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Abstract 

Individual differences in cognition during childhood are associated with important social, physical, 

and mental health outcomes in adolescence and adulthood. Given that cortical surface arealization 

during development reflects the brain’s functional prioritization, quantifying variation in the 

topography of functional brain networks across the developing cortex may provide insight 

regarding individual differences in cognition. We test this idea by defining personalized functional 

networks (PFNs) that account for interindividual heterogeneity in functional brain network 

topography in 9-10 year olds from the Adolescent Brain Cognitive Development℠ Study. Across 

matched discovery (n=3,525) and replication (n=3,447) samples, the total cortical representation 

of fronto-parietal PFNs positively correlated with general cognition. Cross-validated ridge 

regressions trained on PFN topography predicted cognition across domains, with prediction 

accuracy increasing along the cortex’s sensorimotor-association organizational axis. These results 

establish that functional network topography heterogeneity is associated with individual 

differences in cognition before the critical transition into adolescence. 
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INTRODUCTION 

Individual differences in cognition during childhood  are associated with academic performance1 

and quality of life in youth,2 as well as social, physical and mental health outcomes in adulthood.3–

5 Moreover, cognitive deficits during youth are associated with heightened risk for 

psychopathology,6 risk-taking behaviors,7 cardiovascular disease,8–10 and all-cause mortality.11,12 

Understanding how individual differences in cognitive functioning emerge during childhood is a 

critical prerequisite for efforts that seek to promote healthy neurocognitive development. Prior 

neuroimaging studies have demonstrated that complex cognitive tasks engage spatially-

distributed, large-scale association networks.13–15 However, less is known about the relationship 

between individual differences in cognition and the spatial layout of functional networks on the 

anatomic cortex – an individual’s functional topography. Attempts at investigating this important 

problem have faced two key challenges.  First, methods must account for person-specific variation 

in functional topography across individuals, which is especially pronounced in association cortex.  

Second, recent studies have emphasized that reproducible brain-behavior associations may require 

very large samples.17 We sought to overcome these challenges by capitalizing upon recent 

advances in machine learning to identify individual-specific functional brain networks in large 

discovery and replication samples. We tested the overarching hypothesis that the functional 

topography of networks in association cortex would be associated with individual differences in 

cognitive function in children.   

Studies in humans using fMRI have typically studied functional brain networks using a 

“one-size-fits-all” approach with standardized network atlases.18,19 In this approach, a 1:1 

correspondence between structural and functional neuroanatomy across individuals is assumed as 

fMRI data is co-registered to a structural image, and then normalized to a structural template. This 

critical assumption has been proven to be demonstrably false by studies from multiple independent 

laboratories.20–23 These studies have revealed substantial inter-individual heterogeneity in 

functional topography,20–25  with especially notable heterogeneity in networks in association cortex 

that support higher-order cognition.21 To overcome this challenge, precision functional mapping 

techniques have been developed as an alternative to using group-level atlases. These techniques 

are used to derive individually-defined networks that capture each brain’s unique pattern of 

functional topography. Such personalized functional networks (PFNs) have been found to be 
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highly stable within individuals and to predict an individual’s spatial pattern of activation on fMRI 

tasks.21,22,26  

     Notably, the same networks that both support higher-order cognition and have the greatest 

variability in functional topography tend to lie near the upper end of a predominant axis of 

hierarchical cortical organization known as the sensorimotor-association (S-A) axis, which spans 

from unimodal visual and somotomotor cortex to transmodal association cortex.29 The S-A axis 

summarizes the canonical spatial patterning of numerous cortical properties, including 

myelination, evolutionary expansion, transcriptomics, metabolism, and the principal gradient of 

functional connectivity.30 Prominent individual variation in the functional topography of networks 

at the association pole—including the frontoparietal network, ventral attention network, and 

default mode network—has been posited to  impact individual differences in cognition.23 Indeed, 

our collaborative group16 recently reported that greater total cortical representation of fronto-

parietal PFNs was associated with better cognitive performance, and found that a model trained 

on the complex pattern of association network functional topography could predict cognition in 

unseen data. However, while these results were drawn from a large study, it was collected at a 

single site, and has not yet been replicated.  This limitation points to the ongoing challenge of 

reproducibility in studies that seek to define brain-behavior relationships in humans. The 

reproducibility crisis has been documented extensively,33,34 marked by failed replications of high-

profile  findings,35,36 and prompted a renewed emphasis on methods to increase the generalizability 

of computational models to new datasets.37 In addition to the well-documented problems arising 

from small sample sizes17 and over-fitting,38 it may also be the case that a lack of consideration for 

individual-specific neuroanatomy has also contributed to weak effect sizes and non-reproducible 

findings of prior work.  

 We sought to delineate the relationship between functional topography and individual 

differences in cognition by conducting a replication and extension of Cui et al.16 in two large, 

matched samples of youth from the Adolescent Brain Cognitive Development℠ (ABCD) Study39–

41 (total n=6,972). Using spatially-regularized non-negative matrix factorization,80 we identified 

personalized functional brain networks that captured inter-individual heterogeneity in functional 

topography while maintaining interpretability. We sought to replicate two key results.16 First, we 

sought to replicate the finding that fronto-parietal PFN topography is associated with individual 
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differences in cognition.  Second, we aimed to demonstrate that predictive models trained on PFN 

topography could predict youth cognition in unseen data. Furthermore, we extended prior work 

and investigated whether PFN topography was predictive of the ability to perform specific 

cognitive tasks or more broadly associated with general cognitive abilities, by training models to 

predict three major domains of cognition42 (general cognition, executive function, and 

learning/memory). Finally, we predicted that the strength of associations between functional 

topography and cognition would align with the cortical hierarchy defined by S-A axis, with the 

functional topography of PFNs in association cortex yielding the most accurate predictions of 

individual differences in cognition. As described below, this study constitutes the largest 

replication of precision functional mapping in children to date, confirming reproducible brain-

behavior associations of individual differences in cognition and demonstrating that these 

relationships align with a major cortical hierarchy. 

   

RESULTS 

We aimed to understand how individual differences in functional brain network topography relate 

to individual differences in cognitive functioning in a sample of n=6,972 children aged 9-10 years 

old from the Adolescent Brain Cognitive Development℠ (ABCD) Study. To account for inter-

individual heterogeneity in the spatial layout of functional brain networks, we used precision 

functional mapping to define personalized functional brain networks (PFNs) for each individual. 

Leveraging a previously-defined group atlas16, we used an advanced machine learning method – 

spatially-regularized non-negative matrix factorization – to identify 17 personalized functional 

networks within each individual (Figure 1). This procedure yielded a set of 17 matrices of network 

weights across each vertex (soft parcellation; used for analysis) as well as a matrix of non-

overlapping networks describing the highest network weight at each vertex (hard parcellation; used 

primarily for visualization). To determine where each PFN fell along a predominant axis of cortical 

hierarchical organization, we computed the average sensorimotor-association (S-A) axis rank 

across the vertices within each PFN using the group-averaged hard parcellation. 
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Figure 1. Identification and Analysis of Personalized Functional Brain Networks (PFNs). a Using a 
previously-defined group atlas16 as a prior, we generated personalized functional networks (PFNs) by 
applying NMF to each individual participant’s vertex by time matrix. This procedure allows each network 
in the consensus group atlas to have a varying cortical representation in each individual, thereby capturing 
individual differences in the size and layout of networks while simultaneously allowing for interpretable 
between-individual comparisons. We also calculated the total cortical representation of each PFN by 
summing each network’s loadings across all vertices. b To evaluate whether an individual’s multivariate 
pattern of PFN topography could accurately predict general cognition in unseen data, we trained linear ridge 
regression models using the cortical representation of each PFN while controlling for age, sex, site, and 
head motion. Leveraging our matched discovery and replication samples for out-of-sample testing, we first 
trained models in the discovery sample using nested cross-validation for parameter tuning, and then tested 
these models in the held-out replication sample. We then performed nested training in the replication sample 
and testing in the held-out discovery sample.  c To confirm that our results were not dependent on the 
matched discovery and replication sample split, we conducted repeated random cross-validation over one 
hundred iterations, each time performing a random split of our full sample and applying two-fold cross-
validation. d Next, we calculated the average sensorimotor-association (S-A) axis rank across the vertices 
contained within each PFN.  e We then rank-ordered each PFN according to its average S-A rank. Brain 
maps depict vertex loadings for each PFN. 
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The total cortical representation of fronto-parietal PFNs is associated with cognitive 

performance 

We sought to replicate previously-reported associations between the functional topography of 

PFNs and cognitive performance.16 We previously found that greater cortical representation of two 

of the three fronto-parietal networks (networks 15 and 17) was associated with better cognition 

(see Figure 6 in Cui et al.). Here, general cognition was operationalized as the first principal 

component from a Bayesian probabilistic principal components analysis, capturing the largest 

amount of variance across nine cognitive tasks;42 we hypothesized that general cognition would 

show stronger associations with functional topography than secondary or tertiary cognitive 

domains. Notably, while the first cognitive accuracy factor from our prior report is typically 

referred to as “executive function and complex cognition” (and abbreviated as “executive 

function”), it most aligns with the general cognition factor from ABCD.85 

As previously,16 we first calculated the total cortical representation of each PFN as the sum of 

network loadings across all vertices, using the soft parcellation to account for spatial overlap across 

functional brain networks. We then applied linear mixed-effects models to probe the association 

between total cortical representation of each PFN and general cognition while accounting for age, 

sex, family, and head motion (mean FD) as model covariates (Table 1; Figure 2); multiple 

comparisons were accounted for using the Bonferroni method. Note that ComBat harmonization 

was applied to account for variability across sites.77,78 We found that all three fronto-parietal PFNs 

(networks 3, 15, and 17) were significantly positively associated with general cognition across 

both the discovery and replication samples. Together, these results replicate the findings presented 

in Figure 6 of Cui et al.16  In addition to replicating these prior results regarding fronto-parietal 

network topography in both samples, we additionally found that one somatomotor network 

(network 4) was inversely associated with cognitive performance in both discovery and replication 

samples, and another somatomotor network (network 2) was inversely associated with cognition 

in only the discovery sample. Notably, the total cortical representation of network 2 was similarly 

found to be inversely related to cognition in the original report by Cui et al.16 
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Table 1. Linear mixed effects models depicting associations between General Cognition and fronto-parietal 
PFN topography. Note that data were harmonized across sites using ComBat77,78 and each model also 
included a random effect term for family ID. 

 

 

Figure 2. Total cortical representation of fronto-parietal PFNs are positively associated with 
cognition. Ordering the seventeen PFNs by the strength of their signed association with general cognition, 
we found significant positive associations between general cognition and the total cortical representation 
of all three fronto-parietal PFNs and negative correlations with a somatomotor network in both the 
discovery (a-d) and replication (e-h) samples (PBonf < 0.05; dashed lines indicate networks with non-
significant effects). Scatterplots depict the relationship between general cognition and the total cortical 
representation of fronto-parietal networks 3, 15, and 17. 
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PFN topography predicts individual differences in cognition 

Building on our findings that univariate fronto-parietal PFN topography is positively associated 

with cognition, we next sought to replicate the prior finding that the multivariate pattern of PFN 

topography could predict cognitive performance in unseen data. As previously,16 we trained ridge 

regression models using the cortical representation of each PFN (network loadings at each vertex) 

while controlling for age, sex, site, and head motion. Leveraging our matched discovery and 

replication samples for out-of-sample testing, we first trained models in the discovery sample using 

nested cross-validation for parameter tuning, and then used the held-out replication sample for 

testing. We then performed the opposite procedure, performing nested training in the replication 

sample and testing in the held-out discovery sample. We found that individualized functional 

topography accurately predicted out-of-sample cognitive performance in both samples (Figure 3a, 

discovery: r = 0.41, p<0.001, 95% CI: [0.39, 0.44]; replication: r = 0.45, p<0.001, 95% CI: [0.43, 

0.48]). Confirming that our results were not dependent on the matched discovery and replication 

sample split, we also applied repeated random cross-validation over one hundred repetitions as 

previously,16 which returned similar results (Figure 3b, mean r = 0.44, p<0.001). These results 

show remarkably high consistency with correlations between actual and predicted cognitive 

performance reported in prior work16 (Matched sample 1: r = 0.46, p<0.001; Matched sample 2: r 

= 0.41, p<0.001; Repeated random CV: mean r = 0.42, p<0.001; see Figure 7 in Cui et al.). 

To evaluate the relative contributions of each network to prediction accuracy, we trained linear 

ridge regression models on the functional topography of each PFN independently. We found that 

the fronto-parietal and ventral attention networks tended to have the highest prediction accuracies, 

whereas the somato-motor and visual networks tended to have the lowest (Figure 3c,d). These 

results are again highly consistent with the feature weights from models which used all features 

and align with our prior report16 (see Supplementary Figure 2 for exact replication),  with striking 

consistency in prediction accuracies across datasets and samples. Together, these results suggest 

that individual variation in functional network topography has important implications for cognitive 

performance in childhood. 
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Figure 3. Functional Topography of Association Networks Predicts Individual Differences in General 
Cognition. a Association between actual and predicted cognitive performance using two-fold cross-
validation (2F-CV) with nested cross-validation for parameter tuning across both the discovery (black 
scatterplot) and replication (gray scatterplot) samples. Inset histograms represent the distributions of 
prediction accuracies from a permutation test. b Repeated random 2F-CV (100 runs) provided evidence of 
stable prediction accuracy across splits of the data, which was far better than a null distribution with 
permuted data (inset). c The topographic features in the 17-PFN  model that contributed most to prediction 
accuracy were found in association cortex critical for higher-order cognition, and were maximal in the 
ventral attention and fronto-parietal control networks. Note that all p-values associated with prediction 
accuracies are significant after Bonferonni correction for multiple comparisons. d Functional topography 
within the association cortex drives prediction of general cognition. Prediction accuracy across the full 
sample shown for seventeen cross-validated models trained on each PFN independently. 
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PFN topography predicts executive function and learning/memory with reduced accuracy 

We next evaluated whether multivariate patterns of PFN topography could be used to predict 

cognitive performance in held-out data across other cognitive domains. We again trained linear 

ridge regression models using PFN topography and identical covariates to predict either executive 

function or learning/memory, which are the second and third ranked principal components 

capturing variance across nine cognitive tasks.42 Although, it is worth noting that while these 

prediction accuracies were less strong than for the first principal component of general cognition, 

we found that individualized functional topography predicted performance in our two samples for 

both executive function (Figure 4a, discovery: r = 0.17, p<0.001, 95% CI: [0.14, 0.20]; 

replication: r = 0.16, p<0.001, 95% CI: [0.13, 0.20]) and learning/memory (Figure 4e, discovery: 

r = 0.27, p<0.001, 95% CI: [0.24, 0.30]; replication: r = 0.27, p<0.001, 95% CI: [0.24, 0.30]). 

Repeated random two-fold cross-validation again returned similar results (Figure 4b, mean r = 

0.17, p<0.001; Figure 4f, mean r = 0.28, p<0.001). When ridge regression models were trained 

using the topography of each PFN independently, fronto-parietal and ventral attention PFNs 

yielded the highest prediction accuracies for both executive function (Figure 4c,d) and 

learning/memory (Figure 4d,h).  
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Figure 4. Functional Topography of Association Networks Predicts Individual Differences in 
Multiple Cognitive Domains. Results of ridge regression models predicting individual differences in 
executive function (a-d) and learning/memory (e-h). Panels a/e: Association between actual and predicted 
executive function (a) or learning/memory (e) using 2F-CV across both the discovery (black scatterplot) 
and replication (gray scatterplot) samples. Inset histograms represent the distributions of prediction 
accuracies from a permutation test. Repeated random 2F-CV (100 runs) provided evidence of stable 
prediction accuracy across many splits of the data for both executive function (b) and learning/memory (f), 
which was far better than a null distribution with permuted data (inset). The PFNs with the highest 
prediction accuracies for executive function (c,d) and learning/memory (g,h) were found in association 
cortex critical for higher-order cognition, and were maximal in the ventral attention and fronto-parietal 
control networks. Prediction accuracy shown for seventeen models trained on each PFN independently. 
Note that all p-values associated with prediction accuracies are significant after Bonferonni correction for 
multiple comparisons. 

 

Links between functional topography and cognition align with a network’s position in the 

cortical hierarchy 

Motivated by our observation that fronto-parietal association network topography contributed 

most to the prediction of cognitive performance while somato-motor networks contributed the 

least, we next investigated whether the predictive accuracy of a given network’s ridge regression 

model was associated with that network’s rank along the sensorimotor-association (S-A) axis. To 

account for the spatial auto-correlation of the data, testing used a widely-used spin-based spatial 

permutation procedure.43 We found that prediction accuracy and position along the S-A axis were 

significantly correlated for predictions of general cognition (Spearman r(17)=0.601, pspin=0.012) 

executive function (Spearman r(17)= 0.547, pspin=0.025) and learning/memory (Spearman r(17)= 

0.537, pspin=0.028; Figure 5). These results demonstrate that a network’s position along the S-A 
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axis is associated with the relevance of its functional topography in predicting cognitive 

performance during childhood).   

 

Figure 5. Predictive accuracy of functional topography varies systematically along the S-A axis. The 
sensorimotor-association (S-A) axis represents a hierarchy of cortical organization. The prediction 
accuracies of models trained on each PFN independently are significantly associated with the rank of each 
PFN along the S-A axis across all three cognitive domains: general cognition (left), executive function 
(middle), and learning/memory (right). Note: average S-A axis ranks for each PFN are z-scored for 
visualization purposes. Inset histograms depict the distribution of Spearman correlations between rank and 
prediction accuracy for 1,000 spin-based permutations of the S-A axis, with the vertical line showing the 
true Spearman correlation value. 

 

DISCUSSION 

In the largest study to use precision functional brain mapping in children to date, we found 

reproducible associations between individual differences in functional brain network organization 

and individual differences in cognition. Replicating key findings from a prior study16 in samples 

that were an order of magnitude larger, we confirmed that greater representation of individually-

defined fronto-parietal networks is associated with better general cognitive functioning. 

Furthermore, using cross-validated models trained on the complex multivariate pattern of 

personalized functional network topography, we were able to predict individual differences in 

cognitive functioning in unseen participants’ data. Critically, we identified a consistent spatial 

pattern that accounts for these results, whereby association network topography yields the 

strongest predictions and sensorimotor network topography yields the weakest predictions of 

cognitive functioning, directly aligning with the sensorimotor-association (S-A) axis of 
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hierarchical cortical organization.29 Together, these findings demonstrate that the link between 

functional network topography and cognition in children on the precipice of the transition to 

adolescence is highly reproducible, representing a critical step toward understanding healthy 

neurocognitive development. 

Scalable Precision Functional Brain Mapping in Children 

      Our approach successfully overcame two key challenges: addressing inter-individual 

heterogeneity in functional brain network organization using precision functional mapping and 

addressing the need for reproducibility by developing cross-validated models in two large samples 

of thousands of individuals. The reproducibility crisis continues to pose a significant challenge for 

neuroscience and psychology research, with recent findings further emphasizing the need for very 

large sample sizes to uncover reproducible brain-wide associations with behavior.17 However, 

large-scale open-source datasets such as the ABCD Study® provide significant hope for a feasible 

path forward. Our results represent the largest successful replication of associations between 

functional brain network topography and cognition in children, with remarkably consistent 

findings across datasets and samples. Several important factors are likely to have contributed to 

this success. First, both the original study16 and our replication leveraged datasets with a previously 

unprecedented number of fMRI scans of children’s brains (n=693 in the original study, and 

n=6,972 in our replication). These datasets provided sufficient power to uncover reliable 

associations between functional brain network topography and cognition. Second, our studies 

made use of predictive models that were trained and tested using rigorous cross-validation across 

independent samples. Third, our precision functional brain mapping approach of identifying 

unique functional networks in individual children’s brains allowed us to capitalize on inter-

individual variability rather than treat such variability as noise. This approach may have 

contributed to the relatively larger effect sizes we observed compared with prior studies using 

group atlases, which may have bolstered our ability to reproduce these findings. Our scalable 

precision functional mapping approach may be leveraged in other studies of children and 

adolescents to harness individual variability and identify important reproducible brain-behavior 

associations.  
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Association network topography supports domain-general cognitive abilities 

Having replicated key brain network-cognition associations from prior work,16 we can begin to 

interpret these associations in the context of brain development. Our observation that general 

cognitive abilities are more strongly associated with PFN topography than other cognitive domains 

suggests that greater spatial representation of association networks across the cortex may support 

domain-general cognitive abilities. This finding builds upon prior results highlighting the 

predominance of general cognitive abilities (also referred to as a “g-factor”44,45) in accounting for 

shared variance across cognitive tasks. Recent work in the ABCD dataset has highlighted the 

potential role of this g-factor in mediating between genetic risk and psychopathology in children,46 

suggesting that our identification of functional topography patterns associated with general 

cognition may represent a brain feature of interest for future studies of resiliency. 

We also found a remarkably similar pattern across all three cognitive domains in terms of 

which PFNs most strongly contributed to predictions of cognitive performance. This consistent 

pattern was well-described by a major hierarchy of cortical organization known as the S-A axis, 

with association networks contributing the most to associations with and predictions of cognitive 

performance across domains. This finding provides further evidence for the existence of a 

perception-cognition processing hierarchy in the brain30,47 that aligns with the S-A axis.29  Indeed, 

the association networks whose topography was most strongly associated with cognitive 

performance in children also show the greatest evolutionary expansion between non-human 

primates and humans48,49 and their function has been correlated with cognitive performance in 

adults.13–15 Prior studies have also demonstrated that this S-A axis gradually becomes the 

predominant pattern of cortical functional organizational with age, as the principal gradient of 

functional connectivity shifts from a visuo-motor axis to the S-A axis from childhood to 

adolescence50—a shift which happens during the protracted development of higher-order cognitive 

functions.47 Future studies may investigate how longitudinal developmental changes in PFN 

functional topography along the S-A axis is related to the maturation of complex cognitive 

abilities, complementing cross-sectional work.16,51 

Another potential explanation for why variability in functional topography in the 

association cortices is the most strongly associated with individual differences in cognition is that 
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these regions, and particularly regions of the fronto-parietal network, also tend to have the highest 

degree of inter-individual heterogeneity in other features.16,19,52–54 Thus, while various networks 

across the S-A axis likely contribute in diverse ways to cognitive functioning, the notable 

individual variability in association network topography may be a more salient feature for 

predicting individual differences in cognition. Indeed, these regions tend to exhibit lower structural 

and functional heritability55,56 and undergo the greatest surface area expansion during 

development.48  Moreover, the extended window of plasticity for these regions compared with 

other parts of the cortex57 renders them more likely to be shaped by an individual’s environments 

and experiences,56 potentially further contributing to their unique spatial patterning across 

individuals. Encouragingly, this extended window in which association networks remain plastic 

may also indicate that interventions targeting these systems could be effective in supporting the 

development of healthy cognition.  

Limitations and Future Directions 

This study had several limitations worth noting. First, this study was conducted at a single 

timepoint, using the baseline cohort from the ABCD Study®. As such, we were able to train 

models that could predict cognitive performance from functional brain network topography in 

held-out participants data, but were not able to build predictive models of future changes in 

cognition within an individual. Our work therefore sets the foundation for future longitudinal 

studies using the ABCD Study® dataset to identify changes in functional brain network 

organization during development using the personalized functional brain networks we have 

identified at this baseline assessment. Second, head motion continues to pose an ongoing challenge 

for neuroimaging studies,58–60 and particularly for studies of children.58 We have attempted to 

mitigate these effects by following best practices for reducing the influence of head motion on our 

results, including using a top-performing preprocessing pipeline and inclusion of motion as a 

covariate in all analyses. Third, we used data combined across four fMRI runs, including two 

where a behavioral task performed during scanning was regressed from the data, in line with prior 

studies of PFNs,16,51 aiming to maximize the amount of high-quality data for our study. Prior 

studies have shown that variation in functional networks is primarily driven by inter-individual 

heterogeneity rather than task-related factors and that intrinsic functional networks are similar 

during task and rest.53 Finally, our analyses focused on characterizing the cortical surface 
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topography of functional brain networks and thus did not include analyses of subcortical regions. 

Future studies may use precision functional brain mapping approaches in subcortical areas61,62 to 

further our understanding of the role of the subcortex in cognitive development. 

Critically, it is known that cognitive impairments in adulthood are common across diverse 

psychiatric illnesses including mood63,64 and anxiety65–67 disorders and our current first-line 

pharmacological treatments fail to target these cognitive symptoms.68,69 Longitudinal studies of 

neurocognitive developmental trajectories may therefore also provide a critical link between 

functional brain organization in childhood and psychiatric illness in adulthood, with the potential 

to identify individuals at risk for cognitive impairments prior to the onset of psychiatric illness and 

in advance of treatment attempts that are likely to fail. Moreover, this study investigated PFNs in 

9-10 year old children prior to the transition to adolescence; these children will be followed 

longitudinally into adulthood as part of the ABCD Study®. These results therefore lay a strong 

foundation for future work to uncover how PFNs derived at baseline may predict trajectories of 

change in cognitive functioning during development as longitudinal data is collected. Such studies 

may reveal distinct or overlapping neurobiological features that are predictive of future cognitive 

abilities and whose development tracks with the protracted development of higher-order cognition 

through childhood and adolescence. 

Conclusion 

Together, the findings of this study represent a critical advance in our understanding of the link 

between individual differences in functional brain network organization and individual differences 

in cognitive functioning in youth.  Further, these results successfully replicated prior findings16 

across two large samples of youth, providing compelling evidence that these observations are 

generalizable to new samples. Individual differences in cognition in youth are associated with 

critical physical, mental, social, and educational outcomes in adolescence and adulthood, ranging 

from academic achievement and financial success to psychopathology, risk-taking behaviors, and 

cardiovascular disease.8–10 Thus, our findings may inform studies that seek to develop 

interventions that could promote healthy neurocognitive development. By identifying personalized 

functional brain networks whose functional topography is associated with cognition, we provide a 

foundation for future longitudinal studies of neurocognitive development and psychopathology.  
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MATERIALS AND METHODS  

Participants 

Data were drawn from the Adolescent Brain Cognitive Development℠ (ABCD) study39 baseline 

sample from the ABCD BIDS Community Collection (ABCC, ABCD-316540), which included 

n=11,878 children aged 9-10 years old and their parents/guardians collected across 21 sites. 

Inclusion criteria for this study included being within the desired age range (9-10 years old), 

English language proficiency in the children, and having the ability to provide informed consent 

(parent) and assent (child). Exclusion criteria included the presence of severe sensory, intellectual, 

medical or neurological issues that would have impacted the child’s ability to comply with the 

study protocol, as well as MRI scanner contraindications. As depicted in Supplementary Figure 

1, we additionally excluded participants with incomplete data or excessive head motion, yielding 

a final sample of n= 6,972. 

To test the generalizability of our results, we repeated each of our analyses in both a discovery 

sample (n=3,525) and a separate replication sample (n=3,447) that were matched across multiple 

socio-demographic variables including age, sex, site, ethnicity, parent education, combined family 

income, and others.40,41 Socio-demographic characteristics of participants in the discovery and 

replication samples may be found in Table 2. Nonsignificant differences between participants in 

the discovery and replication samples were present across any socio-demographic variables, nor 

were there any significant differences in scores across the three cognitive domains. 
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Table 2. Demographic characteristics and variables of interest in the matched discovery (n=3,525) 
and replication (n=3,447) samples. Acronyms: AIAN = American Indian/Alaska Native; NHPI = Native 
Hawaiian and other Pacific Islander; HS = High School; GED = General Educational Development. 
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Cognitive Assessment 

Participants completed a battery of cognitive assessments, including seven tasks from the NIH 

Toolbox (Picture Vocabulary, Flanker Test, List Sort Working Memory Task, Dimensional 

Change Card Sort Task, Pattern Comparison Processing Speed Task, Picture Sequence Memory 

Task, and the Oral Reading Test)70 as well as two additional tasks (the Little Man Task and the 

Rey Auditory Verbal Learning Task).71 To reduce the dimensionality of these measures and focus 

our analyses on cognitive domains that explained the majority of behavioral variance in these tasks, 

we used scores in three previously-established cognitive domains derived from a prior study in 

this same dataset42: 1) general cognition, 2) executive function, and 3) learning/memory. In this 

study, a three-factor Bayesian Probabilistic Principal Components Analysis (BPPCA) model was 

applied to the aforementioned battery of nine cognitive tasks. Scores generated by varimax rotated 

loadings for this three-factor model for general cognition (highest loadings: Oral Reading Test, 

Picture Vocabulary, and Little Man Task), executive function (highest loadings: Pattern 

Comparison Processing Speed Task, Flanker Test, and Dimensional Change Card Sort Task), and 

learning/memory (highest loadings: Picture Sequence Memory Task, Rey Auditory and Verbal 

Learning Task, and List Sort Working Memory Task) were downloaded directly from the ABCD 

Data Exploration and Analysis Portal (DEAP). 

Image Processing 

Imaging acquisition for the ABCD Study® has been described elsewhere.72 As previously 

described,40 the ABCC Collection 3165 from which we drew our data was processed according to 

the ABCD-BIDS pipeline. This pipeline includes distortion correction and alignment, denoising 

with Advanced Normalization Tools (ANTS73), FreeSurfer74 segmentation, surface registration, 

and volume registration using FSL FLIRT rigid-body transformation.75,76 Processing was done 

according to the DCAN BOLD Processing (DBP) pipeline which included the following steps: 1) 

de-meaning and de-trending of all fMRI data with respect to time; 2) denoising using a general 

linear model with regressors for signal and movement; 3) bandpass filtering between 0.008 and 

0.09 Hz using a 2nd order Butterworth filter; 4) applying the DBP respiratory motion filter (18.582 

to 25.726 breaths per minute), and 5) applying DBP motion censoring (frames exceeding an FD 

threshold of 0.2mm or failing to pass outlier detection at +/- 3 standard deviations were discarded). 
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Following preprocessing, we concatenated the time series data for both resting-state scans and 

three task-based scans (Monetary Incentive Delay Task, Stop-Signal Task, and Emotional N-Back 

Task) as in prior work16 to maximize the available data for our analyses. Participants with fewer 

than 600 remaining TRs after motion censoring or who failed to pass ABCD quality control for 

their T1 or resting-state fMRI scan were excluded. We additionally excluded participants with 

incomplete data for our analyses (Supplementary Figure 1). We then applied ComBat 

harmonization77,78 using the neuroCombat package protecting age, family and sex as covariates, 

separately in the discovery and replication samples to harmonize the data across collection sites. 

Note that for our ridge regression models (described below), we chose to include data collection 

site as a covariate rather than apply Combat harmonization to avoid leakage across our samples.  

Regularized Non-Negative Matrix Factorization 

As previously described,16,79 we used non-negative matrix factorization (NMF)80 to derive 

individualized functional networks. NMF identifies networks by positively weighting connectivity 

patterns that covary, leading to a highly specific and reproducible parts-based representation.80,81 

Our approach was enhanced by a group consensus regularization term derived from previous work 

in an independent dataset16 that preserves the inter-individual correspondence, as well as a data 

locality regularization term that makes the decomposition robust to imaging noise, improves 

spatial smoothness, and enhances functional coherence of the subject-specific functional networks 

(see Li et al.79 for details of the method; see also: 

https://github.com/hmlicas/Collaborative_Brain_Decomposition). As NMF requires nonnegative 

input, we re-scaled the data by shifting time courses of each vertex linearly to ensure all values 

were positive.79 As in prior work, to avoid features in greater numeric ranges dominating those in 

smaller numeric range, we further normalized the time course by its maximum value so that all the 

time points have values in the range of [0, 1]. For this study, we used identical parameters settings 

as in prior validation studies,79 with the exception of an increase in the data locality regularization 

term from 10 to 300 to account for smaller vertices in fslr compared with fsaverage5. 
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Defining individualized networks 

To facilitate group-level interpretations of individually-defined PFNs, we used a group consensus 

atlas from a previously published study in an independent dataset16 as an initialization for 

individualized network definition. In this way, we also ensured spatial correspondence across all 

subjects. This strategy has also been applied in other methods for individualized network 

definition.23,82 Details regarding the derivation of this group consensus atlas can be found in 

previous work.16 Briefly, group-level decomposition was performed multiple times on a subset of 

randomly selected subjects and the resulting decomposition results were fused to obtain one robust 

initialization that is highly reproducible. Next, inter-network similarity was calculated and 

normalized-cuts83 based spectral clustering method was applied to group the PFNs into 17 clusters. 

For each cluster, the PFN with the highest overall similarity with all other PFNs within the same 

cluster was selected as the most representative. The resulting group-level network loading matrix 

V was transformed from fsaverage5 space to fslr space using Connectome Workbench,84 and thus 

the resultant matrix had 17 rows and 59,412 columns. Each row of this matrix represents a 

functional network, while each column represents the loadings of a given cortical vertex. 

Using the previously-derived group consensus atlas16 as a prior to ensure inter-individual 

correspondence, we derived each individual’s specific network atlas using NMF based on the 

acquired group networks (17 x 59,412 loading matrix) as initialization and each individual’s 

specific fMRI times series. See Li et al.79 for optimization details. This procedure yielded a loading 

matrix V (17 x 59,412 matrix) for each participant, where each row is a PFN, each column is a 

vertex, and the value quantifies the extent each vertex belongs to each network. This probabilistic 

(soft) definition can be converted into discrete (hard) network definitions for display and 

comparison with other methods19,23,82 by labeling each vertex according to its highest loading. 

Calculation of Sensorimotor-Association Axis Rank 

To compute S-A axis rank for each PFN independently, we computed the average S-A rank across 

vertices for each PFN according to the hard network parcellation. Original S-A axis ranks by vertex 

represent the average cortical hierarchy across multiple brain maps16 and were derived from 

https://github.com/PennLINC/S-A_ArchetypalAxis. 
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Statistical Analyses 

Linear Mixed-Effects Models 

We used linear mixed effects models (implemented with the “lme4” package in R) to assess 

associations between PFN topography and performance in each cognitive domain while 

accounting for both fixed and random predictors. All models included fixed effects parameters for 

age, biological sex, head motion (mean fractional displacement), as well as random intercepts for 

family (accounting for siblings) and site groupings. 

Ridge Regression 

We trained ridge regression models to predict cognitive performance in each of the three cognitive 

domains (general cognition, executive function, and learning/memory) using the functional 

topography (vertex-wise network loading matrices) of each participant’s PFNs. Primary analyses 

were conducted on models trained on concatenated network loading matrices across the 17 PFNs. 

Independent network models were also trained on the network-wise loadings at each vertex. All 

models included covariates for age, sex, site, and motion (mean FD). 

Our primary ridge regression models were trained and tested on the ABCD reproducible matched 

samples40,41 using two-fold cross-validation (2F-CV). To ensure that this sample selection 

procedure did not bias our results, we performed repeated random cross-validation over 100 

iterations, each time randomly splitting the sample and repeating the 2F-CV procedure to generate 

a distribution of prediction accuracies for each model. Furthermore, we used permutation testing 

to generate null distributions for both the primary models and the repeated random cross-validation 

models by randomly shuffling the outcome variable. Supplementary Figure 2 depicts the sum of 

model weights by PFN for the primary ridge regression models in each of the matched samples. 

Associations Between Prediction Accuracy and S-A Axis Rank 

To compute associations between the prediction accuracy of each individual network model and 

the average S-A rank for each network, we used Spearman’s rank correlations for each of the three 

cognitive domains: general cognition, executive function, and learning/memory. To determine 
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whether the alignment between these two spatial maps were driven specifically by the S-A axis, 

we used spatial permutation testing43 (Spin Tests; https:// github.com/spin-test/spin-test). The spin 

test is a spatial permutation method based on angular permutations of spherical projections at the 

cortical surface. Critically, the spin test preserves the spatial covariance structure of the data, 

providing a more conservative and realistic null distribution than randomly shuffling locations. 

With this approach, we applied 1,000 random rotations to spherical representations of S-A axis 

rank across the cortical surface, each time re-computing the average S-A rank within each PFN 

and calculating Spearman correlations between prediction accuracy and the permuted average S-

A rank in each PFN to generate a null distribution. We then compared the true Spearman 

correlation value to the null distribution of spatially permuted Spearman correlations by rank 

ordering. 
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Supplemental Figures 
  

 
  
Supplementary Figure 1. Flow diagram depicting data inclusion and exclusion. Data were 
drawn from the Adolescent Brain and Cognitive Development (ABCD) study39 baseline sample 
from the ABCD BIDS Community Collection (ABCC, ABCD-316540), which included n=11,878 
children between the ages of 9-11 years old. Participants were excluded for having incomplete 
data or excessive head motion, then split into a discovery sample (n=3,525) and a matched 
replication sample (n=3,447).40,41 
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Supplementary Figure 2. Sum of ridge regression weights by PFN. Replication of results from 
Cui et al.31 (a) showing that the PFNs contributing the strongest weights in ridge regression models 
predicting cognition tend to lie at the associative end of the S-A axis. At each location on the 
cortex, the absolute contribution weight of each network was summed. b,c,d Models trained on 
the replication sample and tested in the matched discovery sample; e,f,g Models trained on the 
discovery sample and tested in the matched replication sample. b,e general cognition; c,f executive 
function; d,g learning/memory. 
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