
Using network control theory to study the dynamics of the structural connectome1

Linden Parkes*,1, 2, 3 Jason Z. Kim*,4 Jennifer Stiso,1 Julia K. Brynildsen,1 Matthew Cieslak,2, 5, 6
2

Sydney Covitz,2, 5, 6 Raquel E. Gur,5, 6 Ruben C. Gur,5, 6 Fabio Pasqualetti,7 Russell T.3

Shinohara,8, 9, 10 Dale Zhou,1 Theodore D. Satterthwaite,2, 5, 6, 9 and Dani S. Bassett1, 6, 11, 12, 13, 14
4

1Department of Bioengineering, University of Pennsylvania, PA 19104, USA5
2Lifespan Informatics and Neuroimaging Center (PennLINC),6

Department of Psychiatry, Perelman School of Medicine,7

University of Pennsylvania, Philadelphia, PA 19104, USA8
3Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA9

4Department of Physics, Cornell University, Ithaca, NY 14853, USA10
5Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine,11

Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA12
6Department of Psychiatry, Perelman School of Medicine,13

University of Pennsylvania, Philadelphia, PA 19104, USA14
7Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA15

8Department of Biostatistics, Epidemiology, and Informatics,16

Perelman School of Medicine, Philadelphia, PA 19104, USA17
9Center for Biomedical Image Computation and Analytics,18

University of Pennsylvania, Philadelphia, PA 19104, USA19
10Penn Statistics in Imaging and Visualization Endeavor (PennSIVE),20

Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine,21

University of Pennsylvania, Philadelphia, PA 19104, USA22
11Department of Neurology, Perelman School of Medicine, Philadelphia, PA 19104, USA23

12Department of Electrical and Systems Engineering, University of Pennsylvania, PA 19104, USA24
13Department of Physics and Astronomy, University of Pennsylvania, PA 19104, USA25

14Santa Fe Institute, Santa Fe, NM 87501, USA26

* These authors contributed equally27

Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and28

constrains dynamics. Compared to other structure-function coupling approaches, the strength of NCT lies in its29

capacity to predict the patterns of external control signals that may alter dynamics in a desired way. We have30

extensively developed and validated the application of NCT to the human structural connectome. Through these31

efforts, we have studied (i) how different aspects of connectome topology affect neural dynamics, (ii) whether32

NCT outputs cohere with empirical data on brain function and stimulation, and (iii) how NCT outputs vary33

across development and correlate with behavior and mental health symptoms. In this protocol, we introduce a34

framework for applying NCT to structural connectomes following two main pathways. Our primary pathway35

focuses on computing the control energy associated with transitioning between specific neural activity states.36

Our second pathway focuses on computing average controllability, which indexes nodes’ general capacity to37

control dynamics. We also provide recommendations for comparing NCT outputs against null network models.38

Finally, we support this protocol with a Python-based software package called network control theory for python39

(nctpy).40

https://github.com/BassettLab/nctpy
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I. INTRODUCTION41

Network neuroscience is principally concerned with studying the connectome [1], the description of whole brain connectivity.42

This connectome is often encoded as a graph of nodes interconnected by edges that can be defined across multiple scales, species,43

and data modalities [2, 3]. In any case, these descriptions of brain connectivity give rise to complex topology—including hubs,44

modules, small-worldness, and core-periphery structure [4]—and understanding how this topology shapes and constrains the45

brain’s rich repertoire of dynamics is a central goal of network neuroscience.46

Network control theory (NCT) provides an approach to studying these dynamics that yields insights into how they emerge from47

the topology of the underlying structural connectome [5–8]. The application of NCT has revolutionized both the understanding48

and design of complex networks in contexts as diverse as space and terrestrial exploration, as well as modeling of financial49

markets, airline networks, and fire-control systems. Briefly, NCT assumes that inter-nodal communication follows a linear50

model of diffusion, where activity from one set of nodes (i.e., an initial state) spreads across the network over time along a51

series of fronts [4, 9]. Then, upon this dynamical system, NCT models a set of external control signals that are designed to52

guide these diffusing activity patterns towards a chosen target state. This choice can be informed by a measurement of activity53

evoked by behavior, spontaneous activity, or the type of brain system. These control signals are found by minimizing the total54

magnitude of their input over a given time horizon; that is, they are designed to achieve a desired state transition with the lowest55

amount of control energy. Once modeled, these control signals can be examined to determine to what extent, and how, they were56

constrained by topology, thus allowing researchers to study how the connectome might be leveraged to control dynamics.57

Recently, we have developed and tested the application of NCT to brain network data across multiple contexts, scales, and58

definitions of connectivity [10–20]. Here, we present a protocol for applying NCT to two different structural connectomes: one59

defined using undirected connectivity estimated in the human brain [21, 22] and the other using directed connectivity estimated in60

the mouse brain [23–25]. Briefly, we detail two common applications of NCT that we—as well as other groups [26–32]—have61

deployed that focus on (i) quantifying the amount of energy that is required to complete transitions between specific brain62

states (Figure 1) and (ii) examining regions’ general capacity to control dynamics (Figure 2). The former approach is useful for63

researchers interested in examining how dynamics can be controlled to move from one place on the network to another, while the64

latter is useful for researchers interested in analyzing topographic maps of control. Additionally, we provide recommendations65

for visualization of model outputs, and discuss the use of null network models to examine which topological features affect66

model outputs.67
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FIG. 1
Modeling the control energy required to complete a state transition. Network control theory (NCT) finds the control signals that, when
injected into a networked system, will guide simulated neural activity from an initial state to a target state. Here, we show a two-node toy
network (x1, x2) that illustrates the difference between neural activity (solid orange lines) in the absence (A) and presence (B) of a control
signal (dashed blue line). A, Uncontrolled linear dynamics on a two-node network. Given an initial state where x1 = 0.3 and x2 =−0.2, as
well as coupling between nodes encoded by A, uncontrolled neural activity unfolds as shown on the left. These dynamic trajectories can also
be represented in two dimensions as a vector field as shown on the right. Under this uncontrolled regime, the state of the system culminates in
x1 =−0.24 and x2 = 0.06 at time T . B, Controlled linear dynamics on a two-node network. By contrast, when we introduce a control signal
to x2, the trajectory changes to now culminate in x1 = 0.12 and x2 = 0.39 at time T . Thus, NCT has found the control signal that drove our
system from our initial state [x1 = 0.3, x2 =−0.2] to our desired target state [x1 = 0.12, x2 = 0.39]. C, NCT applied to the human
connectome. The above model can be extended to the scale of N brain regions that constitute a whole-brain connectome (left). In doing so,
we can model and examine the control signals required to transition the brain between various states of interest (right).
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FIG. 2
Average controllability: modeling the impulse response of the system from each node. Network control theory (NCT) can be used to
probe regions’ general capacity to control dynamics. This is achieved by studying how the system responds to an impulse delivered to each
node. Here, we show a two-node toy network (x1, x2) coupled by A. Upon this network, we demonstrate how neural activity (solid orange
lines) unfolds when an impulse (dashed blue line) is delivered to x1 (A) and x2 (B). A, An impulse is delivered to x1 that sets the initial state
of the system to [x1 = 0.4, x2 = 0]. B, An impulse is delivered to x2 that sets the initial state of the system to [x1 = 0, x2 =−0.4]. In each
case, the impulse response of the system is quantified as the area under the squared curves of the two orange traces. Intuitively, this
measurement corresponds to the amount of activity propagated throughout the system over time. We refer to this measure as the average
controllability. Thus, for a given time horizon (T), a region with higher average controllability is better able to broadcast an impulse. C,
Impulse response modeled for the human connectome. The above model can be extended to the scale of N brain regions that constitute a
whole-brain connectome. In doing so, we can compare each region’s capacity to broadcast an impulse across the whole brain.

II. DEVELOPMENT OF THE PROTOCOL68

The methods that underlie NCT are based on the established fields of control theory and dynamical systems theory. Dating69

back to at least the 19th century [33], control theory is primarily concerned with engineering perturbations to achieve desired70

behaviors in the states of a system, and specifically the evolution of such states over time. Hence, one of the most natural ways71

to formulate theories of control is through differential and difference equations that mathematically define the next state of a72
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system given its current state. A common example of a control system is an inverted pendulum on a cart: the system states are73

the positions and velocities of the cart and pendulum, the differential equations are determined through the governing Newtonian74

physics, and the control task is to perturb the cart so that the cart and pendulum end up in a desired state. For example, one might75

want to push the cart back and forth in such a way as to stabilize the pendulum so that it remains upright [34].76

From one perspective, the inverted pendulum is not unlike the brain, where the system states are the activities of neural units77

(e.g., brain regions), the differential equations are determined through the diffusion of activity through structural connections78

between those units, and the control task is to perturb the brain to steer it to a desired state. There is a rich history of such79

modeling of the brain as a dynamical system using differential equations, ranging from biophysical models of single neurons80

[35], to phenomenological [36] and coarse-grained [37] models of neural populations. In tandem, there is a very practical81

translational need to understand how to control brain dynamics [38], for example to compensate for abnormal dynamics that82

may be present in neurological and neuropsychiatric disorders.83

However, there are also many ways in which the brain is not like an inverted pendulum. First is the dimensionality and84

complexity of the brain. Understanding how the topology of the structural connectome gives rise to brain function is a difficult85

task that has motivated a large body of work in the last two decades. This research has revealed that structure-function coupling86

is not one-to-one, varies spatially across the cortex [39–43], and is stronger when indirect structural pathways are accounted for87

under multiple models of network communication [44, 45]. Second is the distributed nature of brain states for human function.88

While some brain regions may be thought of as supporting specific functions (e.g., the fusiform face area), carrying out complex89

human functions typically requires the recruitment of a network of brain regions to a distributed brain state [46]. Finally, biology90

imposes relatively tight operating constraints. To support complex human function, the brain needs to optimize for efficient91

signaling while balancing the need to minimize wiring cost within the spatial constraints of the cranial cavity. Hence, there92

is a need to express the unique complexities and constraints of controlling brain structure-function coupling in the quantitative93

formalism of dynamics and control.94

NCT emerges as a flexible framework that is methodologically based in optimal control theory [47], and can accommodate95

a wide range of theoretical and experimental hypotheses and constraints about structure-function coupling through a consistent96

mathematical framework [20, 48, 49]. Because NCT posits a model of neural dynamics at the level of individual neural interac-97

tions, it allows us to probe the role of the complex structural connectome on brain function at the level of those interactions [14,98

50, 51]. Additionally, because NCT parameterizes which regions to control and how, as well as the precise patterns of initial and99

target neural activity, it can answer questions ranging from the importance of a single region for propagating activity [10] to the100

cost of transitioning between specific brain states [11]. Hence, the development of NCT has largely served to provide a simple,101

first-order biophysical model with the flexibility and power to study more advanced hypotheses of function.102

The modeling framework of NCT comprises N nodes (e.g., neurons, brain regions) and m inputs, and stipulates that the state
of each node, xi(t), evolves in time as a weighted sum of the state of all upstream nodes, x j(t), and any inputs, um(t). If the
evolution of the states can be framed in terms of states—where the activity of upstream nodes determines the state of downstream
nodes at the next discrete point in time—then the model takes the form of a difference equation,

xxx(t +1) = Axxx(t)+Buuu(t), (1)

where xxx(t) = [x1(t),x2(t), · · · ,xn(t)]⊤ is the vector of neural states, A is the N ×N connectome, uuu(t) = [u1(t),u2(t), · · · ,um(t)]⊤

is the vector of independent control signals, and B is the N×m matrix that quantifies how each input affects the nodes. If instead
the evolution of the states can be framed in terms of rates—where the activity of upstream nodes affects the continuous rate at
which the state of downstream nodes change—then the model takes the form of the differential equation

d
dt

xxx(t) = Axxx(t)+Buuu(t). (2)

While these two models appear similar at first glance, their definition, properties, and behavior differ substantially. In turn,103

the interpretation of the model parameters and outputs can vary dramatically between them.104

This protocol will discuss two common operationalizations of NCT that can be derived from either of these models. The first105

employs a time-varying perturbation, uuu(t), to drive the neural activity, xxx(t), from an initial state, x0, to a target state, x f , given106

a balance of constraints on the magnitude of both the neural states and the perturbations. The magnitude of these perturbations107

are summarized as the control energy, which we interpret as the amount of effort that the model system must exert to complete108

a given state transition. The second is average controllability, which is the magnitude of the neural activity, xxx(t), in response109

to an impulse stimulus delivered to a single node; a node with higher average controllability is better able to leverage graph110

topology to spread an impulse throughout the system. Note, average controllability is only one example of a node-level NCT111

metric that falls within the broader category of controllability statistics. This category encompasses NCT outputs that describe112

different ways in which the nodes of the system may control its dynamics. While we have used other controllability statistics in113

our previous work (e.g., modal controllability, see section III), we focus on average controllability in this protocol owing to its114

simple intuition and broad appeal.115

We focus on these two operationalizations—control energy and average controllability—because they encompass two com-116

mon sets of questions about the brain. The first set of questions stems from advances in neuroimaging that allow us to empirically117
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measure neural states in many forms such as functional Magnetic Resonance Imaging (fMRI), electrophysiology, and calcium118

imaging [52]. Given these state-level empirical data, a natural question is “how does the brain reach or switch between these119

states using regimes of internal or external control?” Optimal control theory provides a powerful and flexible set of tools to120

explore these questions under various constraints and at different spatio-temporal scales. The second set of questions stems from121

empirical evidence demonstrating that individual and groups of brain regions may be important for (i) enabling specific func-122

tions, such as visual processing [53], motor processing [54], and cognition [55, 56]; (ii) supporting critical functional processes123

in the brain, such as segregation and integration [57, 58]; and (iii) may be disproportionately impacted by diseases processes124

[59, 60]. Given these data, a natural question to ask is “what is the contribution of these sets of regions to the control of brain125

activity?” Average controllability measures the magnitude of propagation of stimulation along neural tracts, thereby providing a126

coarse-grained understanding of this contribution.127

III. APPLICATIONS OF THE METHOD128

Analyzing brain data using a network representation is increasingly popular in neuroscience, and researchers have used a wide129

range of connectomic data to perform NCT analysis. For example, the availability of multimodal neuroimaging data in large130

cohorts accompanied by clinical and cognitive data [21, 22, 61–63]—as well as indices of neurobiology not measurable in vivo131

(e.g., high-resolution histology [64], gene expression [65], etc.)—enable researchers to validate NCT against brain function132

and biology as well as examine individual differences. Indeed, we have applied NCT in our research with a view towards133

achieving these goals. Here, we briefly review selections of this work to show how our protocol may be applied to study the134

brain. Specifically, we discuss how model outputs from NCT (A) link to network topology; (B) explain individual differences in135

mental health symptoms, cognition, and age; (C) predict effects of neurostimulation; (D) explain switching between functional136

task states; and (E) link to neuroanatomy.137

A. Understanding the Influence of Topology138

In our early work, we began by contextualizing nodal controllability statistics against what we know about connectome topology139

from graph theory. Specifically, Gu et al. [10] examined how nodal control properties–specifically average controllability140

(see Pathway B, Section IX B) and modal controllability–correlated with nodes’ strength (the sum of a node’s edge weights).141

Gu et al. [10] found that nodes’ strength correlated strongly positively and negatively with average and modal controllability,142

respectively. These relations were conserved across both humans and macaques. Collectively, these results indicate that a node’s143

local topological importance predicts its capacity to control the dynamics of a system.144

We have also examined how connectome topology influences the control energy associated with specific state transitions. Bet-145

zel et al. [49] found that nodes’ topological importance predicted their capacity to facilitate transitions between eight canonical146

brain states (seven resting-state cortical networks as well as a subcortical network [66]). Specifically, Betzel et al. found that147

target states that intersected with the brain’s rich club [58]—a set of highly interconnected nodes that form the connectome’s148

core—exhibited low transition energy. This result demonstrates that the rich club is well positioned in the network to act as149

an efficient target state to which a diverse set of initial states can transition with low control energy. Thus, the topology of150

the human connectome may be optimized to guide dynamics toward the rich club, bolstering the idea that these nodes support151

functional integration [57, 67, 68].152

Given these advances in understanding how connectome topology contributes to control, we subsequently analyzed what the153

underlying control equations could tell us about network topology. Starting from the NCT equations, Kim et al. [50] derived154

the features of network architecture that were the most important to determining control energy. Kim et al. [50] discovered that155

a strong and diverse set of connections from stimulated nodes to unstimulated nodes were the leading-order contributors to the156

control cost. Using this discovery, the authors reduced the cost of controlling connectomes in the Drosophila, mouse, and human157

by virtually resecting edges, and developed a method to meaningfully compare the control cost between different species and158

connectomes. These results provide simple and quantitative knowledge about the most important features of topology according159

to NCT.160

B. Individual Differences161

While the strong correlation between average controllability and strength reported by Gu et al. [10] may seem to imply redun-162

dancy between nodal controllability statistics and measures from graph theory incorporating weighted degree, we note that this163

correlation was spatial (i.e., across the brain) rather than between subjects. In subsequent work examining individual differences,164

Parkes et al. [69] compared the capacity of average controllability and strength to predict psychosis spectrum symptoms using165

out-of-sample testing. Parkes et al. [69] found that average controllability significantly outperformed strength in this predictive166
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task, and demonstrated that this improved performance was concentrated in higher-order default mode cortex [70]. These re-167

sults show that while high average controllability may depend upon high strength, there exists unique inter-individual variation168

between the metrics, and that this variance in average controllability couples more tightly to mental health symptoms.169

We have also shown that average controllability exhibits robust developmental and sex effects. Average controllability in-170

creases between the ages of 8 and 22 years [12] and is higher in females in the cortex while higher in males in subcortex [19].171

Furthermore, Tang et al. [12] showed that age effects were strongest in nodes with higher controllability, underscoring the de-172

velopmental importance of nodes that are well positioned in the network to control dynamics. When examining control energy,173

Cui et al. [71] demonstrated that the amount of energy required to activate the fronto-parietal system—a brain network thought174

to support executive function [72]—was negatively correlated with both age and executive function in the same sample. This175

result suggests that the developmental emergence of executive function is associated with increased efficiency of neural signaling176

within the human connectome.177

C. Predicting Stimulation Effects178

An application of NCT that has clear translational impact is modeling the relationship between brain structure and function.179

To this end, we have examined whether NCT can predict the brain’s functional response to neurostimulation from its structural180

connectome. For example, in patients with epilepsy, Stiso et al. [14] found that NCT was able to predict electrophysiological181

neuronal responses (measured with electrocorticography) following direct electrical stimulation. This result shows that our182

model, wherein neural activity is simulated upon the structural connectome, explains variance in experimentally-manipulated183

empirical changes in brain state.184

We have also examined NCT in the context of non-invasive neurostimulation techniques. In a pair of studies, Medaglia et al.185

[16, 17] delivered transcranial magnetic stimulation (TMS) to the left inferior frontal gyrus (LIFG) in between repeated sessions186

of a set of language tasks. Across both studies, the authors found that NCT metrics extracted from the LIFG explained variance187

in changes to task performance before and after TMS. These results demonstrate that NCT can be used to probe the network188

mechanisms that underpin how neurostimulation elicits changes in behavior.189

D. Modeling Switches Between Functional Brain States190

In addition to predicting the effects of neurostimulation, NCT can be used to investigate how the topology of the structural191

connectome supports transitions between empirically-observed functional brain states. Our group has studied this process using192

brain states derived from fMRI. Cornblath et al. [20] clustered resting-state fMRI (rs-fMRI) into brain states representing193

instantaneous co-activations among canonical brain networks, and used NCT to model the energy required to transition between194

those states. Using a series of null network models (see section X), Cornblath et al. found that the topology of the structural195

connectome was wired to support efficient switching between brain states. This result demonstrates that the topology of the196

connectome is optimized to support dynamic fluctuations in resting-state activity.197

Subsequent work by Braun et al. [73] examined transitions between brain states elicited by a working memory task. Braun198

et al. [73] found that transitioning from a 0-back brain state to the more cognitively demanding 2-back brain state required199

more energy than the reverse transition, demonstrating an asymmetry in control energy. Braun et al. also found that this200

energy asymmetry was more pronounced in patients with schizophrenia compared to healthy controls. Thus, while connectome201

topology may be setup to enable low-cost fluctuations in resting-state [20], activating cognitively demanding brain states may202

require more control effort. Furthermore, this increased control effort appears to scale with within-task differences in cognitive203

demand and is further elevated in psychopathology.204

E. Biologically informed NCT205

Neuroscience is increasingly moving toward a multi-scale approach that seeks to understand how features of the brain observed206

at one scale link to properties observed at another, and vice versa [3, 74–82]. Recently, we have applied this multi-scale approach207

to NCT by examining how dynamics within the model are influenced by variations to regions’ cellular composition. Specifically,208

we [51] examined how regions’ profiles of cytoarchitecture impacted the energy associated with state transitions that spanned209

the cortical hierarchy (i.e., the sensory-fugal axis [83]). We found that state transitions traversing bottom-up along the cortical210

hierarchy of cytoarchitecture required lower control energy to complete compared to their top-down counterparts, and observed211

that nodes’ position along this hierarchy predicted their importance in facilitating these transitions. This result shows that spatial212

variations in cortical microstructure constrains macroscopic connectome topology; this effect is consistent with work from213

neuroanatomy that describes a precise relationship between regions’ profiles of cytoarchitecture and their extrinsic connectivity214

[84].215
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In recent work from outside our group, Luppi et al. [32] characterized the control energy associated with a large set of216

activity maps derived from NeuroSynth [85] related to cognition. Additionally, the authors examined how these transition217

energies varied when they utilized a broad range of neurotransmitter density maps to modify the control weights. This work ties218

together switching between functional brain states and biologically informed connectome analysis to provide the field with a219

comprehensive “look-up table” of how regions’ diverse biology impacts control energy.220

IV. COMPARISON WITH OTHER METHODS221

We consider NCT with respect to other models that also seek to understand how communication unfolds within a structurally222

interconnected complex system. Specifically, for practicing neuroscientists, we view NCT as complementing both more com-223

plex biophysical models of dynamics as well as graph-theoretic measures of inter-nodal communication. While both of these224

approaches model communication, they differ in their biological plausability and complexity.225

Biophysical models aim to capture neuronal communication by distilling the various biophysical processes necessary for226

functional activity into separate model parameters. These parameters are tuned to simulate biologically plausible non-linear227

dynamics within and between neurons at multiple scales. For example, at the scale of single neurons, the Hodgkin-Huxley model228

is concerned with modeling neuronal spiking activity [86], and is based on parameterizing the flow of sodium and potassium229

ions across the cell membrane. At the next scale up, mean-field models focus on the collective activity patterns of co-located230

populations of neurons [87, 88]. Coupling multiple mean-field models together—where each model represents distinct neuronal231

populations—enables researchers to study how non-linear dynamics emerge from brain structure at the macroscale [87]. In turn,232

this approach gives rises to a wide range of complex dynamical behaviors, including synchronized oscillators [89], learning233

[90, 91], large-scale traveling brain waves [92], and structure-function coupling [93–95]. Broadly, NCT trades biophysical234

accuracy and the complexity of specific model behaviors for more power in designing and studying stimuli. For example, in235

lieu of studying state transitions that emerge from different models of associative memory [96] and context integration [97],236

NCT allows us to design specific stimuli to transition the model system to states that are known to be important for memory and237

cognitive control under specific constraints [49].238

By contrast, graph-theoretic approaches instantiate relatively simple models of inter-nodal communication that rely on as-239

sumptions such as shortest-path routing, spatial proximity, random walks, and diffusion processes [4, 9]. While these assump-240

tions are an oversimplification of brain dynamics—and are thus less biologically plausible—their simplicity confers greater241

analytic tractability and scalability, which are both desirable features when studying the human brain. This benefit compounds242

when the goal of a given study is to examine inter-individual differences, wherein dynamical models may be fit to thousands of243

participants. As such, despite their relative simplicity, graph-theoretic approaches have deepened our insights into large-scale244

brain organization [55, 56, 98–101], improved our understanding of the link between the brain and mental disorders [59, 102–245

104], and helped elucidate the link between structure and function [40, 44, 45, 105–107].246

We consider NCT as situated between these two modeling approaches. As discussed in Section II, NCT is essentially a model247

of two parts, dynamics and control. For the former component, NCT models dynamics according to a diffusion process; thus,248

like graph theory, NCT makes simplifying assumptions of inter-nodal communication, which confers the advantages of analytic249

tractability and scalability. However, the second component, control, adds an additional layer of model parameterization that250

allows researchers to probe how the system might behave under different contexts (e.g., in response to task manipulations,251

cognitive control, or neurostimulation protocols). This added flexibility brings NCT closer to biophysical modeling, insofar252

as they both seek to understand how the dynamics of a system respond to external perturbation. Indeed, we have shown that253

NCT can be used to predict changes in the dynamics of coupled Wilson-Cowan oscillators following simulated stimulation [18],254

suggesting that NCT can explain some of the behaviors engendered by non-linear biophysical models.255

V. EXPERIMENTAL DESIGN256

The goal of an NCT analysis, as it is conceptualized in this protocol, is to understand how the topology of the structural257

connectome supports and constrains spreading dynamics, and to what extent those dynamics can be controlled. Thus, core258

to this analysis is the acquisition of one or more structural connectomes from a model organism. These connectomes can be259

obtained in numerous ways that each depend on the model organism under study and the available imaging modality. In humans,260

for example, structural connectomes are typically extracted from diffusion-weighted imaging (DWI) sequences obtained using261

MRI. Tractography algorithms are applied to DWI scans to model the white matter pathways intersecting pairs of brain regions,262

which are then used to populate connectome edges with the number of those pathways (e.g., the streamline count) [4]. This263

example constitutes a weighted undirected connectome upon which NCT can be conducted. Note that while the application of264

NCT is not restricted to weighted undirected connectomes (edges can be weighted or unweighted, directed or undirected), the265

edge weight definition determines what types of questions can be addressed using this protocol (for example, see Ref. [48] for266

analysis of an unweighted directed Caenorhabditis elegans connectome).267
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Given that connectomes are central to the application of NCT, any artifacts present in the connectomes will be reflected in268

model outputs. For example, connectomes populated by DWI estimates of connectivity are known to contain false positives269

and false negatives, which may be partly mitigated by the use of thresholding techniques [108, 109]. In-scanner head motion270

is well known to spuriously impact these estimates of connectivity as well [110, 111]. Thus, the accurate generation and271

rigorous quality control of connectomes are both crucial considerations for experimental design. For human connectomes, we272

recommend researchers consult the extant literature on the processing and quality control of DWI scans [108, 112, 113] (see also273

https://qsiprep.readthedocs.io/).274

Another consideration for connectome estimation is the brain parcellation used to define system nodes. If, as mentioned275

above, structural connectivity is determined by streamline count, then variations in the size of regions across the parcellation276

will bias connectome edge weights; larger brain regions will intersect with more white matter pathways and thus show higher277

connectivity to the remaining regions. As with any analysis of graph topology, this bias will effect the outputs of NCT; for278

example, larger regions may show higher average controllability just by virtue of being more directly connected to the system.279

It is for this reason that we recommend researchers reproduce their results using several different parcellation definitions and280

resolutions. Doing so ensures that their results are not driven by a specific parcellation choice.281

Beyond the core requirement of a connectome, the flexibility of NCT makes it applicable to a broad range of experimental282

designs (see Section III); the most critical component is that researchers have hypotheses that pertain to studying the control283

of brain dynamics. However, in the case of control energy, where researchers will study the control signals, uuu(t), there are284

some additional considerations. First, differences in brain states’ magnitude will impact control energy, potentially necessitating285

the normalization of state magnitude. For example, if researchers are examining transitions between patterns of brain activity286

(e.g., using functional data as in [20, 73]), then differences between states’ mean activity will impact control energy; assuming287

a common initial state, target states with higher activity will require more energy to transition to compared to target states with288

lower activity. This effect generalizes to binary brain states—where a brain state is encoded as a set of nodes being “on” while289

the rest of the nodes are “off”—as well. In this case, differences in state size (i.e., the number of “on” regions) constitute290

differences in state magnitude; transitioning to larger target states will require more energy. If there are differences in state291

magnitude, we recommend normalizing states before computing control energy (see Section IX A, step 3). Note, the need for292

this normalization will depend upon researchers’ analyses. For example, if researchers are studying individual differences in293

the energy associated with a single transition, then normalization may not be necessary so long as state definition is consistent294

across subjects. What is critical is that researchers consider what comparisons they want to make and whether variations in state295

definition would confound those comparisons.296

A second consideration is how researchers define their control set, B. As discussed in Section II, the N×m control set defines297

the extent to which the nodes of the system can affect changes in its dynamics. In turn, the definition of B determines the298

dimensions of uuu(t); the greater the number of control nodes, the more independent control signals will be generated. In our299

work, we have often deployed a uniform full control set, which means that all of the nodes of the system are designated as300

controllers (full) and all are given equivalent control over dynamics (uniform). In this case, m = N. Intuitively, this approach301

assumes that the entire brain is being controlled—either internally or externally—when completing a state transition. However,302

depending on a researcher’s hypotheses, this assumption may not be appropriate. Instead, researchers may want to define only303

a subset of nodes as controllers (e.g., [49, 50]), or assign variable weights to control nodes (e.g., [30–32, 51]), or both. Note304

that assigning variable control weights serves to give some nodes more control over system dynamics than others. In any case,305

it is critical that researchers check whether their designated control set was able to complete the associated state transition (see306

Section IX A, step 5); successful completion of a state transition is not guaranteed in the model, and completion is less likely307

when transitions are driven by a small control set.308

VI. EXPERTISE NEEDED TO IMPLEMENT THE PROTOCOL309

We provide open-source and broadly accessible tools that implement optimal control and average controllability in a Python-310

based software package called network control theory for python (nctpy). In nctpy, we provide a flexible implementation that311

enables researchers to make model assumptions that best fit their research question. As a result, while a full understanding of312

linear systems and optimal control theory are not required, the researcher must have enough expertise to make key modeling313

decisions that best represent the data, which we explicitly mark in the protocol.314

The first piece of expertise needed is to understand the differences between (and implications of) discrete-time systems and315

continuous-time systems (see Section II). This difference is not merely a conceptual one, because discrete-time systems display a316

fundamentally different set of behaviors than continuous-time systems. That is, a discrete-time system is not simply a temporally317

coarse-grained version of a continuous-time system. Instead, each system exhibits different dynamics. As a simple example,318

consider a 1-dimensional, discrete-time system that evolves according to x(t+1) =−x(t). Starting at 1, this system will alternate319

between -1 and 1 over time. There does not exist an equivalent continuous-time system that evolves according to d
dt x(t) = ax(t)320

(where a is a real number) that oscillates in this way.321

The second piece of expertise needed is to understand the nature of Pathway A (control energy, Section IX A) and Pathway322

https://qsiprep.readthedocs.io/
https://github.com/BassettLab/nctpy
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B (average controllability, Section IX B) in order to interpret the outputs. Pathway A is solving an optimization problem.323

Specifically, first we provide a model of the dynamics (i.e. A, B), the initial and target states, and some optimization parameters324

(see Section IX A). Then, we solve for the control signals, uuu(t), that minimize the cost. Hence, all interpretations of uuu(t) should325

be made with the understanding that they were determined by the user-defined optimization parameters. Pathway B is not solving326

an optimization problem, and thus does not receive any optimization parameters. Rather, it measures the magnitude of the neural327

states over time as a result of an impulse stimulation. Because Pathways A and B use the same dynamics but output different328

quantities through different means, more expertise in linear systems and optimal control is needed to meaningfully compare and329

contrast the two pathways.330

VII. LIMITATIONS AND ONGOING DEVELOPMENT331

Network control theory has the ability to flexibly accommodate many scientific questions and to generate concise knowledge332

from a simple model. However, NCT also possesses several limitations that are faced by many in the study of high-dimensional333

complex systems, such as numerical stability of algorithms, validation at the scale of microscopic states, approximations of334

complex interactions, and interpretation of model parameters.335

A. Numerical Stability of Optimization336

One limitation is the numerical stability of Pathway A under certain parameter conditions, which arises from ill-conditioned337

matrices that are built while solving for the control signals. This issue occurs most frequently when using a relatively small338

control set—a small m in the N ×m matrix B—to control a network with large N. It is intuitive that precisely controlling the339

initial and target states of the whole brain from only a few nodes is difficult. In light of this limitation, it is crucial that the340

researcher carefully study the generated trajectories of the neural activity to ensure that the desired initial and target states are341

reached, and that the numerical integrator does not generate a warning of numerically ill-conditioned matrices. In the event that342

the control set must be small for the purposes of the research question, one solution may be to extend the control set by heavily343

weighting the desired control nodes and lightly weighting the remaining nodes [14]. Another option is to use Pathway B to study344

the average controllability of the control set.345

B. Validation at the Scale of Microscopic States346

A second limitation is the validation of the model at the level of individual neural states. Phrased another way: given a347

connectome, A, and stimulations uuu(t) delivered to brain regions B starting at neural activations xxx(0), does experimentally mea-348

sured neural activity agree with the simulated trajectory xxx(t)? The challenges associated with addressing this sort of question349

extend far beyond NCT and to a significant portion of systems and network neuroscience. Microstate validation between neu-350

ral structure and activity is most evident in small systems of neural circuits [114], but how to perform similar validations for351

large-scale systems such as the human brain remains an open area of research. Challenges include (i) the multiple possible352

scales of constructing brain networks [2, 115]; (ii) differing measures of inter-areal connectivity [108, 116]; (iii) multiple defi-353

nitions of simulated neural activity [87, 117–119]; and (iv) the diverse spatial and temporal resolutions at which we can record354

whole-brain activity [52]. Along this active area of research, recent work has demonstrated that linear models outperform non-355

linear and kernel-based models in both 1-step prediction and model complexity for both fMRI and EEG data [120], as well as356

correspondence between control energy and local metabolism [121].357

Closely linked to ideas of validation is ongoing work on the implementation of the connectome, A. NCT stipulates a simple but358

mechanistic model for the evolution of neural states, xxx(t), given a stimulus uuu(t). Hence, the interpretation of the model outputs359

is bounded by the interpretability of the model inputs. In the majority of applications, the matrix A is taken to be the structural360

connectome, with the justification that regions must be able to transmit information along structural connections. However, the361

distribution of edge weights can vary significantly across different pre-processing pipelines, which implies equally significant362

variations in the strength of interactions between regions. Hence, it is important for the interpretation of the results to critically363

assess whether the edge from node i to node j of the implemented adjacency matrix is a reasonable measure of the strength of364

activity diffusion from node i to node j.365

C. Linear Dynamics366

A third limitation is the assumption of linear dynamics, which enables the calculation of powerful measures such as optimal367

control trajectories, but hinders the biophysical realism of the framework. More sophisticated non-linear models capture complex368
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dynamics from individual neurons [86] to neural populations [37], thereby enabling the study of fine-grained experimental369

behavior [122] and complex non-linear phenomena [123]. These models make fewer simplifying assumptions to capture non-370

linear behaviors of biological systems such as complex memory landscapes [124]. While prior work has shown that linear371

models outperform many classes of non-linear models in describing and predicting brain-wide neural activity [120], extensions372

of NCT to non-linear systems will enable greater flexibility to accommodate and explore the impact of non-linear biophysical373

constraints. While the theory of non-linear control is an active area of research [125], there are immediate applications of NCT374

to non-linear systems, and many exciting potential extensions of NCT to capture more biophysical realism.375

Broadly speaking, the linear dynamics assumed by NCT can be thought of as being valid for a non-linear system within376

small deviations of an operating state [7]. Hence, the most immediate application of NCT to non-linear systems is to linearize377

the model about an operating point, such as the upright position of an inverted pendulum [126]. Along these lines, the next378

immediate generalization to NCT is to linear time-varying systems [47], where the model is linearized not about a point, but379

about a trajectory. While methods to implement control for linearized and time-varying systems are well-established in the380

control community, a biophysically meaningful implementation and interpretation of the parameters—namely A(t) and B(t)—381

remains an area of active work [127]. Another approximation that is particularly relevant for high-dimensional neural systems is382

at the limit of weakly coupled oscillators [128, 129], whereby a high-dimensional system of oscillators with weak interactions383

can be reduced to a low-dimensional phase response curve, allowing for the potential linearization of the system about phase-384

locked states.385

In addition to linearizing dynamics about points and trajectories, NCT can also meaningfully be applied to non-linear dynam-386

ical systems that can be made linear through a non-linear change of variables. One such example is by using finite-dimensional387

Koopman subspaces, which allow for the recasting of non-linear systems with single fixed points as higher-dimensional linear388

systems [130], and closely-related methods in dynamic mode decomposition [131]. Further, advances in non-linear control389

enable us to probe important coarse-grained questions such as the control set necessary to push non-linear systems between390

attracting states [132]. Other control strategies take advantage of the ability of non-linear systems to access states that lie outside391

of their linearization [133].392

VIII. MATERIALS393

As discussed above, we split our protocol into two pathways (Figure 3). The primary pathway of our protocol focuses on394

computing control energy (Pathway A, Section IX A). This pathway is illustrated in Figures 3A, 3B, and 3C. Briefly, Figure395

3A outlines the inputs required to run our protocol, Figure 3B outlines the model outputs, and Figure 3C outlines some of the396

variations to model inputs that we have discussed thus far. The second pathway of our protocol focuses on computing nodes’397

average controllability (Pathway B, Section IX B; Figure 3D).398

Equipment399

• A computer with Python (tested on version 3.9) and nctpy installed alongside its dependencies. This protocol has been400

tested on Mac OS running on Intel Core i5/i7/i9 processors as well as on Apple Silicon. We have also tested this protocol401

on Linux Ubuntu running on Intel processors. RAM requirements will vary depending on researchers’ data and analyses,402

but we recommend at least 16 GB. Finally, we recommend installing nctpy inside a virtual environment managed by403

Anaconda (https://www.anaconda.com/). The following core dependencies are required to run nctpy:404

- numpy (https://numpy.org/). Tested on version 1.24.3.405

- scipy (https://scipy.org/). Tested on version 1.10.1.406

- tqdm (https://github.com/tqdm/tqdm). Tested on version 4.65.407

Additionally, there are some functions in nctpy.plotting and nctpy.utils that require the following:408

- statsmodels (https://www.statsmodels.org/). Tested on version 0.13.5.409

- matplotlib (https://matplotlib.org/). Tested on version 3.7.1.410

- seaborn (https://seaborn.pydata.org/). Tested on version 0.12.2.411

- nibabel (https://nipy.org/nibabel/). Tested on version 5.1.412

- nilearn (https://nilearn.github.io/). Tested on version 0.10.1.413

Finally, the following optional packages were used to run the analyses illustrated in this protocols paper:414

- (optional) pandas (https://pandas.pydata.org/). Tested on version 1.5.3.415

- (optional) scikit-learn (https://scikit-learn.org/). Tested on version 1.2.2.416

https://www.anaconda.com/
https://numpy.org/
https://scipy.org/
https://github.com/tqdm/tqdm
https://www.statsmodels.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://nipy.org/nibabel/
https://nilearn.github.io/
https://pandas.pydata.org/
https://scikit-learn.org/
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See https://github.com/BassettLab/nctpy for more details. Creating a Python environment using Anaconda417

and installing the above dependencies should take no longer than 30 minutes.418

Input Data419

• CRITICAL Adjacency matrix, A (used in all steps): The adjacency matrix, A (Figure 3A, left), is the primary input420

to our protocol. In A, the N nodes of the system are stored on the rows and columns, and the N ×N edge values are421

stored in the entries. As discussed above, both the nodes and the edges of A can be defined in numerous ways and their422

definition depends on the acquired data as well as the research question. For example, the nodes of the system may be423

defined as single neurons in organisms such as the Caenorhabditis elegans [48, 134] or as brain regions of varying size424

and definition in organisms such as the mouse [76], Drosophila [50], macaque [135] and human [4]. The edges of A425

may be defined as either the directed or undirected structural connectivity between nodes (Figure 3C). Note, effective426

functional connectivity between nodes may also be used to define edges [15, 136, 137]. Critically, our model assumes that427

Ai j encodes the strength of diffusion of activity along the edge connecting node j to node i. In other words, our model428

assumes that the columns of A store the source nodes (i.e., projections from node j) while the rows store the target nodes429

(i.e., projections to node i). While this distinction is irrelevant for undirected connectomes where Ai j = A ji, it is crucial430

for directed connectomes. Thus, researchers must ensure that their directed A matrix conforms to the above assumptions.431

In any case, NCT can be applied to either participant-level or group-averaged connectomes. Although we focus on a432

group-averaged undirected structural connectome in this protocol, we also include an example of our protocol applied to433

a directed structural connectome.434

• Brain states, x0 and x f (used in steps 3-6): In order to analyze state transitions, researchers also need to provide a pair of435

brain states (Figure 3A, middle; initial state, x0; target state, x f ) relevant to their hypotheses. Providing these states allows436

NCT to find the control signals, uuu(t), that are required to transition between them and to summarize those control signals437

as control energy (Figure 3B); here, control energy estimates the amount of effort the model has to exert to complete the438

transition. Brain states can be defined in a number of ways. The simplest approach is to define each brain state as a binary439

vector (Figure 3A, middle), where nodes that are within a given state are assigned an arbitrary constant value (e.g., 1) and440

any remaining nodes are assigned a value of 0. In this setup, NCT is tasked with transitioning the brain between actuating441

different sets of node to a constant arbitrary level of neural activity. We commonly adopt this approach in our work. An442

alternative approach is to allow brain states to represent a variable pattern of activity (Figure 3C, middle). As mentioned443

above, Cornblath et al. [20] modeled the energy required to transition between brain states derived from clustering of444

fMRI data, while Braun et al. [73] used task activation maps extracted from an fMRI contrast. These approaches allowed445

the authors to generate state vectors that encode non-zero activity across all nodes of the system. In this protocol, we446

illustrate examples using both binary and non-binary brain states. Note that brain states are not required for Pathway B447

(Figure 3D).448

• Control set, B (used in steps 3-6): In addition to brain states, researchers also need to designate a control set; these are449

the nodes that NCT will use to complete state transitions. Intuitively, the control nodes are where time-varying control450

signals, uuu(t), will be injected into the system in order to transition the system between states. Each column k of B indicates451

the impact of input uk on the network nodes. Here, the simplest approach is to define a uniform full control set (Figure 3A,452

right), which means that all nodes of the system are designated as control nodes and that they are all given the same degree453

of control over system dynamics. Alternatively, as discussed above, researchers may also designate partial control sets or454

control sets with variable weights (Figure 3C, right). For the latter, variable weights can either be derived a priori and455

input directly into the model (e.g., [30–32]) or via data-driven optimization approaches (e.g., [51]). We illustrate examples456

of using such control sets in this protocol. Note that a control set is not required for Pathway B (Figure 3D).457

Example Dataset458

• We primarily used undirected structural connectomes derived from DWI performed on the human brain. We obtained459

these connectomes from the Philadelphia Neurodevelopmental Cohort (PNC) [21, 22], a community-based study of brain460

development in youths aged 8 to 22 years. The neuroimaging sample of the PNC consists of 1,601 participants. From this461

original sample, we retained 253 typically developing participants who had no medical co-morbidity or radiological ab-462

normalities, and who were not taking psychoactive medications at the time of assessment. Additionally, these participants’463

T1-weighted, DWI, and rs-fMRI scans all passed stringent quality control procedures [113, 138, 139].464

- Structural connectome reconstruction was performed using QSIprep 0.14.2 [112], which is based on Nipype 1.6.1465

[140]. Connectomes were extracted using the 200-node variant of the Schaefer parcellation [115], ordered according to 7466

https://github.com/BassettLab/nctpy
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FIG. 3
Schematic representation of the network control theory (NCT) protocol. Our protocol is split into two pathways. Primarily, our protocol
focuses on modeling the control energy associated with user-defined control tasks. We refer to this part of our protocol as Pathway A (A, B,
and C). Pathway A will be of interest to researchers who seek to study specific state transitions. We also outline a brief protocol for
estimating nodes’ average controllability. We refer to this part of our protocol as Pathway B (D). Pathway B will be of interest to researchers
who want to examine nodes’ general capacity to control system dynamics. A, Inputs required for Pathway A. To compute control energy,
researchers must provide a structural connectome (A), an initial state (x0), and a target state (x f ), and must also define a control set (B). B,
Model outputs from Pathway A. Given these inputs, our protocol will output the state trajectory (neural activity, xxx(t)) and the control signals
(uuu(t)). Once inspected, the control signals can be integrated over time to obtain node-level energy (eee), which in turn can be summed over
nodes to get the control energy (EEE). C, Variations to Pathway A. Pathway A can handle a diverse range of inputs, including but not limited to
undirected and directed connectomes (left), binary and non-binary brain states (middle), and control sets with uniform or variable weights
(right). D, Pathway B: average controllability. Pathway B only requires a structural connectome (A) as input and will return the average
controllability of each node. This metric quantifies the impulse response of the system from a given node. Higher average controllability
indicates that a node is better positioned in the network to propagate dynamics.

canonical brain systems [66]. The strength of inter-regional connectivity was summarized using the number of streamlines467

that intersected each pair of parcels. Connectomes were averaged over subjects. This group-averaged connectome was468

thresholded by retaining the edges that were present in at least 60% of participants’ connectomes [109]. This process469

resulted in a final connectome with 98% edge density.470

- rs-fMRI was also obtained from the same 253 PNC participants [21]. These data were used to generate empirical471

brain activity states (see Figure 6). The eXtensible Connectivity Pipeline (XCP-D) [139, 141] was used to post-process472

the outputs of fMRIPrep version 20.2.3 [142]. XCP was built with Nipype 1.7.0 [140]. Processed rs-fMRI time series473

were extracted from the same 200-node parcellation mentioned above [115].474

• We also studied a directed structural connectome obtained from the Allen Mouse Brain Connectivity Atlas.475

- Whole-brain structural connectomes were constructed with 2×105 voxels at a spatial resolution of 100 µm. Voxels476

were assigned to regions (coarse structures) according to a 3-D Allen Mouse Brain Reference Atlas [23]. Isocortex477

was further divided into 6 systems (auditory, lateral, medial, prefrontal, somatomotor, and visual) based on prior work478

that applied community detection to identify stable modules [143]. Connection strengths were modeled for all source479
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and target voxels using data from 428 anterograde tracing experiments in wild type C57BL/6J mice [144]. Normalized480

connection strengths were obtained by dividing the connection strengths by the source and target region sizes. Here, we481

retained only the 43 isocortical regions. This process resulted in a fully-connected directed structural connectome.482

In all of the below code, we assume the existence of a Python environment with nctpy installed alongside its dependencies.483

First, we import all the functions we need to run our protocol:484

1 # import485

2 import os486

3 import numpy as np487

4 import pandas as pd488

5 import scipy as sp489

6 from scipy import stats490

7 from scipy.spatial import distance491

8 from sklearn.cluster import KMeans492

9 from tqdm import tqdm493

10494

11 # import plotting libraries495

12 import matplotlib.pyplot as plt496

13 import seaborn as sns497

14 from nilearn import datasets498

15 from nilearn import plotting499

16500

17 # import nctpy functions501

18 from nctpy.energies import integrate_u, get_control_inputs502

19 from nctpy.pipelines import ComputeControlEnergy, ComputeOptimizedControlEnergy503

20 from nctpy.metrics import ave_control504

21 from nctpy.utils import (505

22 matrix_normalization,506

23 convert_states_str2int,507

24 normalize_state,508

25 normalize_weights,509

26 get_null_p,510

27 get_fdr_p,511

28 )512

29 from nctpy.plotting import roi_to_vtx, null_plot, surface_plot, add_module_lines513

30 from null_models.geomsurr import geomsurr514

Note that depending on their goals, researchers may only need a subset of this import call. Next, we will load a structural515

connectome as our adjacency matrix:516

1 # directory where data is stored517

2 datadir = '/path/to/data'518

3 adjacency_file = 'structural_connectome.npy'519

4520

5 # load adjacency matrix521

6 adjacency = np.load(os.path.join(datadir, adjacency_file))522

7 n_nodes = adjacency.shape[0]523

8 print(adjacency.shape)524

9525

10 # check for self-connections526

11 print(np.any(np.diag(adjacency) > 0))527

12528

13 # get density including self connections529

14 density = np.count_nonzero(np.triu(adjacency, k=0)) / (n_nodes**2 / 2)530

15 print(density)531

1 (200, 200)532

2 True533

3 0.9768534

The above code demonstrates that our connectome comprises 200 nodes, includes self-connections (i.e., Ai j > 0), and has an535

edge density of 98%. See Figure S1 for control energy plotted as a function of edge density.536

IX. PROCEDURE537
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Core Steps538

Discrete-time versus continuous-time dynamical system539

1. CRITICAL Define a time system. The first step is to determine whether to model the linear dynamical system in discrete-540

or continuous-time. In a discrete-time system, the states of the system, xxx(t), evolve forward in time according to a set541

of discrete steps (xxx(t) → xxx(t + 1)). In a continuous-time system, the states of the system are continuously changing in542

time (xxx(t)→ xxx(t)+ ẋxx(t)dt). The choice of time system will depend upon the research question and affects all subsequent543

analyses owing to differences in the mathematical implementation of NCT under each system. We refer the reader to544

Karrer et al. [8], Kim et al. [7], Hespanha [47], and other texts in linear systems theory for extended discussion.545

2. CRITICAL Normalize adjacency matrix (Timing: < 1 second). Once a time system has been determined, the first546

practical step in this protocol is to normalize the adjacency matrix, A. Normalizing A prior to modeling the dynamical547

system ensures stability and that the system will not grow to infinity over time. We include a function that normalizes A548

appropriately depending on the researcher’s chosen time system.549

A) Normalizing for discrete-time systems:550

1 # normalize adjacency matrix551

2 system = "discrete"552

3 adjacency_norm = matrix_normalization(adjacency, system, c=1)553

The above call will normalize A according to the following equation:554

Anorm =
A

|λ (A)|max + c
.

Here, |λ (A)|max denotes the largest absolute eigenvalue of the system. Additionally, c is a user-defined input parameter555

that determines the rate of decay of system dynamics. We set c = 1 by default, which ensures that all modes of the system556

decay and thus that activity goes to zero over time (note, this is true of any positive c value). This normalization ensures557

that internal dynamics decay in a manner that is necessary for the stabilization of the system. Specifically, the largest558

absolute value of a matrix’s eigenvalues is called the spectral radius, and this normalization ensures that the spectral559

radius is less than 1: a condition known as Schur stability. Intuitively, a discrete-time system given by Eq. 1 with no input560

(i.e. uuu(t) = 0) will evolve as xxx(n) = Anxxx(0), and the most unstable eigenmode of the system will evolve as λ (A)n
max. To561

ensure that this mode does not grow infinitely with n, it must have a magnitude less than 1.562

B) Normalizing for continuous-time systems:563

1 # normalize adjacency matrix564

2 system = "continuous"565

3 adjacency_norm = matrix_normalization(adjacency, system, c=1)566

The above call will normalize A according to the following equation:567

Anorm =
A

|λ (A)|max + c
− I.

Here, I denotes the identity matrix of size N×N. As above, we normalize such that the spectral radius is less than one, but568

we take the additional step of subtracting the identity. This step exists because a continuous-time system given by Eq. 2569

with no input will evolve as xxx(t) = eAtxxx(0), and the eigenmodes of the system as eλit . Hence, for the system to decay, all570

λi must have a negative real component, which is achieved through the subtraction of I.571

Irrespective of the chosen time system, the above step outputs Anorm, which contains the structural connectome as a normalized572

adjacency matrix that is ready for NCT analysis. Importantly, there are several different approaches to normalizing the matrix.573

Irrespective of approach, the key properties to ensure are the stability of the system as well as the preservation of as much574

structural information as possible. In all of the code and results shown below, Anorm was produced for a continuous-time system.575

A. Protocol Pathway A: Control Energy576

3. Define a control task: binary brain states (Timing: < 1 second). To calculate the control energy required to complete a577

state transition, researchers must first define a control task. A control task comprises an initial state, x0, a target state, x f ,578
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and a control set, B. In other words, a control task involves defining a specific set of control nodes that will be used by the579

model to transition from an initial state to a target state.580

Here, we illustrate an example control task where NCT is used to transition between a pair of binary brain states controlled581

by a uniform full control set. As mentioned above, our Anorm is ordered according to 7 canonical brain systems [115]. We582

leverage this grouping to define a state transition between the visual system and the default mode network (DMN). To583

begin, we set up a vector, states, that stores integer values denoting which brain system each node belongs to. That584

is, states == 0 represents nodes that belong to system 1, states == 1 represents nodes that belong to system 2,585

etcetera. We create states from a list of strings that groups nodes into the aforementioned canonical brain systems (this586

file can be found here):587

1 # load node-to-system mapping588

2 system_labels = list(589

3 np.loadtxt(os.path.join(datadir, "pnc_schaefer200_system_labels.txt"), dtype=str)590

4 )591

5592

6 print(len(system_labels))593

7 print(system_labels[:20])594

1 200595

2 ['Vis', 'Vis', 'Vis', 'Vis', 'Vis', 'Vis', 'Vis', 'Vis', 'Vis', 'Vis',596

3 'Vis', 'Vis', 'Vis', 'Vis', 'SomMot', 'SomMot', 'SomMot', 'SomMot', 'SomMot', 'SomMot']597

In nctpy, we include a function called convert_states_str2int that will convert this list of strings for us:598

1 # use list of system names to create states599

2 states, state_labels = convert_states_str2int(system_labels)600

3601

4 print(type(state_labels), len(state_labels), state_labels)602

5 print(type(states), states.shape, states)603

1 <class 'list'> 7 ['Cont', 'Default', 'DorsAttn', 'Limbic', 'SalVentAttn', 'SomMot', 'Vis']604

2 <class 'numpy.ndarray'> (200,) [6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5605

3 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0606

4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5607

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 3 3608

6 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]609

As can be seen from the above print commands, our system_labels variable comprises a string variable for every610

node in our system that denotes which brain system that node belongs to. convert_states_str2int takes that list of611

strings and returns an array of integers, states, with a corresponding list of labels, state_labels. Below, we extract612

x0 and x f using the integers that correspond to the visual system ('Vis') and the default mode system ('Default'):613

1 # extract initial state614

2 initial_state = states == state_labels.index('Vis')615

3616

4 # extract target state617

5 target_state = states == state_labels.index('Default')618

initial_state and target_state will be Boolean vectors ([True, False]), wherein True encodes the619

nodes that belong to a given state. Next, we normalize the state magnitude using our included function, normalize_state:620

1 # normalize state magnitude621

2 initial_state = normalize_state(initial_state)622

3 target_state = normalize_state(target_state)623

This process will convert initial_state and target_state from Boolean entries to floating point numbers that624

have been normalized using the Euclidean norm of the vector. This normalization constrains state magnitude to a unit625

sphere (see Section V for more details). Finally, we define our control set. Unlike the initial and target states, the control626

set is encoded along the diagonal of an N ×N matrix, B. Here, we use a uniform full control set; thus, we can define our627

control set as the identity matrix:628

1 # specify a uniform full control set: all nodes are control nodes629

2 # and all control nodes are assigned equal control weight630

3 control_set = np.eye(n_nodes)631

https://github.com/BassettLab/nctpy/blob/c38ada559d60fd2e97cfc8ed84486d42da442504/data/pnc_schaefer200_system_labels.txt
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4. Compute control signals and state trajectory (Timing: < 1 second). Following the definition of a control task, the632

next step is to find the control signals, uuu(t), that drive the system to transition between x0 and x f . uuu(t) will be an m×T633

matrix of m time-varying signals injected into the control nodes over a specified time horizon, T . Here, owing to our use634

of a full control set, m = N. Critically, injecting these control signals into a system whose initial state is encoded by x0635

should result in a system whose final state is encoded by x f at time T . Alongside the control signals, we also extract636

the state trajectory, xxx(t). The state trajectory, which will be an N × T matrix, is the time-varying pattern of simulated637

neural activity that unfolds as the system traverses between x0 and x f . In this protocol, we find uuu(t) and xxx(t) using the638

get_control_inputs function:639

1 # set parameters640

2 time_horizon = 1 # time horizon (T)641

3 rho = 1 # mixing parameter for state trajectory constraint642

4 trajectory_constraints = np.eye(n_nodes) # nodes in state trajectory to be constrained643

5644

6 # get the state trajectory, x(t), and the control signals, u(t)645

7 state_trajectory, control_signals, numerical_error = get_control_inputs(646

8 A_norm=adjacency_norm,647

9 T=time_horizon,648

10 B=control_set,649

11 x0=initial_state,650

12 xf=target_state,651

13 system=system,652

14 rho=rho,653

15 S=trajectory_constraints,654

16 )655

By default, we set time_horizon=1. Note that this value is arbitrary and does not correspond to any real-world time656

units (e.g., seconds). Importantly, get_control_inputs utilizes a cost function that includes both the magnitude657

of the control signals and the magnitude of the state trajectory. The input parameter rho allows researchers to tune the658

mixture of these two costs while finding the input uuu(t) that achieves the state transition. Specifically, rho=1 places equal659

cost over the magnitude of the control signals and the state trajectory. Reducing rho below 1 increases the extent to660

which the state trajectory adds to the cost function alongside the control signals. Conversely, increasing rho beyond 1661

reduces the state trajectory contribution, thus increasing the relative prioritization of the control signals. Lastly, S takes662

in an N ×N matrix whose diagonal elements define which nodes’ activity will be constrained in the state trajectory. In663

summary, S designates which nodes’ neural activity will be constrained while rho determines by how much it will be664

constrained, relative to the control signals. Here, by setting rho=1 and S=np.eye(n_nodes), we are implementing665

what we refer to as optimal control [11]. Alternatively, researchers may choose to constrain only a subset of the state666

trajectory by defining partial constraint sets. If S is set to an N ×N matrix of zeros, then the state trajectory is completely667

unconstrained; we refer to this setup as minimum control [20, 51]. In this case, rho is ignored. See here for a notebook668

outlining different use cases of get_control_inputs.669

In addition to state_trajectory and control_signals, get_control_inputs also outputs numerical_error,670

which stores two forms of numerical error. The first error is the inversion error, which measures the conditioning of the671

optimization problem. If this error is small, then solving for the control signals was well-conditioned (see Section VII).672

The second error is the reconstruction error, which is a measure of the distance between x f and xxx(T ). If this error is small,673

then the state transition was successfully completed; that is, the neural activity at the end of the simulation was equivalent674

to the neural activity encoded by x f . We consider errors < 1−8 as adequately small:675

1 # print errors676

2 thr = 1e-8677

3678

4 # the first numerical error corresponds to the inversion error679

5 print(680

6 "inversion error = {:.2E} (<{:.2E}={:})".format(681

7 numerical_error[0], thr, numerical_error[0] < thr682

8 )683

9 )684

10685

11 # the second numerical error corresponds to the reconstruction error686

12 print(687

13 "reconstruction error = {:.2E} (<{:.2E}={:})".format(688

14 numerical_error[1], thr, numerical_error[1] < thr689

15 )690

16 )691

1 inversion error = 1.36E-15 (<1.00E-08=True)692

2 reconstruction error = 5.16E-14 (<1.00E-08=True)693

https://github.com/BassettLab/nctpy/blob/7d0bd792b252cfef1e6d2bb4a67ead5a1ffbb617/scripts/get_control_inputs.ipynb
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5. Visualize state trajectory and control signals (Timing: < 1 second). Once xxx(t) and uuu(t) have been derived, they should694

be visualized before computing control energy. Visualization provides intuition regarding how the model is behaving and695

is helpful for confirming that the state transition was completed successfully. As noted in Section V, completion of a state696

transition is not guaranteed by the model, and an incomplete transition may necessitate revising either the control set (e.g.,697

to provide more control over the system if a partial control set was used) or the time horizon (e.g., to provide more time698

for the model to complete the transition). We suggest the following simple plot:699

1 f, ax = plt.subplots(3, 2, figsize=(7, 7))700

2 # plot control signals for initial state701

3 ax[0, 0].plot(control_signals[:, initial_state != 0], linewidth=0.75)702

4 ax[0, 0].set_title("A | control signals, x0")703

5 # plot state trajectory for initial state704

6 ax[0, 1].plot(state_trajectory[:, initial_state != 0], linewidth=0.75)705

7 ax[0, 1].set_title("B | neural activity, x0")706

8707

9 # plot control signals for target state708

10 ax[1, 0].plot(control_signals[:, target_state != 0], linewidth=0.75)709

11 ax[1, 0].set_title("C | control signals, xf")710

12 # plot state trajectory for target state711

13 ax[1, 1].plot(state_trajectory[:, target_state != 0], linewidth=0.75)712

14 ax[1, 1].set_title("D | neural activity, xf")713

15714

16 # plot control signals for bystanders715

17 ax[2, 0].plot(716

18 control_signals[:, np.logical_and(initial_state == 0, target_state == 0)],717

19 linewidth=0.75,718

20 )719

21 ax[2, 0].set_title("E | control signals, bystanders")720

22 # plot state trajectory for bystanders721

23 ax[2, 1].plot(722

24 state_trajectory[:, np.logical_and(initial_state == 0, target_state == 0)],723

25 linewidth=0.75,724

26 )725

27 ax[2, 1].set_title("F | neural activity, bystanders")726

28727

29 for cax in ax.reshape(-1):728

30 cax.set_ylabel("activity")729

31 cax.set_xlabel("time (a.u.)")730

32 cax.set_xticks([0, state_trajectory.shape[0]])731

33 cax.set_xticklabels([0, time_horizon])732

34733

35 f.tight_layout()734

36 plt.show()735

This plot (Figure 4) shows the control signals (left column) alongside the state trajectory (i.e., neural activity; right column)736

separately for nodes within the initial (top row) and the target state (middle row), as well as the bystanders (bottom row).737

Note, we define bystanders as nodes that are outside both the initial and target states. We choose this division of nodes738

as it provides several simple intuitions about model behavior. First, we can see that the model is driving negative time-739

varying control signals into the nodes of the initial state (Figure 4A), which drives their activity to 0 over time (Figure 4B).740

Second, we can see that the model is driving positive time-varying control signals into the nodes of the target state (Figure741

4C), which drives their activity from 0 to ∼0.15 over time (Figure 4D). Note that ∼0.15 represents the maximum neural742

activity following state normalization for the states presented here; this maximum activity may vary depending on state743

definition. Finally, we can see that diverse time-varying control signals are being injected into the bystander nodes (Figure744

4E), which are in turn guiding changes in these regions’ activity (Figure 4F). In other words, Figure 4 shows that the model745

is performing a combination of “turning off” the initial state, “turning on” the target state, as well as guiding diffusing746

activity toward the target state via the bystanders. Figure 4 also provides a simple visual way to check whether the state747

transition completed successfully; at the end of the simulation, it is apparent that activity in the target state is maximal748

while activity in the initial state and bystanders is 0, which accords with our definition of x f . This behavior explains the749

low reconstruction error shown above. Additionally, this plot allows researchers to visualize how model behavior varies750

under different control sets (see Section 6 below as well as Figures S2, S3, S4, and S5) and time horizons (see Figures751

S6, S7, and S8). Note that while we view Figure 4 as the simplest way to plot initial model outputs, it is only one of752

many options. Researchers may choose to plot xxx(t) and uuu(t) as heatmaps or on the brain’s surface, which would facilitate753

visualization of spatial patterning (see step 3a in Section 6 for an example).754

6. Compute control energy (Timing: < 1 second). The final step is to summarize the control signals into control energy.755

This is done by numerically integrating the control signals over time. In this protocol, we use Simpson’s rule—an extension756
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FIG. 4
Visualize the control signals and the state trajectory. For a given state transition, the control signals (uuu(t), left column) and the state
trajectory (xxx(t), right column) should be visualized. Here, owing to our use of binary brain states, we group this visualization by nodes in the
initial state (x0, top row), the target state (x f , middle row), and the remaining nodes (bystanders, bottom row). This plot provides intuition on
model behavior by showing the kinds of control signals that are driving specific changes in neural activity. The top row shows that the model
is driving negative time-varying control signals into the nodes of the initial state (A), which drives their activity to 0 over time (B). The
middle row shows that the model is driving positive time-varying control signals into the nodes of the target state (C), which drives their
activity from 0 to ∼0.15 over time (D). The bottom row shows that the model is driving diverse time-varying control signals into the
bystander nodes (E), which are in turn guiding changes in these regions’ activity (F).

of the trapezoidal rule that fits a polynomial through neighboring sets of points—to achieve this integration, yielding a757

vector of node-level energy:758

1 # integrate control signals to get control energy759

2 node_energy = integrate_u(control_signals)760

3761

4 print(node_energy.shape)762

5 print(np.round(node_energy[:5], 2))763
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1 (200,)764

2 [21.13 37.65 23.55 21.55 28.34]765

Finally, these node-level energies can be summed to produce a single estimate of control energy:766

1 # summarize nodal energy767

2 energy = np.sum(node_energy)768

3769

4 print(np.round(energy, 2))770

1 2604.71771

Wrapping Pathway A for ease of use772

Steps 1-6 outline how to extract the control energy for a single control task, which we defined as completing a state773

transition between the visual system and the default mode system using control signals delivered to all system nodes (to774

view the above steps in a single notebook, see here). Alternatively, researchers may want to examine many control tasks775

within the context of a single study. Thus, in nctpy we include a Python class called ComputeControlEnergy that776

wraps all of the above steps (excluding step 5) and applies them over a list of control tasks. In addition to an adjacency777

matrix, ComputeControlEnergy expects a dictionary as input wherein each entry is a control task that includes: (i)778

an initial state, x0; (ii) a target stage, x f ; (iii) a control set, B; (iv) a matrix of state trajectory constraints, S; and (v) a779

constraint parameter, rho. For example, using the states variable defined above, this dictionary could be created as780

follows:781

1 # initialize list of control tasks782

2 control_tasks = []783

3784

4 # define control set using a uniform full control set785

5 # note, here we use the same control set for all control tasks786

6 control_set = np.eye(n_nodes)787

7788

8 # define state trajectory constraints789

9 # note, here we constrain the full state trajectory equally for all control tasks790

10 trajectory_constraints = np.eye(n_nodes)791

11792

12 # define mixing parameter793

13 # note, here we use the same rho for all control tasks794

14 rho = 1795

15796

16 # assemble control tasks797

17 n_states = len(state_labels)798

18 for initial_idx in np.arange(n_states):799

19 initial_state = normalize_state(states == initial_idx) # initial state800

20 for target_idx in np.arange(n_states):801

21 target_state = normalize_state(states == target_idx) # target state802

22803

23 control_task = dict() # initialize dict804

24 control_task["x0"] = initial_state # store initial state805

25 control_task["xf"] = target_state # store target state806

26 control_task["B"] = control_set # store control set807

27 control_task["S"] = trajectory_constraints # store state trajectory constraints808

28 control_task["rho"] = rho # store rho809

29 control_tasks.append(control_task)810

Note that for simplicity, the above section of code assumes the same control set (B), trajectory constraints (S), and ρ for811

all control tasks, but researchers may vary these parameters over transitions according to their needs. Next, we initialize812

and run ComputeControlEnergy:813

1 # compute control energy across all control tasks814

2 compute_control_energy = ComputeControlEnergy(815

3 A=adjacency, control_tasks=control_tasks, system="continuous", c=1, T=1816

4 )817

5 compute_control_energy.run()818

https://github.com/BassettLab/nctpy/blob/f69ec009d70a46cb019da7c59a0d00b3e254731a/scripts/path_a_control_energy_binary.ipynb
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ComputeControlEnergy will perform matrix normalization internally, and hence here we input A rather than819

Anorm. Apart from the control_tasks variable, ComputeControlEnergy also requires that the user specify820

the time system (system='continuous'), normalization constant (c=1), and time horizon (T=1) as input argu-821

ments. Once instantiated, ComputeControlEnergy.run() will run steps 1-6 (excluding step 5). Once com-822

pleted, a single estimate of control energy per control task will be stored in ComputeControlEnergy.E. Note that823

ComputeControlEnergy will not output the state trajectory, control signals, or node-level energy. These energy824

values can be trivially reshaped into a matrix and visualized (Figure 5):825

1 # reshape energy into matrix826

2 energy_matrix = np.reshape(compute_control_energy.E, (n_states, n_states))827

3828

4 # subtract lower triangle from upper to examine energy asymmetries829

5 energy_matrix_delta = energy_matrix.transpose() - energy_matrix830

6831

7 f, ax = plt.subplots(1, 3, figsize=(7, 4))832

8833

9 # plot energy matrix834

10 sns.heatmap(835

11 energy_matrix,836

12 ax=ax[0],837

13 square=True,838

14 linewidth=0.5,839

15 cbar_kws={"label": "energy", "shrink": 0.25},840

16 )841

17842

18 # plot without self-transitions843

19 # setup mask to exclude persistence energy (i.e., transitions where i==j)844

20 mask = np.zeros_like(energy_matrix)845

21 mask[np.eye(n_states) == 1] = True846

22 sns.heatmap(847

23 energy_matrix,848

24 ax=ax[1],849

25 square=True,850

26 linewidth=0.5,851

27 cbar_kws={"label": "energy", "shrink": 0.25},852

28 mask=mask,853

29 )854

30855

31 # plot energy asymmetries856

32 mask = np.triu(np.ones_like(energy_matrix, dtype=bool))857

33 sns.heatmap(858

34 energy_matrix_delta,859

35 ax=ax[2],860

36 square=True,861

37 linewidth=0.5,862

38 cbar_kws={"label": "energy (delta)", "shrink": 0.25},863

39 mask=mask,864

40 cmap="RdBu_r",865

41 center=0,866

42 )867

43868

44 for cax in ax:869

45 cax.set_ylabel("initial state (x0)")870

46 cax.set_xlabel("target state (xf)")871

47 cax.set_yticklabels(state_labels, rotation=0, size=6)872

48 cax.set_xticklabels(state_labels, rotation=90, size=6)873

49 f.tight_layout()874

50 plt.show()875

In Figure 5A, the diagonals represent the energy associated with control tasks that have identical initial and target states.876

We refer to these energies as persistence energy [20, 73, 145], which we interpret as the amount of control energy required877

to maintain a given brain state (see Figure S9 for a persistence energy example of Figure 4). Persistence energy is878

typically lower than the energy for control tasks wherein the initial and target states differ (i.e., the off-diagonal elements879

of energy_matrix). Thus, in order to better visualize the variance in energy across state transitions, we recommend880

also plotting energy_matrix excluding the diagonal elements (Figure 5B). Additionally, as the energy associated with881

transitioning from x0 to x f is not necessarily equivalent to that associated with the reverse direction, researchers may882

subtract the upper and lower triangles of energy_matrix to examine energy asymmetries (Figure 5C). Indeed, we883

have done this in our previous work (see [51, 73]).884
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FIG. 5
Visualize control energy. In cases where multiple state transitions are considered, we recommend visualizing control energy using the
following heatmaps. A, Full energy matrix. The full energy matrix shows energy for all state transitions, including those where the initial and
target state are the same (diagonal elements). This form of energy is referred to as persistence energy and is interpreted as the amount of
effort required to maintain neural activity in a given state. Persistence energy is typically lower than the energy associated with transitioning
between different states. B, Between-state energy matrix. In order to visualize variance in control energy for transitions between states, we
recommend plotting the energy matrix without the diagonal as well. C, Energy asymmetry matrix. Finally, we recommend subtracting the
transpose of the energy matrix and visualizing the lower (or upper) triangle of the ensuing asymmetry matrix. Doing so allows researchers to
see the asymmetries present in the control energy.

Variations to Pathway A885

All of the above constitutes our complete protocol for calculating control energy. However, there are multiple variations886

to the above protocol that researchers may wish to consider depending on their research goals. In this section, we illustrate887

a selection of these variants that are likely to be of broad interest to the field of neuroscience (Figure 3C). These variations888

include (A) studying non-binary brain states; (B) implementing partial and non-uniform control sets; and (C) examining889

directed structural connectomes.890

Non-binary brain states891

In Section IX A, we illustrated a state transition between the visual system and the default mode system using a binary892

definition of brain states extracted from a canonical system-level grouping of brain regions [66]. Below, we provide an893

example of using non-binary brain states instead. This example draws on aforementioned work from Cornblath et al. [20],894

who modeled the energy required to transition between clusters of rs-fMRI activity.895

3A) Define a control task: non-binary brain states. To define non-binary brain activity states, we cluster rs-fMRI data896

along the time dimension to extract co-activation states [20]. To achieve this goal, we first load the rs-fMRI data for897

253 participants extracted from the same parcellation that defined our structural connectome. Then, we concatenate898

these time series end-to-end across subjects:899

1 # load resting-state time series900

2 rsfmri_file = 'pnc_schaefer200_rsts.npy'901

3 rsfmri = np.load(os.path.join(datadir, rsfmri_file))902

4903

5 n_trs = rsfmri.shape[0]904

6 n_nodes_rsfmri = rsfmri.shape[1]905

7 n_subs = rsfmri.shape[2]906

8 print('n_trs, {0}; n_nodes, {1}; n_subs, {2}'.format(n_trs, n_nodes_rsfmri, n_subs))907

9908

10 rsfmri_concat = np.zeros((n_trs * n_subs, n_nodes_rsfmri))909

11 print(rsfmri_concat.shape)910

12911

13 for i in np.arange(n_subs):912

14 # z score and concatenate subject i's time series913

15 start_idx = i * n_trs914
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16 end_idx = start_idx + n_trs915

17 rsfmri_concat[start_idx:end_idx, :] = sp.stats.zscore(rsfmri[:, :, i], axis=0)916

1 n_trs, 120; n_nodes, 200; n_subs, 253917

2 (30360, 200)918

This process assigns empirical time series to each of the system nodes comprising 30,360 time points (120 TRs by919

253 participants) of rs-fMRI data. Next, we cluster these data in time using K-means and visualize the corresponding920

co-activation states on the cortical surface. To generate this plot, we include a function called surface_plot that921

utilizes tools from Nilearn (https://nilearn.github.io/stable/index.html):922

1 # extract 5 clusters of activity923

2 n_clusters = 5924

3 kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(rsfmri_concat)925

4926

5 # extract cluster centers. These represent dominant patterns of recurrent activity over time927

6 centroids = kmeans.cluster_centers_928

7 print(centroids.shape)929

8930

9 # plot centroids on brain surface931

10 lh_annot_file = ("/path/to/schaefer/files/lh.Schaefer2018_200Parcels_7Networks_order.annot")932

11 rh_annot_file = ("/path/to/schaefer/files/rh.Schaefer2018_200Parcels_7Networks_order.annot")933

12 fsaverage = datasets.fetch_surf_fsaverage(mesh="fsaverage5")934

13935

14 for cluster in np.arange(n_clusters):936

15 f = surface_plot(937

16 data=centroids[cluster, :],938

17 lh_annot_file=lh_annot_file,939

18 rh_annot_file=rh_annot_file,940

19 fsaverage=fsaverage,941

20 order="lr",942

21 cmap="coolwarm",943

22 )944

1 (5, 200)945

Figure 6 illustrates the centroids for 2 of the 5 clusters we extracted using K-means. As we are focused on illustrating946

a single state transition for the purposes of this protocol, the remaining 3 centroids are not shown (see Cornblath et al.947

[20] for detailed discussion of all 5 clusters). These centroids represent patterns of activity that recur throughout our948

concatenated time series. The spatial patterning of these 2 centroids indicate activity concentrated in visual cortex949

(Figure 6A) and the default mode system (Figure 6B), respectively. Using the same functions outlined above, we950

can extract this pair of centroids as brain states and recompute the control energy:951

1 # extract visual cluster is initial state952

2 initial_state = centroids[1, :]953

3 # extract default mode cluster as target state954

4 target_state = centroids[4, :]955

5956

6 # normalize state magnitude957

7 initial_state = normalize_state(initial_state)958

8 target_state = normalize_state(target_state)959

9960

10 # get the state trajectory and the control signals961

11 state_trajectory, control_signals, numerical_error = get_control_inputs(962

12 A_norm=adjacency_norm,963

13 T=time_horizon,964

14 B=control_set,965

15 x0=initial_state,966

16 xf=target_state,967

17 system=system,968

18 rho=rho,969

19 S=trajectory_constraints,970

20 )971

21972

22 # get energy973

23 node_energy = integrate_u(control_signals)974

24 energy = np.sum(node_energy)975

https://nilearn.github.io/stable/index.html
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As stated above in step 5, the temporal unfolding of xxx(t) and uuu(t) can be visualized using line plots (Figure 6B top,976

C top). Alternatively, to illustrate the spatial patterning of the state transition, xxx(t) and uuu(t) can be visualized on the977

cortical surface for specific time points (Figure 6B bottom, C bottom):978

1 timepoints_to_plot = np.arange(0, state_trajectory.shape[0], int(state_trajectory.shape[0] / 5))979

2980

3 for timepoint in timepoints_to_plot:981

4 f = surface_plot(982

5 data=state_trajectory[timepoint, :],983

6 lh_annot_file=lh_annot_file,984

7 rh_annot_file=rh_annot_file,985

8 fsaverage=fsaverage,986

9 order="lr",987

10 cmap="coolwarm"988

11 )989

Partial and variable control sets990

In Section IX A, we illustrated a state transition controlled via a uniform full control set. Such a control set amounts to991

assigning all nodes of the system the same degree of control over system dynamics. Below, we provide examples of using992

alternatives to this regime that involve using variable (instead of uniform) and partial (instead of full) control sets.993

3B) Define a control task: uniform partial control set. Defining a uniform partial control set is straight forward. Instead994

of assigning the N ×N identity matrix to B, we select specific diagonal elements to assign the value of 1, and assign995

0 to the remaining diagonal (and non-diagonal) elements. Here, we illustrate the example of selecting the bystander996

regions (see Figure 4E, F) as our control set:997

1 # specify a uniform partial control set: some nodes are control nodes998

2 # and all control nodes are assigned equal control weight999

3 bystanders = np.logical_and(1000

4 initial_state == 0, target_state == 01001

5 ) # use initial state and final state to find bystanders. note, this only works for binary1002

states1003

6 control_set = np.zeros((n_nodes, n_nodes)) # initialize control nodes matrix1004

7 control_set[bystanders, bystanders] = 1 # set bystanders to control nodes1005

Figure S2 shows the results of generating xxx(t) and uuu(t) under the above control set. Note that the above code only1006

works for binary brain states, because in this case bystanders can be trivially defined as nodes with no activity in1007

either the initial or target states. This fact does not imply that partial control sets cannot be used for non-binary brain1008

states. In Figure S2, we observe that the control signals are 0 for both x0 and x f , indicating that they received no1009

control signals. Additionally, the control signals for the bystanders, as well as the neural activity of all nodes, has1010

changed substantially compared to Figure 4. Notably, the control signals are several orders of magnitude greater1011

for this uniform partial control set compared to the uniform full control set used above. In turn, although this state1012

transition completes successfully, the energy we observe here is also several orders of magnitude greater (energy =1013

6.64×109). See Figures S3, S4, and S5 for more examples of uniform partial control sets, including some for which1014

the state transition does not complete. While the code implementation of a uniform partial control set is straight1015

forward, researchers must ensure that their control set is large enough to achieve numeric stability (see Section VII).1016

3C) Define a control task: a priori variable full control set. Instead of assigning all nodes of the system the same degree of1017

control over dynamics, researchers may want to make statements about which nodes should have more or less control1018

according to their hypotheses. One way that this can be achieved is by using node-level annotation maps [146, 147] to1019

assign control weights. For a single annotation map—which we assume is stored in 'neuromap.npy'—assigning1020

weights can be achieved in the following way:1021

1 # helper func for printing descriptive stats1022

2 def print_stats(x):1023

3 print(1024

4 "min={:.2f}; max={:.2f}; mean={:.2f}; std={:.2f}; skew={:.2f}; kurt={:.2f}".format(1025

5 np.min(x),1026

6 np.max(x),1027

7 np.mean(x),1028

8 np.std(x),1029

9 sp.stats.skew(x),1030
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FIG. 6
Control signals and state trajectory for non-binary brain states derived from resting-state fMRI. We applied K-means clustering to
resting-state fMRI time-series to extract patterns of co-activation. These patterns were used as non-binary brain states for network control
theory (NCT) analysis. A, Resting-state fMRI clusters that represent visual system activity (left) and default mode activity (right). The
control signals and the state trajectory were modeled by assigning the visual system to the initial state and the default mode system to the
target state. B, Control signals visualized using line plots (top) and on the cortical surface for select time points (bottom). C, State trajectory
(neural activity) visualized using line plots (top) and on the cortical surface for select time points (bottom).

10 sp.stats.kurtosis(x),1031

11 )1032

12 )1033

131034

14 neuromap_file = 'neuromap.npy'1035

15 neuromap = np.load(os.path.join(datadir, neuromap_file))1036

16 print(neuromap.shape)1037

17 print_stats(neuromap)1038

181039

19 control_set = np.zeros((n_nodes, n_nodes)) # initialize B matrix1040

20 control_set[np.diag_indices(n_nodes)] = neuromap # set weights using neuromap1041

1 (200,)1042
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2 min=-0.41; max=0.42; mean=-0.04; std=0.20; skew=0.25; kurt=-0.541043

The above code demonstrates that our annotations, and therefore our control set, include both positive and negative1044

values. The sign of a given weight will determine how a positive control signal delivered to that node influences its1045

neural state; a positive weight will cause a positive change in neural activity, while a negative weight will cause a1046

negative change. As control signals can also carry positive and negative values over time (see Figure 4), this behavior1047

has no impact on control energy; a positive control signal driven into a node using a positive control weight will cause1048

the same change in neural state as a negative control signal driven via a negative control weight. However, it does1049

impact the interpretation of uuu(t). Thus, to simplify the interpretation of the control weights, and of uuu(t), we suggest1050

adding a constant (1) as well as the absolute minimum value to the annotation map:1051

1 # modify neuromap so that its minimum value is 11052

2 neuromap += 1 + np.abs(np.min(neuromap))1053

3 print_stats(neuromap)1054

41055

5 control_set = np.zeros((n_nodes, n_nodes)) # initialize B matrix1056

6 control_set[np.diag_indices(n_nodes)] = neuromap # set weights using neuromap1057

1 min=1.00; max=1.84; mean=1.38; std=0.20; skew=0.25; kurt=-0.541058

This process will create a set of weights with a minimum value of 1 and, in this case, a maximum value of 1.84 (see1059

Figure S10 for a plot xxx(t) and uuu(t) derived from this control set). This fact simplifies our interpretation. For example,1060

because all weights are positive, we can say that the highest weight node has 1.84 times more control over system1061

dynamics compared to the lowest weight node. Additionally, whether a control signal drives a positive or negative1062

change in neural state now depends solely on its own sign at a given point in time.1063

A recent study by Singleton et al. [30] utilized an a priori variable full control set by assigning control weights1064

according to a range of seretonin receptor maps. Singleton et al. [30] found that the control energy associated with1065

their state transition was lowest when using a 5-HT2a receptor map compared to 5-HT1a, 5-HT1b, 5-HT4, and 5-1066

HTT maps. This result suggests that, compared to other receptors, the spatial patterning of 5-HT2a receptors yielded1067

the most efficient state transition (i.e., by reducing control energy the most). The authors subsequently replicated1068

their results using N,N-Dimethyltryptamine [31]. However, to draw this conclusion, researchers need to mindful of1069

the following caveat. In our model, increasing the total amount of control necessarily reduces energy. This relation1070

exists because the task of completing a given state transition is easier for the model when any node is granted a1071

greater degree of control over dynamics than it had previously, leading to smaller amplitude control signals and thus1072

lower energy. For example, if we compared energy between our uniform full control set and our above variable full1073

control set, energy would be trivially lower for the latter. This difference occurs because all weights on the diagonal1074

of B are 1 in our uniform full control set, while all but one of the weights in our variable full control set are > 1. This1075

issue is pertinent for researchers who want to compare different variable full control sets (as in [30–32]), because any1076

comparison of control energy across two different annotation maps needs to account for differences in those maps’1077

distributions. The simplest solution to this problem is to take the rank of each annotation map and then rescale the1078

ranks to be between 1 and 2. normalize_weights performs this normalization:1079

1 neuromap_file_1 = 'neuromap.npy'1080

2 neuromap_1 = np.load(os.path.join(datadir, neuromap_file_1))1081

3 neuromap_1_norm = normalize_weights(neuromap_1)1082

41083

5 neuromap_file_2 = 'neuromap2.npy'1084

6 neuromap_2 = np.load(os.path.join(datadir, neuromap_file_2))1085

7 neuromap_2_norm = normalize_weights(neuromap_2)1086

81087

9 print_stats(neuromap_1)1088

10 print_stats(neuromap_1_norm)1089

11 print_stats(neuromap_2)1090

12 print_stats(neuromap_2_norm)1091

1 min=-0.41; max=0.42; mean=-0.04; std=0.20; skew=0.25; kurt=-0.541092

2 min=1.00; max=2.00; mean=1.50; std=0.29; skew=-0.00; kurt=-1.201093

3 min=-0.10; max=0.16; mean=-0.00; std=0.07; skew=0.59; kurt=-0.781094

4 min=1.00; max=2.00; mean=1.50; std=0.29; skew=-0.00; kurt=-1.201095

Once annotation maps have been normalized in this manner, differences in energy can only be attributed to differ-1096

ences in the (rank) spatial patterning between maps. This independence occurs because both annotation maps now1097

conform to a uniform distribution. Note, energy derived from this normalization approach will still be lower than1098

our uniform full control set.1099



A Protocol Pathway A: Control Energy 27

3D) Define a control task: data-driven variable full control set. Instead of assigning variable weights a priori, researchers1100

may assign them in a data-driven manner. In our recent work, we developed an approach for achieving this goal using1101

gradient descent (see [51] for more details). Briefly, starting with a uniform full control set, this approach involves1102

perturbing control nodes’ weight one at a time by a constant arbitrary amount and measuring the corresponding1103

change in energy. This process results in N estimates of perturbed control energy for a given state transition. As1104

mentioned above, each of these perturbations will necessarily reduce control energy compared to the baseline uniform1105

full control set, creating negative ∆s. In turn, differences in ∆ magnitude encode the relative importance of each node1106

to completing a specific state transition; nodes with more negative energy ∆s are more important:1107

1 # container for perturbed energies1108

2 energy_perturbed = np.zeros(n_nodes)1109

31110

4 for node in tqdm(np.arange(n_nodes)):1111

5 # start with a uniform full control set1112

6 control_set = np.eye(n_nodes)1113

71114

8 # add arbitrary amount of additional control to node1115

9 control_set[node, node] += 0.11116

101117

11 # get perturbed control signals (u_p)1118

12 _, control_signals, _ = get_control_inputs(1119

13 A_norm=adjacency_norm,1120

14 T=time_horizon,1121

15 B=control_set,1122

16 x0=initial_state,1123

17 xf=target_state,1124

18 system=system,1125

19 rho=rho,1126

20 S=trajectory_constraints,1127

21 )1128

221129

23 # integrate control signals to get control energy1130

24 node_energy = integrate_u(control_signals)1131

251132

26 # summarize nodal energy1133

27 energy_perturbed[node] = np.sum(node_energy)1134

281135

29 # check if perturbed energy is lower than original energy. Should print True1136

30 print(np.all(energy_perturbed < energy))1137

311138

32 # calculate energy delta. these values will all be negative,1139

33 # indicating reduced energy compared to control_set=np.eye(n_nodes)1140

34 energy_delta = energy_perturbed - energy1141

1 True1142

Once estimated, these ∆s can be used as weights on B to obtain an optimized version of control energy. Note that1143

here we draw a distinction between optimal and optimized. The former refers to constraining the magnitudes of xxx(t)1144

and uuu(t) in the optimization problem, whereas the latter refers to finding the weights that create the most efficient1145

transition, irrespective of this constraint:1146

1 # re-compute energy using energy deltas as weights1147

2 # we do this by taking a single step down the1148

3 # gradient created by the energy deltas1149

4 learning_rate = 0.01 # set a learning rate for gradient descent1150

5 control_set = np.zeros((n_nodes, n_nodes)) # initialize container for optimized weights1151

6 control_set[np.diag_indices(n_nodes)] = (1 - energy_delta * learning_rate) # step down gradient1152

7 control_set = (1153

8 control_set / sp.linalg.norm(control_set) * sp.linalg.norm(control_set)1154

9 ) # normalize1155

10 # normalization ensures that the optimized weights have the same1156

11 # norm as control_set=np.eye(n_nodes)1157

121158

13 # get optimized control signals1159

14 _, control_signals, _ = get_control_inputs(1160

15 A_norm=adjacency_norm,1161

16 T=time_horizon,1162

17 B=control_set,1163

18 x0=initial_state,1164
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19 xf=target_state,1165

20 system=system,1166

21 rho=rho,1167

22 S=trajectory_constraints,1168

23 )1169

241170

25 # integrate control signals to get control energy1171

26 node_energy_optimized = integrate_u(control_signals)1172

27 print(np.round(node_energy_optimized[:5], 2))1173

281174

29 # summarize nodal energy1175

30 energy_optimized = np.sum(node_energy_optimized)1176

31 print(np.round(energy_optimized, 2))1177

1 [20.56 34.94 22.77 20.92 26.96]1178

2 2429.681179

The above code uses energy_delta to define a gradient that we step down one time using a learning rate of 0.01.1180

Stepping down this gradient yields a set of optimized weights, Bo, that we then use to re-estimate control energy.1181

As expected, this new estimate of energy (2429.68) is lower than the energy derived from our uniform full control1182

set (2604.71). Thus, we have found a set of control weights that optimize (i.e., reduce) our control energy in a data-1183

driven way. Additionally, setting up this algorithm using gradient descent allows researchers to optimize energy over1184

multiple steps, wherein each new set of optimized weights is calculated from the previous set. In nctpy we include1185

a Python class called ComputeOptimizedControlEnergy that wraps the above optimization steps and allows1186

researchers to define their own learning rate and number of gradient steps:1187

1 control_task = dict() # initialize dict1188

2 control_task["x0"] = initial_state # store initial state1189

3 control_task["xf"] = target_state # store target state1190

4 control_task["S"] = trajectory_constraints # store state trajectory constraints1191

5 control_task["rho"] = rho # store rho1192

6 compute_opt_control_energy = ComputeOptimizedControlEnergy(1193

7 A=adjacency,1194

8 control_task=control_task,1195

9 system,1196

10 c=1,1197

11 time_horizon,1198

12 n_steps=2,1199

13 lr=learning_rate,1200

14 )1201

15 compute_opt_control_energy.run()1202

ComputeOptimizedControlEnergy is similar to ComputeControlEnergy but has some notable differences.1203

Like ComputeControlEnergy, ComputeOptimizedControlEnergy will perform matrix normalization inter-1204

nally, thus we input A rather than Anorm. Additionally, ComputeOptimizedControlEnergy requires that users1205

specify the time system (system='continuous'), normalization constant (c=1), and time horizon (T=1) as input1206

arguments. The differences are as follows. First, ComputeOptimizedControlEnergy only accepts a single con-1207

trol task dictionary, rather than a list of tasks. Second, ComputeOptimizedControlEnergy requires that users1208

also specify the number of gradient steps (n_steps=2) and the learning rate (lr=0.01) as inputs. Once instantiated,1209

ComputeOptimizedControlEnergy.run() will run the above optimization steps. Once completed, optimized1210

energy at each gradient step will be stored in ComputeControlEnergy.E_opt as a vector of length Ns, where Ns is1211

the number of steps. The corresponding optimized control weights will be stored in ComputeControlEnergy.B_opt1212

as an Ns ×m matrix.1213

Directed structural connectome1214

In Section IX A, we performed NCT analysis using an undirected structural connectome derived from the human brain.1215

However, our protocol is designed to work with directed connectomes as well. Thus, as a final variation on Pathway A, we1216

present results from a directed connectome obtained in the mouse brain. As discussed in Section VIII, our model assumes1217

that Ai j encodes the edge connecting node j to node i. Provided that this assumption is met, Pathway A can be run without1218

modification.1219
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Using the Allen Mouse Brain Connectivity Atlas [24, 25, 148], we extracted the ipsilateral directed connectivity from1220

43 regions in the mouse isocortex. These 43 regions were grouped into 6 systems: auditory, lateral, medial, prefrontal,1221

somatomotor, and visual. Following [148], we combined the prefrontal and medial systems, as well as 3 regions from the1222

somatomotor system, to create the mouse default mode system. Then, using ComputeControlEnergy, we estimated1223

the energy required to transition from the default mode to the lateral, visual, and auditory systems and back again. Similar1224

to the undirected human connectome (see Figure 5), this process yielded energy asymmetries (Figure 7A). We repeated1225

this process using a symmetric version of the mouse connectome (As =
A+A⊤

2 ; Figure 7B) and examined how energy1226

asymmetries differed between the directed and undirected cases (Figure 7C); see here for Python code. For both the1227

directed (Figure 7A) and undirected connectomes (Figure 7B), we found that control energy was lower when transitioning1228

to the default mode compared to from the default mode. Critically, these observed energy asymmetries were larger for1229

the directed connectome compared to the undirected connectome (Figure 7C); the lateral energy asymmetry was larger by1230

131 units (20% larger), the visual asymmetry was larger by 16 units (9% larger), and the auditory asymmetry was larger1231

by 92 units (35% larger). Thus, the presence of directed edges increased the energy asymmetries observed in our model.1232

FIG. 7
Energy asymmetries are larger for the directed than the undirected mouse connectome. Our protocol can be applied to connectomes
with directed edges as well as undirected edges. In the directed case, our protocol assumes that Ai j encodes the edge connecting node j to
node i. Here, we estimated control energy using the Allen Mouse Brain Connectivity Atlas. A, Control energy associated with transitioning
from the default mode (DMN) to the lateral, visual, and auditory systems (green) and back again (orange) in the directed mouse connectome.
Control energy associated with transitioning to the default mode was lower than the reverse direction, indicating a clear asymmetry (blue). B,
Control energy estimated in the undirected mouse connectome. We recomputed energy using a symmetrized version of the mouse connectome
(As = A+A⊤) and observed the same set of energy asymmetries. C, Differences in energy asymmetries between the directed and undirected
mouse connectome. We observed that the size of the energy asymmetries were larger for the directed than the undirected mouse connectome.

B. Protocol Pathway B: Average Controllability1233

Pathway A is the primary component of our protocol. Implementing these steps assumes that researchers are interested1234

in studying a specific set of state transitions defined in accordance with their research questions and hypotheses. In the1235

absence of such hypotheses, researchers may instead wish to examine nodes’ general capacity to control a broad range of1236

unspecified state transitions. To support these types of hypotheses, we present a complementary pathway to our protocol1237

that yields estimates of average controllability, where higher values indicate that a region is better positioned in the1238

network to control dynamics (see section II):1239

1. Compute average controllability (Timing: discrete time, < 1 second for 200 nodes; continuous time, 10− 201240

seconds for 200 nodes).1241

https://github.com/BassettLab/nctpy/blob/ea45c86acf471406fec4fb94b64a75098bba6891/scripts/path_a_control_energy_directed.ipynb
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1 # compute average controllability1242

2 average_controllability = ave_control(adjacency_norm, system)1243

average_controllability will be a vector containing the average controllability of each node of the system.1244

2. Visualize average controllability. As average controllability is a regional metric, we can simply plot its distribution1245

of values on the surface of the cortex (Figure 8).1246

FIG. 8
Average controllability. Each system node receives an impulse of equal magnitude. Nodes with higher average controllability are able to
broadcast that impulse throughout the system to a greater extent compared to nodes with lower average controllability. Thus, nodes with high
average controllability are better positioned within the network to control dynamics. Distribution of average controllability values are
displayed using a box plot (left) as well as projected onto the cortical surface (right). In the box plot, the orange line represents the median,
the box spans the middle 50% of the data, the whiskers span 1.5 times the interquartile range on either side, and the crosses represent outliers
beyond this limit.

X. ANTICIPATED RESULTS1247

The final outputs of our protocol will depend on whether researchers choose to follow Pathway A (see Section IX A)1248

or Pathway B (see Section IX B). For the former, the output will be one estimate of control energy per control task, or1249

one estimate per brain region per task if energy was not summarized across regions. This value will be positive and can1250

be thought of as the amount of effort the model has to exert in order to complete a specific control task; higher energy1251

corresponds to greater effort. For the latter, output will be one estimate of average controllability per brain region; a1252

regional map of control over system dynamics. These regional values will also be positive. Greater average controllability1253

indicates that regions are better positioned within the network’s topology to broadcast an impulse, and as such may better1254

orchestrate control of brain dynamics.1255

What can researchers do with these outputs? The answers to this question are diverse and depend heavily on the re-1256

searcher’s goals. As we discussed in Section III, we have used NCT to investigate a range of research questions that1257

spanned from examining the influence of topology [10, 49, 50], to predicting state transitions observed in functional data1258

[14, 73], to studying individual differences, including psychosis symptoms [69], executive function [71], and sex effects1259

[19]. Providing detailed guidance on each of these applications is beyond the scope of this protocol. However, to con-1260

clude this protocol, we outline the use of null network models as an initial analysis that we believe is an essential step1261

irrespective of researchers’ study goals.1262

1. Null network models1263

Null models allow researchers to examine the extent to which different aspects of topology explain NCT model outputs.1264

As discussed in Ref. [149], these null models take different forms, including edge rewiring, generative models of surrogate1265

networks, and spatially-preserved node permutation. Of these different forms, the appropriate choice will depend on the1266

research question. Here, in order to understand the extent to which topology informs control energy, we focus on null1267

models that rewire an empirical adjacency matrix (see Ref. [69] for an example of spatially-preserved node permutation1268
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used to compare maps of average controllability with other properties of network topology). In this case, a null network1269

model involves randomly swapping the edges of the adjacency matrix n times subject to certain constraints—for exam-1270

ple, while preserving the spatial embedding of the nodes as well as the degree or strength distribution [149, 150]—and1271

recalculating energy upon each rewired matrix. This process generates an empirical null distribution that observed control1272

energy can be compared against. For instance, control energy that is lower than expected under the null suggests that NCT1273

was able to leverage properties of network topology, beyond those preserved by the null model, to complete a given state1274

transition. In turn, by deploying a range of null models that each preserve different topological properties, researchers can1275

systematically probe the aspects of topology that explain their observed outputs.1276

Using the undirected human connectome, we provide an example of the above approach using two of our binary state1277

transitions: the default mode to visual transition and the default mode to ventral attention (VAN) transition. We chose1278

these transitions as they represent two control tasks with strong but opposing energy asymmetries (see Figure 5). For1279

each transition, we recompute the control energy for each direction under two null models. The first preserves the spatial1280

embedding of the nodes as well as the strength distribution (strength-preserving). The second preserves spatial embedding1281

and the strength sequence of the nodes (sequence-preserving). That is, the sequence-preserving null preserves the strength1282

of each node as it was in the original connectome. By contrast, the strength-preserving null only preserves the distribution1283

of strength across the network; the strength of each node is allowed to change. The sequence-preserving null is a more1284

stringent test than the strength-preserving null as it preserves how strength is embedded in the connectome [150]. We1285

begin by loading the coordinates of our nodes in 3 dimensions:1286

1 # null networks1287

2 centroids = pd.read_csv(1288

3 os.path.join(datadir, "pnc_schaefer200_centroids.csv")1289

4 ) # load coordinates of nodes1290

5 centroids.set_index("node_names", inplace=True)1291

6 print(centroids.head())1292

1 vox_x vox_y vox_z1293

2 node_names1294

3 LH_Vis_1 121 149 691295

4 LH_Vis_2 123 174 651296

5 LH_Vis_3 143 166 701297

6 LH_Vis_4 107 164 741298

7 LH_Vis_5 124 192 661299

Then, we use those coordinates to define a distance matrix that encodes the physical distance between node pairs:1300

1 distance_matrix = distance.pdist(centroids, 'euclidean') # get euclidean distances between nodes1301

2 distance_matrix = distance.squareform(distance_matrix) # reshape to square matrix1302

Finally, we define our control task and compute our nulls using the included function, geomsurr [150]:1303

1 # extract initial state1304

2 initial_state = states == state_labels.index("Vis") # 'Vis' or 'SalVentAttn'1305

3 initial_state = normalize_state(initial_state) # normalize1306

41307

5 # extract target state1308

6 target_state = states == state_labels.index("Default")1309

7 target_state = normalize_state(target_state) # normalize1310

81311

9 # compute true control energy1312

10 _, control_signals, _ = get_control_inputs(1313

11 A_norm=adjacency_norm,1314

12 T=time_horizon,1315

13 B=control_set,1316

14 x0=initial_state,1317

15 xf=target_state,1318

16 system=system,1319

17 rho=rho,1320

18 S=trajectory_constraints,1321

19 )1322

20 node_energy = integrate_u(control_signals) # integrate control signals1323

21 energy = np.sum(node_energy) # get energy1324

221325

23 # run permutation1326

24 n_perms = 5000 # number of permutations1327

251328

26 # containers for null distributions1329
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27 energy_null_sp = np.zeros(n_perms)1330

28 energy_null_ssp = np.zeros(n_perms)1331

291332

30 for perm in tqdm(np.arange(n_perms)):1333

31 # rewire adjacency matrix using geomsurr1334

32 _, Wsp, Wssp = geomsurr(W=adjacency, D=distance_matrix, seed=perm)1335

33 # Wsp is the adjacency matrix rewired while preserving spatial embedding and the strength1336

distribution1337

34 # Wssp is the adjacency matrix rewired while preserving spatial embedding and the strength1338

sequence1339

35 # this python implementation is included with our toolbox, but if you use these nulls1340

36 # in your own work, please cite:1341

37 # Roberts et al. NeuroImage (2016), doi:10.1016/j.neuroimage.2015.09.0091342

381343

39 # compute control energy for Wsp1344

40 Wsp = matrix_normalization(Wsp, system)1345

41 _, control_signals, _ = get_control_inputs(1346

42 A_norm=Wsp,1347

43 T=time_horizon,1348

44 B=control_set,1349

45 x0=initial_state,1350

46 xf=target_state,1351

47 system=system,1352

48 rho=rho,1353

49 S=trajectory_constraints,1354

50 )1355

51 node_energy = integrate_u(control_signals)1356

52 energy_null_sp[perm] = np.sum(node_energy)1357

531358

54 # compute control energy for Wssp1359

55 Wssp = matrix_normalization(Wssp, system)1360

56 _, control_signals, _ = get_control_inputs(1361

57 A_norm=Wssp,1362

58 T=time_horizon,1363

59 B=control_set,1364

60 x0=initial_state,1365

61 xf=target_state,1366

62 system=system,1367

63 rho=rho,1368

64 S=trajectory_constraints,1369

65 )1370

66 node_energy = integrate_u(control_signals)1371

67 energy_null_ssp[perm] = np.sum(node_energy)1372

681373

69 # plot1374

70 f, ax = plt.subplots(1, 2, figsize=(7, 3))1375

71 null_plot(1376

72 observed=energy,1377

73 null=energy_null_sp,1378

74 xlabel="strength-preserving",1379

75 ax=ax[0],1380

76 )1381

77 null_plot(1382

78 observed=energy,1383

79 null=energy_null_ssp,1384

80 xlabel="sequence-preserving",1385

81 ax=ax[1],1386

82 )1387

83 f.tight_layout()1388

84 plt.show()1389

Figure 9 displays the energy associated with transitioning from the visual cortex to the DMN (Figure 9A) and back again1390

(Figure 9B), as well from the VAN to the DMN (Figure 9C) and back again (Figure 9D). In each panel of Figure 9, the1391

strength-preserving null is shown on the left and the sequence-preserving null is shown on the right. These results provide1392

several insights. First, as mentioned above, both transitions show energy asymmetries but in opposite directions. The1393

energy associated with transitioning from visual cortex to the DMN is larger (energy = 2605) compared to the reverse1394

direction (energy = 1947). By contrast, the energy associated with transitioning from the VAN to the DMN is lower1395

(energy = 2218) compared to the reverse direction (energy = 2601). Note that the former result represents an exception to1396

the general finding that energy is lower when transitioning to the DMN than from it (see Figure 5). This pattern of findings1397



33

FIG. 9
Null network models uncover the topological properties that are important for control energy. For a given state transition, we
recompute control energy 5,000 times. Each time we randomly rewire the edges of the adjacency matrix subject to certain constraints. This
process generates an empirical null distribution for control energy. Here, we generate two null distributions per state transition; one that
preserves the spatial embedding of system nodes as well as the strength distribution (strength-preserving), and another that preserves spatial
embedding and the strength sequence of the nodes (sequence-preserving). We computed these nulls for the visual-to-DMN transition (A), the
DMN-to-visual transition (B), the VAN-to-DMN transition (C), and the DMN-to-VAN transition (D). Collectively, these results demonstrate
that control energy for some transitions is likely driven by strength (e.g., visual-to-DMN and DMN-to-VAN) while others may be driven by
higher-order topology (e.g., DMN-to-visual and VAN-to-DMN). See main text for extended discussion.

is consistent with what we observe in the mouse connectome (Figure 7).1398

Second, when we preserve the strength distribution in our null model, we observe larger-than-expected energy when1399

transitioning from the visual cortex to the DMN (Figure 9A, left). This result appears counter intuitive until we consider1400

the differences in strength between these brain states. In the structural connectome used here, the mean strength of the1401

nodes within the visual state is 67,773, while the mean strength of the nodes in the DMN is 59,455, and the mean strength1402

of the remaining nodes is 53,761. Thus, the connectivity strength between the visual state and the rest of the brain is1403

higher than the connectivity strength between the DMN and the rest of the brain. When we preserve only the strength1404

distribution in the null, this difference in strength is not maintained, which results in relatively high-strength nodes being1405

redistributed throughout the brain. In turn, this redistribution results in reduced control energy in the null distribution for1406

the visual-to-DMN transition. This finding suggests that the high strength nodes of the visual system broadcast activity1407

in a way that necessitates high amounts of control energy to guide those dynamics toward the DMN. By contrast, when1408

we preserve the strength sequence (Figure 9A, right) we also preserve the between-state difference in strength, which1409

yields a null that is much closer to the observed energy. Together, the results in Figure 9A demonstrate that differences in1410

connectivity strength between brain states drives the energy observed for the visual-to-DMN transition.1411

Third, the above line of reasoning does not hold when we consider the transition from DMN back to visual cortex (Figure1412

9B). Here, we observe lower-than-expected energy under both the strength-preserving and the sequence-preserving nulls.1413

This result demonstrates that the aforementioned difference in strength between the visual state and the DMN is not what1414

drives observed energy. In turn, this result suggests that higher-order topological properties of the connectome may support1415

the efficient completion of the DMN-to-visual transition. Finally, Figure 9C and D show that all of the above results and1416

interpretations vary as a function of states.1417

The above findings—that the spatial embedding of node strength drives energy for one transition direction but not the1418

other—underscores the utility of probing NCT outputs using null network models. That is, through comparing a pair1419

of null network models, we obtained evidence for how certain aspects of network topology (i.e., strength) contribute to1420
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different state transitions.1421

Null network models can also be applied to average controllability:1422

1 # run permutation1423

2 n_perms = 5000 # number of permutations1424

31425

4 # container for null distribution1426

5 ave_ctrb_null = np.zeros((n_perms, n_nodes))1427

61428

7 for perm in tqdm(np.arange(n_perms)):1429

8 # rewire adjacency matrix using geomsurr1430

9 _, _, Wssp = geomsurr(W=adjacency, D=distance_matrix, seed=perm)1431

101432

11 # compute average controllability1433

12 Wssp = matrix_normalization(Wssp, system)1434

13 ave_ctrb_null[perm, :] = ave_control(Wssp, system)1435

The above code will generate an empirical null distribution for average controllability at each system node. In turn, this1436

procedure will yield N null distributions for a given null network model, the visualization of which is impractical. As1437

such, researchers may instead assign p-values to the observed average controllability values using get_null_p:1438

1 # calculate p-values1439

2 p_vals_ssp = np.zeros(n_nodes)1440

31441

4 for node in tqdm(np.arange(n_nodes)):1442

5 # version='standard' will calculate the number of times the null is larger than the observed1443

value1444

6 # version='reverse' will calculate the number of times the null is smaller than the observed1445

value1446

7 p_vals_ssp[node] = get_null_p(1447

8 average_controllability[node], ave_ctrb_null[:, node], version="standard"1448

9 )1449

101450

11 p_vals_ssp = get_fdr_p(p_vals_ssp) # correct p values for multiple comparisons1451

The above code will yield FDR-corrected p-values denoting the proportion of times that a nodes’ average controllability1452

was larger than expected under the null. As touched upon above, this result only tells half the story, and there may be1453

reasons for average controllability to be smaller than expected under the null. As such, we recommend running both1454

version='standard' and version='reverse' to test both tails of the null distribution.1455

XI. TIMING1456

As noted throughout the protocol, the timing of each step is relatively short, often not exceeding 1 second per step. We1457

note two clarifications. First, these time estimates are only for a single execution of each step as shown in the protocol.1458

In reality, these steps will likely need to be executed many times over to achieve researchers’ goals. For example, a given1459

study may need to compute control energy for multiple control tasks across multiple subjects, which will increase run1460

time. This time will increase further if null network models are used, wherein each step may be run thousands of times1461

for a single control task. However, in these instances, protocol steps can be trivially parallelized using High Performance1462

Computing (HPC), which will reduce run time. Second, timing will vary as a function of researchers’ data processing.1463

For example, in this protocol, we performed analysis on a structural connectome comprising 200 nodes. Increasing1464

parcellation resolution will increase run time.1465



35

Acknowledgments:1466

1467

Funding1468

National Institute of Mental Health grant K99MH127296 (LP). The content is solely the responsibility of the authors and1469

does not necessarily represent the official views of the National Institutes of Health.1470

NARSAD Young Investigator Grant 28995 from the Brain & Behavior Research Foundation (LP)1471

National Institute of Mental Health grant R21MH106799 (DSB and TDS)1472

National Institute of Mental Health grant R01MH113550 (DSB and TDS)1473

National Institute of Mental Health grant RF1MH116920 (DSB and TDS)1474

Swartz Foundation (DSB)1475

John D. and Catherine T. MacArthur Foundation (DSB)1476

National Institute of Mental Health grant R01MH120482 (TDS)1477

National Institute of Mental Health grant R01MH107703 (TDS)1478

National Institute of Mental Health grant R01MH112847 (TDS and RTS)1479

National Institute of Mental Health grant R37MH125829 (TDS)1480

National Institute of Mental Health grant R01EB022573 (TDS)1481

National Institute of Mental Health grant R01MH107235 (RCG)1482

National Institute of Mental Health grant R01MH119219 (RCG and REG)1483

Penn-CHOP Lifespan Brain Institute1484

National Science Foundation grant DGE-1321851 (JZK)1485

National Institute of Mental Health grant RC2MH089983 (Philadelphia Neurodevelopmental Cohort)1486

National Institute of Mental Health grant RC2MH089924 (Philadelphia Neurodevelopmental Cohort)1487

1488

Author contributions1489

Conceptualization: L.P., J.Z.K., T.D.S., and D.S.B.1490

Methodology: L.P., J.Z.K., J.S., and D.S.B.1491

Software: L.P., J.Z.K., and J.S.1492

Formal analysis: L.P., and J.Z.K.1493

Visualization: L.P., and J.Z.K.1494

Data curation: J.K.B., M.C., S.C., R.E.G., R.C.G., R.T.S., D.Z., and T.D.S.1495

Writing—original draft: L.P., and J.Z.K.1496

Writing—reviewing and editing: L.P., J.Z.K, J.S., J.K.B., M.C., S.C., R.E.G., R.C.G., F.P., R.T.S., D.Z., T.D.S, and D.S.B.1497

1498

Competing interests1499

R.T.S. receives consulting compensation from Octave Bioscience and compensation for reviewership duties from the1500

American Medical Association. All other authors declare no competing interests.1501

1502

Data availability1503

The PNC data are publicly available in the Database of Genotypes and Phenotypes: accession number: phs00607.v3.p2;1504

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.1505

p21506

1507

Code availability1508

All analysis code is freely available at https://github.com/BassettLab/nctpy/1509

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2
https://github.com/BassettLab/nctpy/


REFERENCES 36

REFERENCES1510

1. Bassett, D. S. & Sporns, O. Network neuroscience. en. Nature Neuroscience 20, 353–364. ISSN: 1097-6256, 1546-1726. http:1511

//www.nature.com/articles/nn.4502 (2022-04-12) (Mar. 2017).1512

2. Bassett, D. S., Zurn, P. & Gold, J. I. On the nature and use of models in network neuroscience. en. Nature Reviews Neuroscience1513

19, 566–578. ISSN: 1471-003X, 1471-0048. http://www.nature.com/articles/s41583-018-0038-8 (Sept.1514

2018).1515

3. Betzel, R. F. & Bassett, D. S. Multi-scale brain networks. en. NeuroImage 160, 73–83. ISSN: 10538119. https : / /1516

linkinghub.elsevier.com/retrieve/pii/S1053811916306152 (Oct. 2017).1517

4. Fornito, A., Zalesky, A. & Bullmore, E. T. Fundamentals of Brain Network Analysis ISBN: 9780124079083 (Academic Press1518

Elsevier, 2016).1519

5. Menara, T., Katewa, V., Bassett, D. S. & Pasqualetti, F. The Structured Controllability Radius of Symmetric (Brain) Networks in1520

2018 Annual American Control Conference (ACC) 2018 Annual American Control Conference (ACC) (IEEE, Milwaukee, WI,1521

2018), 2802–2807. ISBN: 978-1-5386-5428-6. https://ieeexplore.ieee.org/document/8431724/.1522

6. Pasqualetti, F., Zampieri, S. & Bullo, F. Controllability Metrics, Limitations and Algorithms for Complex Networks. IEEE Trans-1523

actions on Control of Network Systems 1, 40–52. ISSN: 2325-5870. http://ieeexplore.ieee.org/document/1524

6762966/ (2014).1525

7. Kim, J. Z. & Bassett, D. S. in Neural Engineering (ed He, B.) 497–518 (Springer International Publishing, Cham, 2020). ISBN:1526

978-3-030-43395-6. https://doi.org/10.1007/978-3-030-43395-6_17.1527

8. Karrer, T. M. et al. A practical guide to methodological considerations in the controllability of structural brain networks. Journal1528

of Neural Engineering 17, 026031. ISSN: 1741-2552. https://iopscience.iop.org/article/10.1088/1741-1529

2552/ab6e8b (2020).1530

9. Seguin, C., Sporns, O. & Zalesky, A. Brain network communication: concepts, models and applications. en. Nature Reviews1531

Neuroscience. ISSN: 1471-003X, 1471-0048. https://www.nature.com/articles/s41583-023-00718-5 (July1532

2023).1533

10. Gu, S. et al. Controllability of structural brain networks. Nature Communications 6, 8414 (2015).1534

11. Gu, S. et al. Optimal trajectories of brain state transitions. NeuroImage 148, 305–317. ISSN: 10538119. https://linkinghub.1535

elsevier.com/retrieve/pii/S1053811917300058 (2017).1536

12. Tang, E. et al. Developmental increases in white matter network controllability support a growing diversity of brain dynamics.1537

Nature Communications 8, 1252. ISSN: 2041-1723. http://www.nature.com/articles/s41467-017-01254-41538

(2017).1539

13. Tang, E. et al. Control of brain network dynamics across diverse scales of space and time. en. Physical Review E 101, 062301.1540

ISSN: 2470-0045, 2470-0053. https://link.aps.org/doi/10.1103/PhysRevE.101.062301 (June 2020).1541

14. Stiso, J. et al. White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions.1542

Cell Reports 28, 2554–2566.e7. ISSN: 22111247. https : / / linkinghub . elsevier . com / retrieve / pii /1543

S2211124719310411 (2019).1544

15. Scheid, B. H. et al. Time-evolving controllability of effective connectivity networks during seizure progression. Proceedings of1545

the National Academy of Sciences 118, e2006436118. ISSN: 0027-8424, 1091-6490. https://pnas.org/doi/full/10.1546

1073/pnas.2006436118 (2021).1547

16. Medaglia, J. D. et al. Network Controllability in the Inferior Frontal Gyrus Relates to Controlled Language Variability and1548

Susceptibility to TMS. en. The Journal of Neuroscience 38, 6399–6410. ISSN: 0270-6474, 1529-2401. https://www.1549

jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0092-17.2018 (July 2018).1550

17. Medaglia, J. D. et al. Language Tasks and the Network Control Role of the Left Inferior Frontal Gyrus. en. eneuro 8,1551

ENEURO.0382–20.2021. ISSN: 2373-2822. https://www.eneuro.org/lookup/doi/10.1523/ENEURO.0382-1552

20.2021 (Sept. 2021).1553

18. Muldoon, S. F. et al. Stimulation-Based Control of Dynamic Brain Networks. en. PLOS Computational Biology 12 (ed Hilgetag,1554

C. C.) e1005076. ISSN: 1553-7358. https://dx.plos.org/10.1371/journal.pcbi.1005076 (Sept. 2016).1555

19. Cornblath, E. J. et al. Sex differences in network controllability as a predictor of executive function in youth. NeuroImage 188,1556

122–134. ISSN: 10538119. https://linkinghub.elsevier.com/retrieve/pii/S1053811918321293 (2019).1557

20. Cornblath, E. J. et al. Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by1558

cognitive demands. Communications Biology 3, 261. ISSN: 2399-3642. http://www.nature.com/articles/s42003-1559

020-0961-x (2020).1560

21. Satterthwaite, T. D. et al. Neuroimaging of the Philadelphia Neurodevelopmental Cohort. en. NeuroImage 86, 544–553. ISSN:1561

10538119. https://linkinghub.elsevier.com/retrieve/pii/S1053811913008331 (Feb. 2014).1562

http://www.nature.com/articles/nn.4502
http://www.nature.com/articles/nn.4502
http://www.nature.com/articles/nn.4502
http://www.nature.com/articles/s41583-018-0038-8
https://linkinghub.elsevier.com/retrieve/pii/S1053811916306152
https://linkinghub.elsevier.com/retrieve/pii/S1053811916306152
https://linkinghub.elsevier.com/retrieve/pii/S1053811916306152
https://ieeexplore.ieee.org/document/8431724/
http://ieeexplore.ieee.org/document/6762966/
http://ieeexplore.ieee.org/document/6762966/
http://ieeexplore.ieee.org/document/6762966/
https://doi.org/10.1007/978-3-030-43395-6_17
https://iopscience.iop.org/article/10.1088/1741-2552/ab6e8b
https://iopscience.iop.org/article/10.1088/1741-2552/ab6e8b
https://iopscience.iop.org/article/10.1088/1741-2552/ab6e8b
https://www.nature.com/articles/s41583-023-00718-5
https://linkinghub.elsevier.com/retrieve/pii/S1053811917300058
https://linkinghub.elsevier.com/retrieve/pii/S1053811917300058
https://linkinghub.elsevier.com/retrieve/pii/S1053811917300058
http://www.nature.com/articles/s41467-017-01254-4
https://link.aps.org/doi/10.1103/PhysRevE.101.062301
https://linkinghub.elsevier.com/retrieve/pii/S2211124719310411
https://linkinghub.elsevier.com/retrieve/pii/S2211124719310411
https://linkinghub.elsevier.com/retrieve/pii/S2211124719310411
https://pnas.org/doi/full/10.1073/pnas.2006436118
https://pnas.org/doi/full/10.1073/pnas.2006436118
https://pnas.org/doi/full/10.1073/pnas.2006436118
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0092-17.2018
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0092-17.2018
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0092-17.2018
https://www.eneuro.org/lookup/doi/10.1523/ENEURO.0382-20.2021
https://www.eneuro.org/lookup/doi/10.1523/ENEURO.0382-20.2021
https://www.eneuro.org/lookup/doi/10.1523/ENEURO.0382-20.2021
https://dx.plos.org/10.1371/journal.pcbi.1005076
https://linkinghub.elsevier.com/retrieve/pii/S1053811918321293
http://www.nature.com/articles/s42003-020-0961-x
http://www.nature.com/articles/s42003-020-0961-x
http://www.nature.com/articles/s42003-020-0961-x
https://linkinghub.elsevier.com/retrieve/pii/S1053811913008331


REFERENCES 37

22. Satterthwaite, T. D. et al. The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal1563

and abnormal brain development in youth. en. NeuroImage 124, 1115–1119. ISSN: 10538119. https://linkinghub.1564

elsevier.com/retrieve/pii/S1053811915002529 (Jan. 2016).1565

23. Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).1566

24. Hierarchical organization of cortical and thalamic connectivity. en. Nature 575, 195–202. ISSN: 0028-0836, 1476-4687. https:1567

//www.nature.com/articles/s41586-019-1716-z (Nov. 2019).1568

25. Knox, J. E. et al. High-resolution data-driven model of the mouse connectome. en. Network Neuroscience 3, 217–236. ISSN:1569

2472-1751. https://direct.mit.edu/netn/article/3/1/217-236/2194 (Jan. 2019).1570

26. Chiêm, B., Crevecoeur, F. & Delvenne, J.-C. Structure-informed functional connectivity driven by identifiable and state-specific1571

control regions. en. Network Neuroscience 5, 591–613. ISSN: 2472-1751. https://direct.mit.edu/netn/article/1572

5/2/591/98351/Structure-informed-functional-connectivity-driven (June 2021).1573

27. Jeganathan, J. et al. Fronto-limbic dysconnectivity leads to impaired brain network controllability in young people with bipolar1574

disorder and those at high genetic risk. en. NeuroImage: Clinical 19, 71–81. ISSN: 22131582. https://linkinghub.1575

elsevier.com/retrieve/pii/S2213158218301025 (2018).1576

28. Kenett, Y. N. et al. Driving the brain towards creativity and intelligence: A network control theory analysis. en. Neuropsychologia1577

118, 79–90. ISSN: 00283932. https://linkinghub.elsevier.com/retrieve/pii/S00283932183000101578

(Sept. 2018).1579

29. Yuan, J., Ji, S., Luo, L., Lv, J. & Liu, T. Control energy assessment of spatial interactions among ¡span style=”font-variant:small-1580

caps;”¿macro-scale¡/span¿ brain networks. en. Human Brain Mapping 43, 2181–2203. ISSN: 1065-9471, 1097-0193. https:1581

//onlinelibrary.wiley.com/doi/10.1002/hbm.25780 (May 2022).1582

30. Singleton, S. P. et al. Receptor-informed network control theory links LSD and psilocybin to a flattening of the brain’s control1583

energy landscape. en. Nature Communications 13, 5812. ISSN: 2041-1723. https://www.nature.com/articles/1584

s41467-022-33578-1 (Oct. 2022).1585

31. Singleton, S. P. et al. Time-resolved network control analysis links reduced control energy under DMT with the serotonin 2a re-1586

ceptor, signal diversity, and subjective experience en. preprint (Neuroscience, May 2023). http://biorxiv.org/lookup/1587

doi/10.1101/2023.05.11.540409.1588

32. Luppi, A. I. et al. Transitions between cognitive topographies: contributions of network structure, neuromodulation, and disease1589

en. preprint (Neuroscience, Mar. 2023). http://biorxiv.org/lookup/doi/10.1101/2023.03.16.532981.1590

33. Maxwell, J. C. I. On governors. Proceedings of the Royal Society of London, 270–283 (1868).1591

34. Grasser, F., D’arrigo, A., Colombi, S. & Rufer, A. C. JOE: a mobile, inverted pendulum. IEEE Transactions on industrial elec-1592

tronics 49, 107–114 (2002).1593

35. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation1594

in nerve. The Journal of physiology 117, 500 (1952).1595

36. Papadopoulos, L., Kim, J. Z., Kurths, J. & Bassett, D. S. Development of structural correlations and synchronization from1596

adaptive rewiring in networks of Kuramoto oscillators. Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 0731151597

(2017).1598

37. Wilson, H. R. & Cowan, J. D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical1599

journal 12, 1–24 (1972).1600

38. Schiff, S. J. et al. Controlling chaos in the brain. Nature 370, 615–620 (1994).1601
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93. Demirtaş, M. et al. Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics. en. Neuron 101,1743

1181–1194.e13. ISSN: 08966273. https://linkinghub.elsevier.com/retrieve/pii/S08966273193004431744

(Mar. 2019).1745

94. Deco, G. et al. Resting-State Functional Connectivity Emerges from Structurally and Dynamically Shaped Slow Linear Fluctua-1746

tions. en. Journal of Neuroscience 33, 11239–11252. ISSN: 0270-6474, 1529-2401. http://www.jneurosci.org/cgi/1747

doi/10.1523/JNEUROSCI.1091-13.2013 (July 2013).1748

95. Deco, G. et al. Dynamical consequences of regional heterogeneity in the brain’s transcriptional landscape. en. Science Advances1749

7, eabf4752. ISSN: 2375-2548. https://www.science.org/doi/10.1126/sciadv.abf4752 (July 2021).1750

96. Monasson, R. & Rosay, S. Transitions between spatial attractors in place-cell models. Physical review letters 115, 098101 (2015).1751

97. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal1752

cortex. nature 503, 78–84 (2013).1753

98. Fornito, A., Zalesky, A. & Breakspear, M. Graph analysis of the human connectome: Promise, progress, and pitfalls. en. NeuroIm-1754

age 80, 426–444. ISSN: 10538119. https://linkinghub.elsevier.com/retrieve/pii/S10538119130043451755

(Oct. 2013).1756

99. Bertolero, M. A. & Bassett, D. S. On the Nature of Explanations Offered by Network Science: A Perspective From and1757

for Practicing Neuroscientists. en. Topics in Cognitive Science 12, 1272–1293. ISSN: 1756-8757, 1756-8765. https : / /1758

onlinelibrary.wiley.com/doi/10.1111/tops.12504 (Oct. 2020).1759

100. Vázquez-Rodrı́guez, B., Liu, Z.-Q., Hagmann, P. & Misic, B. Signal propagation via cortical hierarchies. en. Network Neuro-1760

science 4, 1072–1090. ISSN: 2472-1751. https://direct.mit.edu/netn/article/4/4/1072-1090/958421761

(Jan. 2020).1762

101. Bazinet, V., Vos de Wael, R., Hagmann, P., Bernhardt, B. C. & Misic, B. Multiscale communication in cortico-cortical net-1763

works. en. NeuroImage 243, 118546. ISSN: 10538119. https://linkinghub.elsevier.com/retrieve/pii/1764

S1053811921008193 (Nov. 2021).1765

102. Fornito, A., Zalesky, A., Pantelis, C. & Bullmore, E. T. Schizophrenia, neuroimaging and connectomics. en. NeuroImage 62,1766

2296–2314. ISSN: 10538119. https://linkinghub.elsevier.com/retrieve/pii/S10538119120021331767

(Oct. 2012).1768

103. Bassett, D. S. et al. Hierarchical Organization of Human Cortical Networks in Health and Schizophrenia. en. Journal of Neu-1769

roscience 28, 9239–9248. ISSN: 0270-6474, 1529-2401. https://www.jneurosci.org/lookup/doi/10.1523/1770

JNEUROSCI.1929-08.2008 (Sept. 2008).1771

104. Bassett, D. S., Nelson, B. G., Mueller, B. A., Camchong, J. & Lim, K. O. Altered resting state complexity in schizophre-1772

nia. en. NeuroImage 59, 2196–2207. ISSN: 10538119. https://linkinghub.elsevier.com/retrieve/pii/1773

S1053811911011633 (Feb. 2012).1774

105. Seguin, C., Razi, A. & Zalesky, A. Inferring neural signalling directionality from undirected structural connectomes. en. Nature1775

Communications 10, 4289. ISSN: 2041-1723. http://www.nature.com/articles/s41467-019-12201-w (Dec.1776

2019).1777

106. Seguin, C., Mansour L, S., Sporns, O., Zalesky, A. & Calamante, F. Network communication models narrow the gap between1778

the modular organization of structural and functional brain networks. en. NeuroImage 257, 119323. ISSN: 10538119. https:1779

//linkinghub.elsevier.com/retrieve/pii/S1053811922004426 (2023) (Aug. 2022).1780
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XII. EXTENDED DATA1880

FIG. S1
Control energy as a function of connectome edge density. In the undirected human connectome, we iteratively set 500 of the weakest edges
(A) or 500 random edges (B) to 0, stopping once edge density fell below 10%. Control energy was recomputed at each iteration and is shown
here. This plot illustrates the fact that energy varies as a function of edge density and is primarily driven by the strongest edges in the network.
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FIG. S2
Control signals and state trajectory. Only bystanders are set as control nodes. T=1. Initial state = visual system. Target state = default
mode system. Inversion error = 2.09×10−10. Reconstruction error = 1.75×10−8. Energy = 6.64×109.
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FIG. S3
Control signals and state trajectory. Only nodes in the initial state are set as control nodes. T=1. Initial state = visual system. Target state =
default mode system. Inversion error = 1.37×103. Reconstruction error = 2.04×105. Energy = 3.68×1024. Note that this state transition
does not complete successfully.
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FIG. S4
Control signals and state trajectory. Only nodes in the target state are set as control nodes. T=1. Initial state = visual system. Target state =
default mode system. Inversion error = 1.50. Reconstruction error = 1.12×102. Energy = 3.38×1019. Note that this state transition does not
complete successfully.
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FIG. S5
Control signals and state trajectory. Nodes in the target state are set as control nodes with control weights of 1, whereas the remaining
nodes are given a small amount of control (1×10−5). T=1. Initial state = visual system. Target state = default mode system. Inversion error =
2.00×10−8. Reconstruction error = 1.16×10−6. Energy = 2.31×1011. Unlike the scenario depicted in Figure S4, this state transition
completes successfully.
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FIG. S6
Control signals and state trajectory. Uniform full control set. T=2. Initial state = visual system. Target state = default mode system.
Inversion error = 3.24×10−15. Reconstruction error = 1.55×10−13. Energy = 1904.
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FIG. S7
Control signals and state trajectory. Uniform full control set. T=5. Initial state = visual system. Target state = default mode system.
Inversion error = 1.33×10−13. Reconstruction error = 1.03×10−11. Energy = 1797.
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FIG. S8
Control signals and state trajectory. Uniform full control set. T=10. Initial state = visual system. Target state = default mode system.
Inversion error = 1.48×10−10. Reconstruction error = 1.71×10−8. Energy = 1801.
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FIG. S9
Control signals and state trajectory. Uniform full control set. T=1. Initial state = default mode system. Target state = default mode system.
Inversion error = 2.20×10−16. Reconstruction error = 3.95×10−14. Energy = 571.
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FIG. S10
Control signals and state trajectory. Annotation map control set. T=1. Initial state = visual system. Target state = default mode system.
Inversion error = 1.87×10−15. Reconstruction error = 6.07×10−14. Energy = 1455.
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