenced by neuronal function (55). Prior work has 

suggested that CBF-ALFF coupling may be understood as a proxy of neurovascular coupling, 

allowing a non-invasive window into this process (9,18,19).  

Highly metabolically active regions, particularly in association networks that coordinate 

brain activity across distributed brain regions, tend to have increased CBF as well as ALFF 

(16,56). Here, we showed that CBF-ALFF coupling is enriched in the default mode network 

(DMN), with a trend toward significance in the frontoparietal network (FPN). Transmodal 

association cortices that subserve the DMN and FPN have larger pyramidal neurons with greater 

spine and synapse density than pyramidal neurons expressed in other parts of the brain (57–59). 

Similarly, these association networks are the most spatially distributed, with more long-distance 

cortico-cortical connections (60–63). These neuroanatomical features produce greater metabolic 

activity and thus may demand a tighter link between activity and blood flow (64).  

Though coupling remained tight across development and into young adulthood, CBF-ALFF 

coupling decreased across much of the cortex, with the greatest rate of change during mid-
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adolescence. These findings coincide with many previously described structural developmental 

brain changes (65–67). During the second decade of life, myelin increases while synapses and 

dendritic spines are pruned to facilitate more efficient between-neuron communication (68–71). 

To support these structural changes, perineuronal nets surround the cell bodies and dendrites and 

control ion flow and conduction (72). One possibility is that these structural and ionic 

adaptations reduce the metabolic demands of the neurons, which has been previously 

demonstrated in perfusion studies (36,73). These refined local neural circuits may allow for 

fluctuations in neural activity to be supported by a lower level of metabolic substrate delivered 

by blood flow.  

Sex differences in coupling followed a different pattern than age-related changes. Females 

showed significantly higher coupling in the FPN, which is essential for cognitive control (74). 

Interestingly, previous literature has demonstrated that prominent sex differences in perfusion 

also emerge during the same developmental window, when girls experience an increase in 

circulating ovarian estrogens (36,37,75). The neuroactive steroid 17B estradiol, the primary 

estrogen secreted from the ovary, functions as a potent neurovasodilator by enhancing the 

production of nitric oxide (76). Neurophysiologic studies have consistently demonstrated larger 

cerebral blood vessel diameter per unit blood pressure in females as compared to males (77,78). 

Estrogen is also known to selectively increase blood flow in executive areas in adults (79) and 

emerging evidence has established a link between higher estradiol levels and greater dorsolateral 

prefrontal cortex activity during emotion regulation in adolescents (80). It is possible that 

hormone-mediated mechanisms contribute to observed sex differences in coupling within the 

FPN.  
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Understanding sex differences in frontoparietal neurobiology that emerge in adolescence is 

critically important given that mood and anxiety disorders, which are twice as prevalent in girls 

than boys, also emerge during the same developmental window (81,82). The adult literature 

consistently reports altered FPN functioning in depression and anxiety (83,84), and these 

differences can also be identified in development. Previous fMRI research has linked variations 

in frontoparietal network function with phenotypic heterogeneity in youth depression (85) and 

anxiety disorders (86). As a next step, it will be important to study whether frontoparietal 

coupling could be used as a biomarker for sex differences in psychopathology.  

The relevance of CBF-ALFF coupling to cognitive function is supported by our results, 

which detail a significant age-independent relationship between CBF-ALFF coupling and 

executive function. Specifically, better executive function was associated with lower coupling in 

the somatomotor network and higher coupling in regions within the DMN, including the 

posterior cingulate cortex and medial prefrontal cortex. Our findings align with previous 

unimodal neuroimaging literature on cognition in youth, where executive functioning has been 

related to both lower-order sensorimotor networks as well as higher-order association networks 

(87,88). Some previous studies have also suggested a dissociation between how executive 

functioning relates to neuroimaging measures of sensorimotor and association networks (89). 

Our findings may further indicate that the development of executive function in youth relies on a 

balance between decreased coupling in lower-order networks, and increased coupling in higher-

order association networks. It is also possible that this dissociation is specific to the adolescent 

developmental stage, where lower coupling in somatomotor network indicates a refined circuit, 

whereas higher correlation in the DMN indicates that the system is undergoing developmental 

tuning and would presumably move to a lower coupling state in adulthood. 
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There are several limitations to our study which should be noted. Previous authors have 

understood CBF-ALFF coupling as a representation of neurovascular coupling, which has 

framed our understanding of this measure (12,18,19). However, we are not able to measure 

neurovascular coupling directly and had to rely on proxy measures to characterize neurovascular 

coupling in vivo. Typically, positron emission tomography has generally been the gold standard 

for measuring blood flow, whereas we use ASL to quantify CBF. However, previous studies 

have demonstrated good correlation between PET and ASL (13). Given the potential risks of 

radiologic exposure to children with PET scanning, CBF as measured by ASL is a much safer 

method for use in large-scale studies of youth (90–92). Additionally it should be noted that 

ALFF is derived from the BOLD signal, which inherently has a vascular component (93). 

However, numerous past studies have suggested that ALFF signals reflect neural activity 

(14,15,94,95). Lastly, we evaluated a cross-sectional sample which prevents us from estimating 

within-individual change; future studies in longitudinal samples will be important.  

The limitations notwithstanding, we provide new evidence for the developmental evolution 

of CBF-ALFF coupling in youth, as well as distinct associations with sex and executive function. 

Our findings suggest numerous avenues for future study. Longitudinal assessments that allow for 

the measure of within-subject change in coupling may help us better understand normal 

physiologic brain development at a personalized level. Additionally, transdiagnostic deficits in 

executive functioning are commonly observed across psychiatric illnesses (96,97). Given that 

deficits in executive functioning were associated with altered CBF-ALFF coupling, future 

studies could yield important insights into whether regional differences in CBF-ALFF coupling 

are linked to the onset and development of psychopathology. Eventually, characterizing 
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neurovascular coupling in youth at risk may aid in the development of targeted pharmacologic 

and neurotherapeutic treatments. 
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