
Figure 2. Thalamocortical structural connections are consistently reconstructed in individual 
participants. Exemplar thalamocortical connections included in the population-level atlas (rows 1 and 4) are 
shown here reconstructed in individual participants from PNC (rows 2 and 5) and HCPD (rows 3 and 6). 
Connection colors match those used in Fig. 1 and reflect the S-A axis rank of the connected cortical region 
(yellow: lowest S-A ranks; purple/blue: highest S-A ranks). Person-specific connections showed remarkably high 
reconstruction robustness and anatomical endpoint accuracy. Each connection shown in the PNC and HCPD is 
from a different participant; a random number generator was used to select which participant’s data to show for 
each connection. The full distribution of ages is represented amongst the PNC data shown (minimum age in 
years = 8.3, 1st quartile = 11.7, mean = 14.6, 3rd quartile = 17.5, maximum age = 22.0) as well as the HCPD data 
shown (minimum age in years = 8.9, 1st quartile = 11.0, mean = 14.9, 3rd quartile = 18.6, maximum age = 21.8).  
 
Identified connections reflect thalamocortical circuit anatomy 

Prior to using the connections reconstructed in PNC and HCPD participants to understand 
thalamocortical connectivity development, we aimed to further establish their anatomical validity. To 
accomplish this goal, we surveyed whether connections delineated in these datasets adhered to both 
the core-matrix structure of thalamic organization and the hierarchical arrangement of thalamocortical 
connection strength. Thalamic areas can be organized along a continuous core-matrix gradient based 
on the relative expression of more “core”-like or “matrix”-like neurons30,41. Core neurons are densest in 
first-order thalamic nuclei and send projections to sensory regions, whereas matrix neurons are 
prevalent in higher-order nuclei and connect to association regions. We therefore predicted that 
thalamocortical connections originating in more core versus matrix thalamus would project to different 
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portions of the cortex’s S-A axis. We tested this differentiation by using a previously derived core-
matrix thalamic gradient (C-Mt; Fig. 3a)30 to assign each reconstructed connection a C-Mt value based 
on where its streamlines terminated within the thalamus. C-Mt values were calculated at the individual 
level and then averaged across participants in PNC and HCPD to derive group-level means.  

Connection-specific C-Mt values were nearly perfectly correlated between PNC and HCPD (r = 
0.99, pspin < 0.001; Fig. 3b), confirming that the atlas-constrained tractography approach generates 
reproducible profiles of thalamic connectivity. As predicted, the distribution of C-Mt values was not 
homogeneous across the S-A axis. Thalamic connections to the S-A axis’s sensorimotor pole 
originated in areas of the thalamus enriched with core neurons (lowest C-Mt values). Connections that 
originated in matrix-like thalamic areas (higher C-Mt  values) were linked to the axis’s association pole. 
A distribution of increasing C-Mt values across the S-A axis was observed in both PNC (r = 0.58, pspin 
= 0.008) and HCPD (r = 0.50, pspin = 0.040) and provides evidence that reconstructed thalamocortical 
connections exhibit well-described core-sensory and matrix-association connectivity motifs (Fig. 3c). 

Thalamic pathways that project to sensorimotor versus association cortices are also known to 
differ in their microstructural anatomy. Thalamic connections to primary cortex are dense, strong, and 
project in a spatially constrained manner, whereas projections to association cortex are sparser and 
more spatially diffuse30,41. We therefore predicted that FA, a microstructural measure that increases 
with connection density and coherence, would be highest for thalamic connections with primary 
sensory regions and decrease along the S-A axis. As for C-Mt values, we calculated FA for every 
thalamocortical connection at the individual participant level and computed a group-level connection 
mean for PNC and HCPD (Fig. 3d). Connection-specific FA values were highly reproducible between 
PNC and HCPD (r = 0.97, pspin < 0.001; Fig. 3e). In line with our prediction, connection-specific FA 
values negatively correlated with the S-A axis rank of the connection’s cortical partner (PNC: r = -0.42, 
pspin = 0.045; HCPD: r = -0.42, pspin = 0.061; Fig. 3f), suggesting graded changes in connection 
microstructure along this organizational axis. The current set of findings confirms that reconstructed 
pathways intrinsically reflect established thalamic cellular classifications and cortical connection 
profiles. 
 

Figure 3. Identified structural connections reflect key features of thalamocortical circuit anatomy. a. The 
core-matrix thalamic (C-Mt) gradient derived in prior work30 is shown in slices of the thalamus. Light yellow 
thalamic voxels were estimated to have the highest relative distribution of core neurons. Dark purple voxels 
were estimated to have the highest proportion of matrix neurons. b. We used the C-Mt gradient to assign each 
thalamocortical connection a value that indexes whether its streamlines terminated in thalamic areas with a 
higher percentage of core-like neurons (lower C-Mt values) or matrix-like neurons (higher C-Mt values). 
Connection-specific C-Mt values were nearly perfectly correlated between PNC and HCPD, serving as a general 
confirmation that delineated connections terminated in the same areas of the thalamus across datasets. c. 
Thalamic connection C-Mt values positively correlated with the sensorimotor-association (S-A) axis rank of the 
connection’s cortical partner in both PNC (left) and HCPD (right). Accordingly, both datasets showed evidence 
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of core-to-sensory and matrix-to-association thalamocortical connectivity motifs. d. Thalamocortical connections 
are shown colored by mean FA (dark yellow: highest FA; dark purple: lowest FA; PNC data shown). e. 
Connection FA values were robustly correlated between PNC and HCPD, demonstrating that this structural 
connectivity feature is highly reproducible across youth samples. f. Thalamic connection FA values 
monotonically decreased along the S-A axis in PNC (left) and HCPD (right), revealing a continuum of 
connection strength and coherence that exhibits systematic hierarchical variation.  
 
Thalamocortical connections show a spectrum of developmental change 
 Having now demonstrated that our atlas-based approach extracts connections with properties 
that capture thalamocortical circuit anatomy, we sought to investigate whether these connections 
exhibit hierarchically-organized variability in developmental timing. We began by using generalized 
additive models (GAMs; accounting for sex and head motion) to characterize age-dependent 
trajectories of FA for all connections. FA significantly increased in the majority of thalamocortical 
connections during childhood and adolescence, with 90% (PNC) and 78% (HCPD) of connections 
showing significant (pFDR < 0.05) developmental effects. Although most connections showed a general 
increase in FA, a spectrum of developmental trajectories could be seen in both datasets (Fig. 4a), 
paralleling modes of developmental variability that typify the cortex1. As a result of these variable 
trajectories, the magnitude of GAM-derived age effects (quantified as the partial R2) differed across 
connections (Fig. 4b). Age effects were strongly correlated between PNC and HCPD (r = 0.73 pspin < 
0.001; Fig. 4c).  

Connections between the thalamus and sensory or motor regions tended to show the smallest 
age effects and to exhibit the shortest windows of developmental change, as seen for the connection 
to primary motor area 4 (Fig. 4d, yellow). Thalamic connections with multimodal association cortices 
(e.g., area PF of the supramarginal gyrus; Fig. 4d, purple) tended to develop for relatively longer. 
Thalamocortical connections exhibiting the largest and most protracted developmental increases 
involved regions of the lateral prefrontal and parietal association cortex, as exemplified by the 
thalamic connection to superior prefrontal region 8BL (Fig. 4d, blue). We assessed whether these 
observed developmental trajectories differed by sex. Although a small subset of connections showed 
potentially diverging trajectories between males and females starting in the mid-teens, nearly all age-
by-sex interactions were not significant (0% of connections significant in PNC and < 2% significant in 
HCPD). Accordingly, subsequent results model a single trajectory across sexes. 
 To quantitatively study differences in developmental timing, we computed the age at which 
each thalamocortical connection matured. Maturational age was operationalized as the age at which 
developmental change in FA (the first derivative of the age spline) was no longer significantly different 
from 0, denoting a plateau in the developmental trajectory. Connection-specific ages of maturation 
were highly similar between the two datasets (r = 0.57, pspin < 0.001) and furthermore correlated with 
connection-specific age effects (partial R2) within each dataset (Fig. 4e). Notably, large differences in 
maturational timing emerged across thalamocortical connections in both datasets: the relative 
difference in maturational age between the earliest and latest maturing connections was 9.9 years in 
PNC and 11.1 years in HCPD. Identifying thalamic connections that matured at the youngest ages 
(first quartile; Fig. 4f, yellow) versus the oldest ages (fourth quartile; Fig. 4f, blue) differentiated 
primary and early visual, somatomotor, and auditory regions from lateral prefrontal and parietal 
regions.   
 We next sought to put these observed differences in connection maturational timing in a 
behavioral context. To do so, we used prior task-based fMRI results—amassed and meta-analyzed 
via Neurosynth—to identify the psychological functions subserved by cortical regions with thalamic 
connections that matured at younger versus older ages. We first mapped the maturational ages of all 
connections to the cortex. We then computed the correlation between this maturational map and 
psychological term meta-analytic maps for 123 terms included in the Cognitive Atlas (producing 123 
independent correlations between neurodevelopment and Neurosynth variables). In this analysis, a 
negative correlation between the thalamocortical maturational map and a psychological term map 
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indicates that the psychological term is linked to regions with early maturing thalamic connections. In 
contrast, positive correlations identify psychological functions that can be ascribed to regions with late 
maturing connections. We thus identified the 10 most negatively and positively correlated terms in 
both PNC and HCPD and found that 11 of these 20 developmentally-relevant terms overlapped 
between datasets (bolded terms in Fig. 4g; pPERM < 0.001 in a term-overlap permutation analysis). 
Psychological terms linked to cortical regions with early-maturing thalamic connections predominantly 
described sensory and motor processing and object classification functions (e.g., visual perception, 
coordination, object recognition; Fig. 4g negative correlations). Cognitive terms linked to cortical 
regions with late-maturing thalamic connections evoked executive control, decision-making, and 
information retrieval functions (e.g., cognitive control, reasoning, recall; Fig. 4g positive correlations). 
Overall, these results establish that thalamocortical structural connections exhibit different timescales 
of development. Maturational timing diverges most between connections to sensorimotor cortices that 
execute externally oriented functions and those to association cortices that are essential for higher-
order cognitive control.  
 

 
Figure 4. Charting variability in the magnitude and timing of thalamocortical structural connectivity 
development. a. Fractional anisotropy (FA) developmental trajectories (zero-centered GAM smooth functions) 
are displayed for right hemisphere thalamocortical connections in PNC (top) and HCPD (bottom). Connections 
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are colored by their statistical age effect (partial R2). A clear neurodevelopmental spectrum is observable in both 
datasets. b. Thalamocortical connections from the atlas are colored by their age effect (PNC data), revealing the 
brain-wide distribution of developmental heterogeneity. c. A correlation plot confirming close correspondence 
between connection-specific age effects derived in PNC and HCPD. d. Connection-specific FA trajectories that 
exemplify differences in the magnitude and timeframe of developmental change are shown, overlaid on 
participant-level data for PNC (top) and HCPD (bottom). Developmental trajectories represent GAM-predicted 
FA values with a 95% credible interval band. The corresponding color bars chart the rate of increase in FA 
during windows of significant developmental change and demarcate ages of connection maturation. e. GAM-
derived age effects and ages of maturation were correlated in both datasets (PNC shown), revealing that the 
age of maturation metric provides insight into both the extent and timing of development. f. A brain map 
localizing cortical regions with the earliest maturing thalamic connections (age of maturation first quartile; yellow) 
and latest-maturing thalamic connections (fourth quartile; blue) is shown. White designates cortical regions with 
connections to the thalamus that matured in middle age quartiles. Light grey indicates regions with connections 
not included in the atlas. g. Results of an analysis that correlated the map of thalamocortical maturational age 
with psychological term maps from Neurosynth. Psychological terms associated with cortical regions that have 
thalamic connections that mature at the youngest ages (negatively correlated terms; yellow) and oldest ages 
(positively correlated terms; blue) are shown. PNC data is presented. Terms that were additionally included in 
the list of the 10 most negatively or 10 most positively correlated terms in HCPD are bolded. 
 

Thalamocortical connection maturation unfolds along the S-A axis 
If connections between the thalamus and the cortex play a role in organizing differences in 

developmental timing across the S-A axis, we would expect observed variability in thalamocortical 
connection maturation to systematically align with this axis. To study this alignment, we demarcated 
age windows of significant developmental change for each connection and visualized whether the 
length of these windows increased between the S-A axis’s sensorimotor and association poles. As 
shown in Fig. 5a, connection-specific windows of developmental change were staggered in time 
across the S-A axis and were most protracted for thalamic connections with transmodal association 
regions. To test whether this developmental pattern emerged due to connections maturing at 
progressively older ages along the S-A axis, we calculated the correlation between each connection’s 
age of maturation and its S-A axis rank (Fig. 5b, c). Lending strong support to our primary 
developmental hypothesis, we found that the age of connection maturation progressively increased 
for connections to cortices ranked higher in the S-A axis. This positive correlation between S-A axis 
ranks and connection-specific ages of maturation was similar in strength in PNC (r = 0.49, pspin-FDR = 
0.004) and HCPD (r = 0.51, pspin-FDR = 0.008), underscoring that this spatiotemporal developmental 
pattern unfolds in independent samples (Fig. 5d). 

To evaluate the specificity of these findings, we tested whether across-connection differences 
in ages of maturation were best captured by the S-A axis, or could be equally or better explained by 
other large-scale cortical or thalamic axes. Specifically, we assessed how connectivity maturational 
timing varied along anterior-posterior (A-P), dorsal-ventral (D-V), and medial-lateral (M-L) cortical 
axes and the core-matrix thalamic gradient (Fig. 5e). Correlations between the age of thalamocortical 
connection maturation and A-P (r = 0.31), D-V (r = 0.12), and M-L (r = 0.03) cortical axes and the C-Mt 
gradient (r = 0.29) were not significant in the PNC (all pspin-FDR > 0.05). Furthermore, statistical tests for 
comparing the magnitude of two dependent, overlapping correlations indicated that connection 
maturational ages were significantly more correlated with the S-A axis than with A-P, D-V, and M-L 
axes and the C-Mt  gradient (pFDR < 0.001 for all four correlation comparisons). We observed the same 
results in HCPD, with strongest alignment to the S-A axis as compared to all other cortical and 
thalamic neuroaxes (correlation comparison for A-P: pFDR = 0.124; D-V: pFDR < 0.001; M-L: pFDR < 
0.001; C-Mt: pFDR = 0.029). 
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Figure 5. Thalamocortical structural connections mature at progressively older ages along the S-A axis. 
a. Age windows during which thalamocortical connections showed significant increases in FA are shown for 
every individual connection (PNC data). Connection-specific developmental windows are ordered along the y-
axis and colored by the sensorimotor-association (S-A) axis rank of the connection’s cortical endpoint. Periods 
of significant developmental change were derived from the first derivative of each connection’s GAM smooth 
function for age, which quantifies the rate of change in FA at a given age. Significant derivative values (as 
determined by their simultaneous 95% confidence interval) are plotted here to delineate developmental 
windows; the relative transparency and linewidth of the derivative reflects the age-specific magnitude of 
developmental change. b. The maturational map depicting the age at which each cortical region’s thalamic 
connection matured (right) exhibits shared spatial topography with the S-A axis (left). Light grey regions in these 
cortical maps were not represented in the thalamocortical atlas. c. Thalamocortical connections from the 
tractography atlas are colored by the connection’s age of maturation to further illustrate the spatial structure of 
developmental effects. d. Ages of thalamic connection maturation systematically vary along the S-A axis in both 
PNC (left) and HCPD (right). Thalamocortical connections to the axis’s association pole tended to mature latest. 
e. Results of an analysis comparing the alignment of thalamocortical connectivity maturational timing to the S-A 
axis versus major cortical and thalamic axes. This analysis revealed greater alignment to the S-A axis than to 
anterior-posterior (A-P), dorsal-ventral (D-V), and medial-lateral (M-L) cortical axes as well as the core-matrix 
thalamic (C-Mt) gradient (PNC data shown). Whereas the correlation between the maturational map and the S-A 
axis was significant (white star; data presented in panel d), spatial permutation tests confirmed that correlations 
between the maturational map and A-P, D-V, and M-L axes and the C-Mt gradient were not significant. 
Statistical comparisons of correlations further demonstrated that the correlation with the S-A axis was 
significantly greater in magnitude than correlations with these four neuroaxes (black stars). 

 
Coordinated development of thalamocortical connections and cortical plasticity 
 The above results reinforce past findings that the S-A axis can be understood as a principal 
axis of child and adolescent neurodevelopment and indirectly relate thalamocortical connectivity 
maturation to temporal variation in cortical development. We therefore next endeavored to directly 
assess correspondence between the maturation of thalamocortical structural connections and three 
non-invasive and biologically linked readouts of cortical developmental plasticity. Animal studies have 
shown that the maturation of PV inhibitory interneurons14,33 and the formation of intracortical myelin42 
serve as biological regulators of critical periods of plasticity. As interneurons strengthen their outputs 
and myelin is formed, there is a reduction in the cortex’s excitation/inhibition (E/I) ratio and a 
consequent suppression and sparsification of intrinsic cortical activity2,43,44. The transition from 
malleable to mature cortex can therefore be indexed by three signatures of decreasing circuit 
plasticity: a decline in the E/I ratio, an increase in cortical myelin content, and a reduction in the 
amplitude of intrinsic cortical activity. We explored whether the timing of thalamocortical connection 
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maturation was temporally coordinated with the sensorimotor-to-associative development of these 
three readouts of shifting cortical plasticity. 
 We used developmental maps charting how in vivo measures sensitive to the cortical E/I 
ratio5, cortical myelin content6, and cortical intrinsic activity amplitude2 change with age during 
childhood and adolescence. We discovered that cortical regions with thalamic connections that 
developed for longer also exhibited smaller developmental declines in the E/I ratio (Fig. 6a), 
experienced a slower rate of intracortical myelin growth (Fig. 6b), and showed an initial decrease in 
intrinsic fluctuation amplitude at older ages (Fig. 6c). As such, protracted maturation of 
thalamocortical connections was associated with extended expression of neurochemical, structural, 
and functional markers indicative of higher circuit plasticity. Correlations between dataset-specific 
thalamocortical connectivity maturation maps and non-invasively estimated developmental maps of 
E/I ratio, cortical myelin, and intrinsic activity were significant in all cases in both datasets: PNC 
(model-derived E/I ratio: r = 0.45, pspin-FDR < 0.001; T1/T2 ratio: r = -0.45, pspin-FDR = 0.001; BOLD 
fluctuation amplitude: r = 0.30, pspin-FDR = 0.030) and HCPD (model-derived E/I ratio: r = 0.45, pspin-FDR < 
0.001; T1/T2 ratio: r = -0.43, pspin-FDR = 0.003; BOLD fluctuation amplitude: r = 0.41, pspin-FDR = 0.009) 
(Fig. 6). These relationships provide evidence that the development of thalamocortical structural 
connectivity and cortical plasticity is spatiotemporally tethered. 
 

 
 
Figure 6. Thalamocortical structural connection maturation synchronizes with timescales of cortical 
plasticity. Maps of thalamocortical connection maturation computed from PNC (left column) and HCPD (right 
column) diffusion data correlate with brain charts of child and adolescent cortical development. Cortical maps 
charting the development of E/I ratio (a), cortical myelin (b), and intrinsic activity amplitude (c) are shown. In all 
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three cortical maps, darkest blue brain regions are those that express signatures of protracted developmental 
plasticity. a. Cortical regions with thalamic connections that mature at older ages undergo smaller age-related 
reductions in the E/I ratio during childhood and adolescence (less negative age slopes), implying that they 
remain in a relatively less mature, plasticity-permissive state for longer. E/I ratio was estimated in developmental 
data in Zhang, Larsen, et al.5 by applying a biophysically plausible circuit model to resting state functional MRI 
data. b. Cortical regions with thalamic connections that mature at older ages show a slower annualized growth 
rate of T1/T2 ratio-indexed cortical myelin content, suggesting that they experience slower maturation of a 
structural feature that restricts developmental plasticity. T1/T2 ratio development data is from Baum et al., 
20224. c. Cortical regions with thalamic connections that mature at older ages exhibit later-onset declines in the 
amplitude of intrinsic activity fluctuations, indicative of temporally delayed reductions in a putative functional 
signature of developmental plasticity. The age at which intrinsic activity amplitude began to decrease in each 
cortical region was determined by Sydnor et al., 20232 through developmental modeling of age-related changes 
in BOLD fluctuation amplitude. 

 
Environmental sculpting of thalamocortical connectivity across the S-A axis 
 Ample prior work has documented strong associations between socioeconomic features of 
the environment and cortical properties during youth. During infancy36, childhood45, and adolescence2, 
across-cortex variation in environment associations has been found to be systematically patterned 
along the S-A axis. In a series of analyses, we aimed to ascertain whether a similar principle governs 
interactions between youths’ environmental exposures and thalamocortical structural connectivity. 
Specifically, we studied relationships between household and neighborhood indicators of 
socioeconomic conditions and thalamocortical connection FA across the S-A axis. Household 
socioeconomic status was proxied by caregiver years of education in PNC and by both caregiver 
education and income-to-needs ratio in HCPD. Neighborhood-level socioeconomic information was 
only available in the PNC and was summarized via factor analysis of geocoded census data. The 
factor analysis generated person-specific neighborhood factor scores; a higher factor score indicates 
that a child lived in a neighborhood with a higher percentage of residents who were married, 
employed, and high-school educated and a lower percentage of residents in poverty. 
 We first modeled associations between indicators of socioeconomic position and 
thalamocortical connection FA using GAMs that accounted for developmental effects. Over half (57%) 
of thalamocortical connections showed significant relationships between connection FA and 
neighborhood environment factor scores (pFDR < 0.05) in the PNC. In contrast to these robust effects, 
only 7% of connections showed a significant association (pFDR < 0.05) with caregiver education in 
PNC. When caregiver education and neighborhood factor scores were entered into the same model 
as part of a specificity analysis, all significant caregiver education effects were abolished. Conversely, 
91% of connections showing a significant neighborhood-level effect still exhibited a significant 
association with connection FA. Mirroring these null household-level findings in PNC, no 
thalamocortical connections showed a significant relationship between FA and either caregiver 
education or income-to-needs ratio in HCPD (all pFDR > 0.05).  
 In the PNC, significant relationships between connection FA and the neighborhood 
environment factor score were widely distributed across thalamocortical connections and across the 
S-A axis (Fig. 7a). Environment effects (t values) were nearly exclusively positive (93% positive), 
indicating that more socioeconomically advantaged neighborhoods were associated with higher 
connection FA. Environment factor scores were not correlated with diffusion scan mean framewise 
displacement (r = 0.04, p = 0.202), supporting that these associations were not driven by motion. To 
better understand the nature of these FA-environment associations, we modeled the maturation of 
thalamocortical connection FA for low and high factor scores for five quintiles of the S-A axis. These 
environmentally-stratified developmental trajectories showed that lower neighborhood factor scores 
were associated with lower FA throughout the course of child and adolescent development in all 
portions of the S-A axis (Fig. 7b). 
 Although neighborhood environment associations were present across the S-A axis, the 
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magnitude of significant effects was not homogeneous across connections: larger effects could be 
seen in thalamic connections to lateral prefrontal and lateral temporal cortices (Fig. 7a, bottom). We 
therefore conducted an analysis to test whether environment effects (t values) were statistically 
enriched for connections to the association end of the S-A axis. Enrichment tests for five quintiles of 
the S-A axis uncovered that the strongest neighborhood environment effects (high t values) were 
indeed overrepresented for thalamic connections with the association pole of the S-A axis (fifth 
quintile enrichment analysis: pspin = 0.025; Fig. 7c). Substantiating this finding of relatively larger 
effects at the association pole, a second analysis correlating regional S-A axis ranks with the cortex-
projected map of significant neighborhood environment effects confirmed a significant, positive 
association (r = 0.30, pspin-FDR = 0.028; Fig. 7d). Specificity analyses revealed that alignment was 
significantly stronger to the S-A axis than to the A-P axis (correlation comparison pFDR = 0.001) and 
the C-Mt thalamic gradient (correlation comparison pFDR < 0.001) and that correlations between 
environment effect statistics and A-P, M-L, and D-V cortical axes and the C-Mt gradient were all non-
significant (all pspin-FDR > 0.05) (Fig. 7e). These analyses demonstrate that neighborhood-level 
socioeconomic conditions relate to thalamocortical connectivity properties during youth, with 
connections that experience protracted development displaying the greatest environmental sensitivity. 
 

 
Figure 7. Hierarchically-organized relationships between the neighborhood environment and 
thalamocortical structural connectivity. a. Thalamocortical connections that showed a significant association 
between neighborhood environment factors scores and connection FA are shown in purple (top). The statistical 
effect (t value) associated with each significant connection is displayed on the cortical surface (bottom). 
Significant effects were present across much of the cortex and were strongest in lateral frontal and temporal 
cortices. White and grey cortical regions denote regions with connections that had non-significant environment 
effects or that were not analyzed, respectively. b. GAM-predicted trajectories of FA development are displayed 
for low (10th percentile) and high (90th percentile) factor scores for thalamic connections to five quintiles of the 
sensorimotor-association (S-A) axis. Trajectories model environment-related differences in connection FA from 
childhood to early adulthood. c. Results of the environment effect enrichment analysis are displayed for five 
quintiles of the S-A axis. This analysis uncovered that neighborhood environment t values were significantly 
greater in magnitude for thalamic connections to the fifth quintile of the S-A axis (darkest purple; bottom) when 
compared to connections with the rest of the cortex. For each of the five quintiles of the S-A axis, the empirical 
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mean t value in that quintile is indicated with the black line along with the null distribution of permuted mean t 
values (tspin) obtained from 10,000 spatial permutations of the cortex-projected environment effect map. d. 
Thalamic connections to cortical regions ranked higher in the S-A axis showed relatively larger associations 
between connection FA and neighborhood environment factor scores, resulting in a significant correlation 
between S-A axis ranks and thalamocortical environment effects. A small number of negative t values were 
observed in motor, premotor, and orbitofrontal cortex. e. Results of an analysis correlating each connection’s 
environment effect (from a, bottom) with its position in the S-A axis as well as major cortical axes and the core-

matrix thalamic gradient. Only the correlation with the S-A axis was significant (white star; pspin-FDR < 0.05).  

 

Results generalize to a youth sample enriched for psychopathology 
 Thus far, we have demonstrated that developmental and environmental influences on 
thalamocortical connection properties vary depending on a connection’s position in the cortex’s S-A 
axis. In a final set of analyses, we investigated whether these findings generalize to a clinical sample 
recruited with the goal of representing transdiagnostic youth psychopathology. The HCPD sample 
was designed to study “typical” brain development. The PNC used community-based recruitment and 
was not specifically enriched for psychopathology. In contrast, the  Healthy Brain Network is a study 
of help-seeking youth where approximately 85% meet criteria for a clinical diagnosis. 

In HBN, 74% of thalamocortical structural connections showed a significant developmental 
change in FA (pFDR < 0.05), with developmental profiles substantially varying across connections (Fig. 
8a). Connection-specific age effects obtained in HBN strongly and significantly correlated with those 
obtained from the PNC (r = 0.73, pspin < 0.001; Fig. 8b), further underscoring that our results capture a 
generalizable developmental signature. Neurosynth-based decoding of connection maturational timing 
linked early-maturing thalamocortical connections to perceptual and motor functions and late-maturing 
connections to memory retrieval, decision making, and cognitive control (Fig. 8c; 11 overlapping 
terms with PNC). Thalamocortical connections exhibited a hierarchical maturational gradient. As a 
result, connection maturational age was correlated with the S-A axis (r = 0.69, pspin = 0.002; Fig. 8d). 
Furthermore, ages of connection maturation aligned with age-related change in the three 
neuroimaging-based readouts of cortical developmental plasticity (model-derived E/I ratio: r = 0.57, 
pspin-FDR = 0.007; T1/T2 ratio: r = -0.58, pspin-FDR = 0.015; BOLD fluctuation amplitude: r = 0.69, pspin-FDR = 
0.007; Fig. 8e).  

We used the same geocoding-based factor analysis approach as in the PNC to summarize 
information about each participant’s neighborhood-level socioeconomic circumstances. In HBN, 53% 
of thalamocortical connections exhibited a significant relationship between neighborhood environment 
factor scores and connection FA. All associations were positive, linking more advantaged 
neighborhoods (higher factor scores) to stronger thalamocortical connectivity. As in the PNC, the 
magnitude of environment-connectivity associations increased in strength along the S-A axis (r = 0.31, 
pspin = 0.035; Fig. 8f) and the largest effects were enriched at the S-A axis’s association pole (fifth 
quintile enrichment analysis: pspin = 0.031; Fig. 8g). Together, these findings highlight the 
generalizability of our developmental and environmental results linking thalamocortical structural 
connectivity to the S-A axis. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.13.598749doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.13.598749
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 8. Developmental and environmental results are generalizable to youth with psychopathology. An 
overview of key results from the HBN sample, a clinical sample of youth that is enriched for psychopathology. a. 
Structural connections between the thalamus and cortex exhibit heterogenous profiles of fractional anisotropy 
(FA) development. b. Connection-specific age effects derived in HBN correlate with those obtained in the PNC. 
c. Neurosynth-based contextualization of thalamocortical connection developmental timing reveals 
psychological functions associated with cortical regions with early-maturing thalamic connections (negatively 
correlated terms) and late-maturing thalamic connections (positively correlated terms). Bolded terms overlap 
with those identified in PNC. d. The age at which thalamocortical connections mature progressively increased 
for connections to cortical regions located higher in the S-A axis, resulting in a positive correlation between ages 
of thalamic pathway maturation and S-A axis ranks. e. Thalamocortical connection maturation significantly 
correlated with non-invasively derived maps charting the development of cortical properties, including the 
development of the cortical excitation/inhibition (E/I) ratio, cortical T1/T2 ratio, and cortical BOLD activity 
fluctuation amplitude. The strength and significance of each of these three correlations is indicated. f. A plot 
depicting the spread of significant neighborhood environment effects (statistical t values) across the S-A axis is 
shown. Positive environment effects indicate that more socioeconomically advantaged neighborhood 
environments were associated with higher thalamocortical connection FA. Significant environment associations 
were found across the entire S-A axis. Effects became significantly larger when moving towards the axis’s 
association pole. g. The environment enrichment analysis confirmed that neighborhood environment effects 
were significantly greater in magnitude for thalamic connections to the fifth quintile of the S-A axis as compared 
to connections with the rest of the cortex.  

 
Discussion 
 
 During early stages of cortical neurodevelopment, thalamocortical axons exert powerful control 
over the arealization, lamination, and neurobiological specification  of cortical areas20–23,25. In this work, 
we tested the hypothesis that the thalamus also influences child and adolescent windows of cortical 
plasticity and provide evidence of synchronized maturation between the cortex and thalamocortical 
connectivity. To overcome known challenges of thalamic tractography, we first created and 
anatomically validated a new high-resolution diffusion atlas composed of cortically-annotated 
thalamocortical structural connections. Applying this atlas to data from three youth cohorts, we 
reproducibly demonstrated that the development of thalamocortical connectivity is globally 
heterogeneous, temporally hierarchical, and spatially aligned with variability in cortical developmental 
profiles. Specifically, we showed that the maturation of thalamocortical structural pathways 
progresses along the S-A axis and parallels the development of putative non-invasive readouts of 
cortical developmental plasticity. In this maturational scheme, thalamocortical pathways that mature 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.13.598749doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.13.598749
http://creativecommons.org/licenses/by-nc-nd/4.0/


latest connect to transmodal association regions that are integral to cognitive control and that show 
signatures indicative of protracted circuit malleability. We furthermore defined relationships between 
thalamocortical connectivity and neighborhood environment conditions that increase in strength along 
the S-A axis, thus aligning with the dominant mode of brain-environment associations observed in the 
cortex during youth2. Together, these results uncover that thalamocortical connections develop in a 
hierarchical and environment-dependent manner across the cortex, consistent with a role for the 
thalamus in orchestrating the S-A axis of child and adolescent cortical development. 

Mechanistic studies in animal models have shown that the thalamus influences the temporal 
unfolding of developmental processes throughout the span of cortical ontogeny. In early embryonic 
development, thalamic axons influence the speed of cortical progenitor cell proliferation by releasing a 
diffusible factor that affects cell cycle kinetics46. As development progresses, the rate at which 
thalamocortical axons grow determines the temporal emergence of regionally-specific cortical maps 
(e.g., somatotopic maps)47. During early postnatal development, experience-dependent transfer of 
homeoproteins from the thalamus to cortical PV interneurons impacts the timing of sensory cortex 
critical periods48. As maturation decelerates, the stabilization of thalamocortical synapses onto PV 
interneurons helps to terminate periods of developmental plasticity8,11. Animal studies thus point to the 
thalamus as a timekeeper of cortical neurodevelopment. In the present work, we extend this line of 
research to humans by linking the timing of thalamocortical connection maturation to the hierarchical 
progression of maturational processes along the human cortex. 

The thalamus’s central position in global modes of brain connectivity and communication18,49 
makes it well-suited to be a subcortical regulator of experience-dependent cortical development. The 
thalamus is richly interconnected with a diverse mosaic of cortical regions16–18 as well as with sensory 
systems that process the external world, allowing it to serve as a nexus that can link evolving 
developmental schedules to physical, cognitive, and social environmental demands. The thalamus 
has also been identified as a central “gate” that supports indirect cortico-cortical activity propagation, 
specifically gating information transfer up hierarchically organized processing streams18,27,29,49. Though 
originally identified for cortical communication over short timescales, this thalamic gate may operate 
developmentally to propagate maturational sequences along the S-A axis. Early in development, 
exposure to new environmental inputs elicits a marked change in activity in primary cortices that is 
relayed through thalamic axons and that initiates activity-dependent cortical remodeling. As primary 
sensory and motor circuits are structurally refined, there is a gradual shift in their functional 
architecture and the patterning of their intrinsic activity2,43,44. Speculatively, this stereotyped refinement 
of intrinsic activity that occurs during cortical maturation may alter functional signals relayed back to 
the thalamus via cortical-thalamic projections. This feedback could lead to a consequent shift in 
thalamic inputs to higher-order cortex that initiates activity-dependent plasticity at the next stage of the 
processing hierarchy. In this system, cortical activity motifs communicated to the thalamus would 
provide a biological readout of maturational state, and the thalamus serves as a gate that propagates 
developmental sequences up the hierarchical S-A axis.  
 Understanding how the brain regulates hierarchical trajectories of plasticity should facilitate 
the identification of biological factors that influence windows of environmental sensitivity. We therefore 
examined associations between thalamocortical connectivity and multiple features of the childhood 
environment, observing distributed associations between connection properties and neighborhood 
(but not household) socioeconomic conditions. Notably, associations with neighborhood environment 
conditions were not homogeneous across the brain. Environment effects were relatively larger for 
thalamocortical connections that matured for longer, consistent with an accumulation of environmental 
influences enabled by protracted developmental malleability. As a result, environment effects 
increased in strength for thalamic connections to regions ranked highest in the S-A axis—mirroring 
the S-A patterning of associations between neighborhood conditions and regional activity previously 
described in the cortex2. Similarly patterned expression of environmental influences on 
thalamocortical and cortical properties may indicate that thalamic signals promote environment-
dependent sculpting of the cortex in youth. More broadly, these environmental findings add to 
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behavioral observations that neighborhood living conditions can impact long-term outcomes through 
developmental pathways50. These findings furthermore suggest that environmental impacts on the 
brain continue to accrue throughout development, emphasizing how interventions aimed at mitigating 
exposures to disadvantaged environments in adolescence could still help support the health of the 
developing brain. 
 The present in vivo analysis of thalamocortical structural connections in youth has several 
important limitations. First, white matter pathways identified with diffusion tractography are non-
directional, thus the connections studied here inherently contain inputs from thalamus to cortex as 
well as from cortex to thalamus. Causal investigations in animal models will be needed to study the 
isolated effects of thalamic projections to cortex on the timing of cortical development. Second, 
diffusion MRI and FA do not directly measure axonal pathways but rather aggregate directions of local 
water diffusion. Thus, a percentage of signal ascribed to thalamocortical structural connections may 
be influenced by diffusion induced by nearby connections in the same voxel. Third, we aimed to study 
relationships between age-related change in thalamocortical connections and cortical properties by 
comparing group-level developmental hallmarks. Future work delineating within-individual longitudinal 
relationships between the development of thalamocortical projections and cortical properties will help 
to probe these relationships at the individual level. Fourth, we studied associations between 
thalamocortical connectivity and neighborhood environment factor scores that robustly summarize 
many interrelated features of the environment. This approach precludes inference regarding which 
environmental features (e.g., access to material resources, cognitive enrichment, pollution, toxins) or 
associated psychosocial stressors or protective factors contribute to the associations observed here. 
Additional studies designed to parse which facets of the environment sculpt brain development and 
plasticity will be important for informing environmental policies that support youth living across 
socioeconomic circumstances.   
 The maturation of the human cerebral cortex follows spatiotemporally precise sequences 
during its prolonged neurodevelopmental course. The current study bridges animal findings and 
reproducible developmental neuroimaging to provide evidence linking the thalamus to the dominant 
sequence of child and adolescent cortical development. It furthermore identifies thalamocortical 
connectivity as an environmentally responsive biological system that could influence individual 
differences in the extent and timing of cortical developmental plasticity–and thus windows of 
developmental vulnerability and opportunity. Further insight into how thalamocortical connectivity 
affects individualized trajectories of cortical development could ultimately help to inform interventions 
that reduce the burden of psychopathology in youth by promoting their capacity for adaptive cortical 
malleability. 
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Methods 
 
Creation of a diffusion atlas of thalamocortical connections 

Our analytic approach began with the creation of a population-level tractography atlas 
comprised of spatially-specific connections between the thalamus and ipsilateral regions of cortex. 
This population-level atlas was instrumental for the subsequent reliable delineation of regionally-
specific thalamocortical pathways in data from individual participants. To create this atlas, we used a 
publicly available (https://brain.labsolver.org/hcp_template.html) population-average diffusion MRI 
template that was constructed using data from 1,065 participants included in the HCP Young Adult 
cohort51 (1200-subject release, ages 22-37 years, 575 females). The construction of this diffusion 
template has been described in detail52,53. Briefly, high-resolution, multi-shell diffusion MRI scans were 
acquired from the 1,065 participants at b-values of 1,000, 2,000, and 3,000 s/mm2 (90 directions per 
shell) and with 1.25 mm isotropic voxels. Preprocessed data were reconstructed using q-space 
diffeomorphic reconstruction (QSDR)54, which performs generalized q-sampling imaging (GQI) in MNI 
ICBM152 2009a space. GQI is a model-free diffusion MRI reconstruction approach that estimates 
diffusion orientation distribution functions (ODFs) directly from the diffusion signal (the distribution of 
diffusion spins) to resolve complex fiber orientations55. GQI-based ODFs can be estimated in single-
shell and multi-shell diffusion sampling schemes. QSDR outputs were aggregated across the 1,065 
participants to build a population-averaged template of voxelwise diffusion distributions. We used this 
QSDR diffusion template in DSI Studio for construction of the thalamocortical connectivity atlas. 

We first used DSI Studio to perform deterministic fiber tracking on the QSDR diffusion 
template to identify 2 million streamlines terminating in the left thalamus and 2 million streamlines 
terminating in the right thalamus. Contralateral white matter masks were used as regions of avoidance 
during hemisphere-specific thalamic tracking to only extract streamlines between the thalamus and 
ipsilateral brain regions. Deterministic tractography in DSI Studio uses voxel ODFs and quantitative 
anisotropy measures to resolve crossing fibers, reduce partial volume effects, filter noisy fibers, and 
define better tracking termination locations56. In the context of the present study, deterministic tracking 
offers advantages for identifying cortically-constrained thalamocortical connections with high validity 
and high termination specificity (as compared to probabilistic tracking approaches which tend to 
achieve broader coverage of connection profiles with a trade-off of more false positives and lower 
endpoint specificity57–59). Reflecting this advantage, in an international tractography challenge, the 
deterministic tractography approach implemented here reconstructed 92% validly connecting 
streamlines (compared to an average of 54% valid streamlines across all submissions) and 
additionally identified the lowest number of invalid white matter bundles60.  

The following parameters were used for thalamic tractography, which were chosen following 
parameter testing: threshold index = qa, otsu threshold = 0.45, minimum streamline length = 10 mm, 
maximum streamline length = 300 mm. In addition to these stable parameters, random parameter 
saturation was used to select the anisotropy threshold, turning angle, step size, and smoothing level 
for each generated streamline. Random parameter saturation entails using a random combination of 
the aforementioned tracking parameters (each within a pre-defined, set range of appropriate values) 
to generate a broad array of viable streamlines. By sampling across the entire appropriate parameter 
space rather than arbitrarily selecting a single value in the space, this approach can resolve 
streamlines with varied properties and enhances both reconstruction accuracy and computational 
reproducibility61. Following identification of 2 million streamlines with endpoints in the left and right 
thalamus, we extracted ipsilateral connections between the thalamus and individual cortical regions 
defined by the HCP-MMP atlas62, which was included with DSI Studio. These connections served as 
the basis of the thalamocortical tractography atlas. 
 All regionally-specific thalamocortical connections extracted by the above procedure 
underwent a process of visual quality assurance and manual curation prior to their inclusion in the 
final atlas. The macroscale anatomy of extracted connections was compared to prior thalamocortical 
tractography results and tract tracing accounts, when available, to confirm anatomical accuracy. All 
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connections were additionally subject to potential manual editing to delete false positive streamlines 
with biologically impractical architectures as well as superfluous streamlines that diverged from the 
core connection. The manual checking process was also used to entirely remove n = 16 
thalamocortical connections from the final atlas that were deemed overly sparse based on the 
template tracking or that could not be reconstructed in participant-level data in both PNC and HCPD 
datasets. After curating all extracted thalamocortical connections, skeletonized versions of the final 
set of connections were generated by deleting “repeat” streamlines with redundant trajectories, 
operationalized here as streamlines within a distance of < 3 voxels. Removal of redundant streamlines 
enhances the computational efficiency of the subsequent automated tracking procedure, without 
compromising anatomical representation or coverage. Skeletonized thalamocortical connections were 
combined to create a new atlas of human thalamocortical connections (Fig. 1). This atlas was used as 
a custom atlas with DSI Studio’s automated tractography (replacing the built-in ICBM152_adult atlas) 
to study thalamocortical connection maturation in developmental datasets. 
 
Developmental datasets 

Developmental analyses were conducted independently in three large, cross-sectional youth 
datasets: PNC, HCPD, and HBN. PNC and HCPD were used as the primary discovery and replication 
datasets for all study analyses. HBN, a sample of youth presenting with psychiatric concerns, was 
additionally included to assess whether key developmental and environmental findings replicated in a 
clinical sample. All subsequent methods concern these three datasets. In all three studies (PNC, 
HCPD, HBN), all participants over the age of 18 years gave informed consent prior to participating in 
the study. Participants under the age 18 gave informed assent and were enrolled with written consent 
from their legal guardians. Participants in all three studies received monetary compensation for 
participation; HBN participants additionally received diagnostic evaluations and referral information. 
PNC study procedures were approved by the Institutional Review Boards of both the University of 
Pennsylvania and the Children’s Hospital of Philadelphia. HCPD study procedures were approved by 
a central Institutional Review Board at Washington University in St. Louis. HBN study procedures 
were approved by the Chesapeake Institutional Reviewer Board. 
 
PNC 

PNC63 is a community sample of children and adolescents from a broad range of 
socioeconomic circumstances that were residing in the greater Philadelphia area (Pennsylvania, 
USA). Initial exclusion criteria for the PNC were minimal and included inability to engage in psychiatric 
and cognitive phenotyping, impaired vision or hearing, and medical problems that could impact brain 
function (described in detail in Satterthwaite et al., 2016). Data from 1,145 PNC participants were 

included in the current study. Participants ranged in age from 8 to 23 years (mean age of 15.3  3.5 
years) and had a sex distribution of 608 females and 537 males (sex was self-reported; intersex was 
not assessed). Participants self-identified their race and ethnicity: 0.3% of participants identified as 
American Indian or Alaskan Native, 0.9% as Asian, 42.4% as Black or African American, 10.5% as 
multiracial, and 45.9% as White.  
 
HCPD 

HCPD64 is a sample of children and adolescents that were recruited at four academic sites 
including the University of Minnesota (Minnesota, USA), Harvard University (Massachusetts, USA), 
Washington University in St. Louis (Missouri, USA) and University of California-Los Angeles 
(California, USA). HCPD was designed to be a US population-representative study of typical brain 
development that included participants from varied geographical, ethnic, and socioeconomic 
backgrounds. Initial exclusion criteria for this study are detailed in a prior report64; notable exclusions 
included premature birth, serious neurological and endocrine conditions, requiring special services at 
school, treatment for a psychiatric illness for > 12 months, and hospitalization for a psychiatric 
condition for > 2 days. Data from 572 HCPD participants were included in the current study (lifespan 
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2.0 release). Participants ranged in age from 8 to 22 years (mean age of 14.8  3.9 years) and had a 

sex distribution of 306 females and 266 males (sex was self-reported; intersex was not assessed). 
Participants self-identified their race and ethnicity: 7.7% of participants identified as Asian, 10.3% as 
Black or African American, 14.0% as multiracial, and 65.2% as White (data were missing for 2.8% of 
participants).  
 
HBN 
 HBN65 is a sample of children and adolescents from the New York City area (New York, USA) 
that were referred to the study due to concerns about psychiatric symptoms. The HBN initiative was 
created by the Child Mind Institute to sample a broad range of commonly encountered forms of 
clinically-significant youth psychopathology; as a result, study exclusions were generally minimal5. 
Extensive information about the HBN sample is provided in Alexander et al., 20175. Approximately 
85% of participants in this sample meet criteria for a clinical disorder, including but not limited to 
anxiety, depressive, attention deficit and hyperactivity, conduct, impulse control, autism spectrum, 
learning, communication, and stress disorders. Data from 959 HBN participants were included in the 

current study. Participants ranged in age from 8 to 22 years (mean age of 12.2  3.1 years) and had a 

sex distribution of 329 females and 585 males (sex was self-reported; intersex was not assessed; 45 
participants were missing a binary sex indication and were assigned a sex of other). Participants self-
identified their race and ethnicity: 2.5% of participants identified as Asian, 13.5% as Black or African 
American, 46.5% as White, and 18.2% as not belonging to these three race categories (data were 
missing for 19.3% of participants). 
 
MRI Acquisition 
 This study uses T1-weighted (T1w) structural images, diffusion-weighted images, and field 
maps collected from the three developmental datasets.  
 
PNC 

MRI data collected from all PNC participants were acquired on the same 3T Siemens TIM Trio 
Scanner at the University of Pennsylvania. The T1w images were acquired with a magnetization-
prepared rapid acquisition gradient-echo (MPRAGE) sequence with the following parameters: 
repetition time of 1,810 ms, echo time of 3.51 ms, inversion time of 1,100 ms, flip angle of 9 degrees, 
160 slices, and a voxel resolution of 0.94 × 0.94 × 1 mm. Single shell diffusion scans were acquired 
with a b-value = 1,000 s/mm2 in 64 directions with 7 interspersed scans with b = 0 s/mm2; all volumes 
were acquired in the anterior-posterior direction. The collection of these 71 volumes was divided 
between two runs. The following parameters were used for the diffusion acquisition: repetition time of 
8,100 ms, echo time of 82 ms, and a voxel resolution of 1.875 x 1.875 x 2 mm. In addition to the 
structural and diffusion acquisitions, a phase-difference based field map was acquired to facilitate 
susceptibility distortion correction of the diffusion data. Field maps were acquired with a double-echo, 
gradient-recalled echo (GRE) sequence with a repetition time of 1,000 ms, echo times of 2.69 ms and 
5.27 ms; a flip angle of 60 degrees, 44 slices, and a voxel resolution of 3.75 x 3.75 x 4 mm.  
 
HCPD 

HCPD MRI scans were acquired at 4 sites on 3T Siemens Prisma scanners (MR derivatives 
were harmonized across sites as described below). T1w images were acquired with a 3D multi-echo 
MPRAGE sequence with an in-plane acceleration factor of 2 and the following additional parameters: 
repetition time of 2,500 ms, echo times of 1.8, 3.6, 5.4, and 7.2 ms, inversion time of 1,000 ms, flip 
angle of 8 degrees, 208 slices, and a voxel resolution of 0.8 mm isotropic. Diffusion scans were 
acquired in four consecutive runs with two shells of b = 1,500 and 3,000 s/mm2 with a multiband factor 
of four. 92-93 directions were acquired per shell (370 directions total) along with 28 total b = 0 
s/mm2 volumes for a total of 398 volumes. Of the 370 diffusion-weighted volumes, 185 distinct 
directions were each acquired twice with opposite phase encoding directions (anterior-posterior and 
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posterior-anterior). The following parameters were used for the diffusion acquisition: repetition time of 
3,230 ms, echo time of 89 ms, and a voxel resolution of 1.5 mm isotropic. 

 
HBN 

This study analyzes 3T MRI data from the HBN, which were acquired at 3 sites (MR 
derivatives were harmonized across sites as described below). Data were collected at the Rutgers 
University Brain Imaging Center on a 3T Siemens Tim Trio scanner as well as at the CitiGroup Cornell 
Brain Imaging Center and the CUNY Advanced Science Research Center on 3T Siemens Prisma 
Scanners. T1w images were acquired with a MPRAGE sequence with the following parameters: 
repetition time of 2,500 ms, echo time of 3.15 ms, inversion time of 1,060 ms, flip angle of 8 degrees, 
224 slices, and a voxel resolution of 0.8 mm isotropic. Diffusion scans were acquired with a multiband 
factor of three in two shells of b = 1,000 and 2,000 s/mm2 in the anterior-posterior phase encoding 
direction. 64 directions were acquired per shell (128 directions total) along with 1 b = 0 volume. The 
following parameters were used for the diffusion acquisition: repetition time of 3,320 ms, echo time of 
100.2 ms, and a voxel resolution of 1.8 mm isotropic. A reverse phase encoding b = 0 was 
additionally acquired for use as an EPI-based field map in susceptibility distortion correction. 
 
Diffusion MRI preprocessing  

Diffusion scans (and corresponding T1w images and fieldmaps) from PNC, HCPD, and HBN 
were preprocessed using QSIPrep66, which is based on Nipype and uses Nilearn, Dipy, ANTs, FSL, 
and software tools described below. QSIPrep versions 0.14.2 and 0.16.1 were used in PNC/HBN and 
HCPD, respectively. The same sequence of preprocessing steps were performed in both datasets. 
However, given that slightly different QSIPrep versions were applied to PNC/HBN and HCPD, the 
software versions used by its internal operations differed. The following internal software versions 
were used in PNC/HBN and HCPD, respectively: Nipype 1.6.1 and 1.8.5, Nilearn 0.8.0 and 0.9.2, 
ANTs 2.3.1 and 2.4.0, FSL 6.0.3 and 6.0.5. 

Anatomical processing was also performed within QSIPrep. T1w images were corrected for 
intensity non-uniformity using N4BiasFieldCorrection67 (ANTs), skull-stripped using 
antsBrainExtraction (ANTs) with OASIS as a target template, and spatially normalized to the nonlinear 
ICBM152 2009c template using nonlinear registration with antsRegistration. For diffusion data 
processing, a series of preprocessing steps were applied separately to data from each diffusion run (2 
runs in PNC; 4 runs in HCPD; 1 run in HBN) and then runs were concatenated. Any images with a b-
values < 100 s/mm2 were considered b = 0 volumes. First, MP-PCA denoising, as implemented in 
dwidenoise (MRtrix368), was applied with a 5-voxel window. After MP-PCA, Gibbs unringing (MRtrix3) 
was performed with mrdegibbs. Following unringing, B1 field inhomogeneity was corrected using 
dwibiascorrect (MRtrix3), which implements the N4 algorithm67. After B1 bias correction, the mean 
intensity of the diffusion-weighted series was adjusted so the mean intensity of all b = 0 images 
matched across separate runs. QSIPrep was additionally used to correct for head motion, eddy 
currents, and susceptibility distortions. FSL’s eddy was used for head motion and eddy current 
correction69. In all datasets, eddy was configured with a q-space smoothing factor of 10, a total of 5 
iterations, and 1000 voxels used to estimate hyperparameters. Eddy’s outlier replacement was run70.  

Given that PNC, HCPD, and HBN acquired different versions of fieldmaps (GRE and EPI), 
different approaches were taken to correct for susceptibility artifacts. In the PNC, fieldmap-based 
susceptibility distortion correction was performed by creating a B0 map using a phase-difference 
image and a magnitude image from the GRE fieldmap acquisition. In HCPD and HBN, reverse phase-
encoding EPI-based fieldmaps were collected, resulting in pairs of images with distortions going in 
opposite directions. For EPI-based susceptibility distortion correction, b = 0 references images with 
reversed phase encoding directions were used along with an equal number of b = 0 images extracted 
from diffusion scans. From these pairs the susceptibility-induced off-resonance field was estimated. 
Fieldmaps were ultimately incorporated into the eddy current and head motion correction 
interpolation. Final interpolation was performed using the Jacobian modulation (jac) method. After 
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preprocessing, the concatenated diffusion data were resampled to AC-PC to be in alignment with the 
T1w data. The output resolution of the fully preprocessed diffusion data was 1.8 mm isotropic in PNC 
and HBN and 1.5 mm isotropic in HCPD.  
 
Sample construction  

PNC, HCPD, and HBN participants with T1w images, field maps, and identical-parameter71 

diffusion MRI scans (i.e., non-variant acquisitions) available were considered for inclusion in the 
present work. Exclusion criteria were applied to available scans in each dataset to ensure that only 
high quality neuroimaging data from youth without serious medical conditions were analyzed. In all 
three datasets, participants were excluded from the initial neuroimaging sample for medical problems 
that could impact brain function or incidentally encountered abnormalities in their neuroimaging data 
(medical exclusion). Participants were additionally excluded if they had low quality T1w images with 
motion, artifacts, or poor surface reconstructions (T1w quality exclusion), if their raw diffusion scans 
were missing gradient directions (diffusion directions exclusion), if in-scan head motion during the 
diffusion scan exceeded a mean framewise displacement of 1 mm (diffusion motion exclusion), or if 
their preprocessed diffusion scans had a low neighborhood correlation (diffusion quality exclusion). 
The neighborhood correlation metric quantifies the average pairwise spatial correlation between pairs 
of diffusion volumes that sample similar points in q-space, with lower correlations reflecting reduced 
data quality. The range of neighborhood correlation values obtained will vary by the diffusion scan 
acquisition parameters and noise level, thus dataset-specific exclusion thresholds were used (< 0.9 in 
PNC, < 0.6 in HCPD, < 0.7 in HBN). 

PNC was used as the discovery dataset in this study. In PNC, 1,358 individuals had all 
required neuroimaging data available. From this original neuroimaging sample, 213 total participants 
(15.7%) were ultimately excluded for the above criteria (applied successively) including: n = 118 for 
medical exclusions, n = 25 for the T1w quality exclusion, n = 57 for the diffusion quality exclusion, and 
a remaining n = 13 for the diffusion motion exclusion. HCPD was used as the main replication dataset. 
In HCPD, 640 individuals had neuroimaging data available. From this originally eligible sample, 54 
total participants (10.6%) were excluded for the above criterion including: n = 7 for medical exclusions, 
n = 8 for the diffusion directions exclusion, n = 15 for the diffusion quality exclusion, and then n = 24 
for the diffusion motion exclusion. In addition, in order to directly compare developmental results from 
HCPD to PNC, children less than 8 years old were excluded from HCPD to match the PNC age range 
(n = 14; only 2.4% of the remaining eligible sample). This young age exclusion was additionally 
important in HCPD as there is likely insufficient data available from individuals < 8 years old for 
accurate developmental modeling in this dataset (the same age range exclusion has been applied in 
the past by independent groups for this reason6). HBN was used as a secondary replication dataset to 
assess if findings could be extended to a predominantly psychiatric sample. As with HCPD, we only 
considered data from participants that overlapped with the PNC age range. 1,530 participants from 
data releases 1-9 in HBN had non-variant (collected with the same acquisition) T1w and diffusion 
scans available. In this initial sample, 1,149 were between the ages of 8 and 22 years. From the  
1,149 individuals, 190 total participants (16.5%) were ultimately excluded for the above criterion 
including: n = 53 for the T1w quality exclusion, n = 10 for the diffusion quality exclusion, and then n = 
127 for the diffusion motion exclusion. 
 
Delineation of individual-specific thalamocortical pathways 

In order to consistently identify the same thalamocortical connections across PNC, HCPD, and 
HBN participants, we used our population-level thalamocortical tractography atlas as an anatomical 
prior with DSI Studio’s trajectory-based automated tract recognition (auto-track) approach53,61. To 
conduct auto-track, we first reconstructed participants’ preprocessed diffusion scans with GQI. GQI 
was executed using QSIPrep’s GQI reconstruction workflow (version 0.16.0RC3 in all datasets) with a 
ratio of mean diffusion distance of 1.25. Auto-track uses a distance-based pathway recognition 
approach to best match streamlines generated in individual participant’s data to connections included 
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in the thalamocortical connectivity atlas. Specifically, the auto-track procedure involves non-linearly 
warping thalamocortical atlas connections to participant diffusion data, seeding deterministic 
tractography in voxels that correspond to each connection in the atlas, comparing generated 
streamlines to atlas connections using the Hausdorff distance, and discarding streamlines with a 
Hausdorff distance above a selected threshold (i.e., those with trajectories that diverge from the atlas 
connection). We used a relatively strict Hausdorff distance threshold of 10 to ensure identification of 
connections with similar shapes and anatomical endpoints across individuals while still allowing for 
subtle person-specific differences in anatomy. The following specific parameters were used for 
deterministic tracking: threshold index = qa, otsu threshold = 0.50, a track:voxel ratio of 4, a yield rate 
of .0000001, and no topology-informed pruning. As with the tractography atlas, random parameter 
saturation was used to select the anisotropy threshold, turning angle, step size, and smoothing level 
for each generated streamline.  

Nearly all thalamocortical structural connections represented in the population-level atlas could 
be clearly identified in diffusion data from all youth participants. Few connections, however, were 
either not identified or only sparsely reconstructed in participant data. These unsuccessful 
reconstructions at the participant-level provide important evidence that the thalamocortical 
tractography pipeline employed here was not over-fitting participants’ data to identify connections that 
were not faithfully represented in the diffusion signal. To ensure that only well-represented 
thalamocortical connections were analyzed in the present work, we applied exclusion criterion to 
connections at individual and dataset levels. In particular, for each participant, we excluded 
connections that had < 5 streamlines from consideration. After applying this participant-level 
exclusion, we then only analyzed connections for which at least 90% of participants had a valid (>= 5 
streamlines) connection. As a result, 15 connections (6.3%) present in the original thalamocortical 
connectivity atlas were not studied in PNC, 8 connections (3.4%) in HCPD, and 13 connections 
(5.5%) in HBN. 
 
Derivation of thalamocortical connectivity properties 
 For all reconstructed thalamocortical connections, we computed metrics that provide 
information about connection microstructure and about where the connection’s streamlines terminated 
within the thalamus. Specifically, we calculated two metrics, FA and thalamic C-Mt gradient position, in 
all analyzed connections from all youth datasets. FA is a diffusion tensor-derived measure sensitive to 
tissue microstructure that has been studied in the developmental literature, has good test-retest 
reliability, and can be appropriately calculated from both single and multi-shell acquisitions. We used 
DSI Studio to compute the average FA along each thalamocortical connection. FA was calculated 
based on the single-shell of b = 1,000 s/mm2 in PNC and shells < 1,750 s/mm2 in HCPD and HBN. 
High b-value shells (> 1,750) were not used for the calculation of FA as high b-values sensitive to 
non-gaussian diffusion do not meet the assumptions of the tensor fit, and can introduce noise or 
inaccuracies into DTI values. Note, however, that all shells were used to enhance tractography 
performance. Given that HCPD and HBN diffusion data were collected across different scanners, we 
used ComBat to harmonize thalamocortical FA measures within each dataset to mitigate scanner-
specific effects. ComBat has previously been shown to remove unwanted scanner effects from FA 
measures when age is the biological phenotype of interest, and to do so more effectively than 
alternate harmonization approaches72. ComBat was implemented via the neuroCombat package in R 
(https://github.com/Jfortin1/neuroCombat_Rpackage). Age was protected as a biological variable of 
interest in ComBat along with developmental model covariates of sex and in-scan head motion.  

We additionally derived a C-Mt value for every delineated thalamocortical connection, which 
quantifies where the thalamic endpoints of the connection fall in a within-thalamus core-matrix 
gradient. To accomplish this, we used the core-matrix thalamic gradient30 from Müller et al., 2020 
(obtained from https://github.com/macshine/corematrix in MNI space). This thalamic gradient was 
produced based on the relative mRNA expression of parvalbumin (PVALB) and calbindin (CALB1) 
genes, which are markers for core and matrix thalamic cell types, respectively. We calculated the 
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average C-Mt value of all voxels that corresponded to a given structural connections’ thalamic 
termination area by transforming a mask of each thalamocortical connection to MNI space using 
warps computed during preprocessing in QSIPrep. The mean C-Mt value of all thalamic voxels within 
the connection’s mask was then computed. 
 
General approach to hypothesis testing 

Throughout this work, we evaluate the statistical significance of GAM-derived smooth terms 
and linear terms as well as the significance of spatial correlations between brain maps. Here we note 
general approaches used in significance testing, which will be described in further detail below. When 
assessing significance with GAMs, which were applied individually to each thalamocortical 
connection, the false discovery rate correction was used to correct p-values (pFDR) for multiple 
comparisons across all connections within a dataset and statistical significance was set at pFDR < 0.05. 
When correlating brain maps, we used non-parametric Spearman’s rank-based correlations 
throughout to assess monotonic relationships between variables, except when comparing the same 
metric derived independently in two datasets (e.g., age effects in PNC and HPCD) as linear 
relationships were expected. To compute the significance of each correlation comparing two brain 
maps, we employed spin-based, spatial rotation tests or “spin tests”73. Spin tests compute a p-value 
(pspin) by comparing the empirically observed correlation between two brain maps to a null distribution 
of correlations obtained by spatially rotating (spinning) spherical projections of the brain maps that 
maintain their native spatial covariance structure. The pspin value is computed as the number of times 
the rotation-based correlation value is greater than (for positive empirical correlations) or less than (for 
negative empirical correlations) the empirical correlation value, divided by the total number of spatial 
rotations (spins). We used a null of 10,000 spatial rotations throughout. To carry out spin tests with 
thalamocortical connectivity data, we projected connection-derived metrics to the cortical surface for 
spinning by assigning each HCP-MMP cortical region the value of its corresponding thalamic 
connection. Region-based spin tests were implemented using the rotate_parcellation algorithm in R 
(https://github.com/frantisekvasa/rotate_parcellation). Spin tests were additionally used to create a 
null distribution of values for anatomical and environment enrichment tests (described further below). 
All statistics were performed in R version 4.2.3. All statistical tests were two-sided. Statistical analyses 
were conducted separately in each of the three developmental datasets. 
 
Maps of cortical organization, function, and development  
 We integrated brain maps of cortical feature variability, functional diversity, and developmental 
heterochronicity into the present study to provide insights into thalamocortical connection anatomy 
and development. To facilitate this, the HCP-MMP atlas was used to parcellate data from the brain 
maps described below. 
 
The sensorimotor-association axis of cortical organization 
 Every HCP-MMP region was assigned a specific rank in the S-A axis based on its position in 
this dominant motif of cortical feature organization. S-A axis ranks were previously computed in 
Sydnor et al., 20211 by averaging rank orderings of ten cortical feature maps that exhibit systematic 
and concerted spatial variation between primary sensory and motor cortices and transmodal 
association cortices. These maps include the principal gradient of functional connectivity74, the cortical 
T1/T2 ratio75, macroscale MRI measurements of cortical thickness, allometric scaling calculated as 
local area scaling with changes in total brain size76, metabolic demand indexed by aerobic 
glycolysis77, cerebral perfusion estimated by arterial spin labeling78, functional diversity determined by 
spatial variation in Neurosynth meta-analytic decodings, cytoarchitectural similarity measured using 
the BigBrain atlas79, a dominant mode of gene expression proxied by the first principal component of 
brain-expressed genes75, and macaque-to-human evolutionary cortical expansion80. Accordingly, the 
S-A axis represents a large-scale, prominent axis of cortical organization that captures the 
stereotyped patterning of numerous macrostructural, microstructural, functional, metabolic, 
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transcriptomic, and evolutionary features across the human cerebral cortex. The rank ordering of all 
HCP-MMP regions along the S-A axis was obtained from https://github.com/PennLINC/S-
A_ArchetypalAxis. Low ranking regions at the axis’s sensorimotor pole are nearly exclusively primary 
and early unimodal cortices. Mid-ranking regions span from multimodal cortices involved in 
multisensory integration and language to those involved in attention and working memory. Higher 
ranking regions are involved in decision making capacities. Regions at the axis’s association pole are 
strongly involved in cognitive control, social cognition, self-referential thought, and emotion regulation. 
 
Neurosynth meta-analytic association maps 
 Neurosynth81 version 0.7 was used to create HCP-MMP meta-analytic maps for a diversity of 
psychological terms capturing both lower-order and higher-order psychological processes. In 
accordance with prior work82 we obtained meta-analytic activation maps for 123 cognitive terms that 
were present in both the Neurosynth database and the Cognitive Atlas83; maps were obtained using 
the Neuroimaging Meta-Analysis Research Environment (NiMARE)84. Term-specific maps were 
computed in volumetric space using multilevel kernel density Chi-square analysis, mapped to the fslr 
surface, and parcellated with the HCP-MMP parcellation. Values in term-specific maps are 
association test z-scores that quantify the extent to which activation in a cortical region occurred more 
consistently in prior functional MRI studies that mentioned a given term as compared to studies that 
did not.  
 
Brain charts of developmental heterochronicity 
 We used previously published maps characterizing across-cortex variability in the 
development of the E/I ratio, myelin, and intrinsic activity amplitude as indexed by non-invasive MRI 
measures sensitive to these cortical properties. The cortical E/I ratio was non-invasively estimated by 
Zhang, Larsen et al. 20235 by fitting a biophysically plausible circuit model to resting state functional 
MRI data from youth in the PNC (N = 855, ages 8-23 years). The magnitude of maturational decline in 
the E/I ratio was quantified across the cortex through a linear regression between model-estimated E/I 
ratio and age, producing an age slope map that was parcellated with the HCP-MMP atlas. Age-related 
change in cortical myelin content was studied by Baum et al., 20226 by calculating the T1/T2 ratio in 
data from HCPD participants (N = 628, ages 8-22 years). These authors determined the annualized 
rate of cortical myelin growth in each HCP-MMP region by fitting GAMs with a smooth function for age 
and quantifying the difference between the model-estimated T1/T2 ratio at ages 21 and 8, divided by 
the number of years in this range (a point estimate for the rate was estimated by posterior sampling). 
Intrinsic activity fluctuation amplitude was studied in Sydnor et al., 20232 using resting-state functional 
MRI data from the PNC sample (N = 1,033, ages 8-23 years). Fluctuation amplitude was quantified as 
the average power of low frequency functional MRI fluctuations, given that increases in power in the 
frequency domain are mathematically proportional to increases in signal amplitude in the time domain. 
The age at which fluctuation amplitude began to decrease was evaluated in every cortical region by 
fitting GAMs with thin plate regression splines to model developmental trajectories and identifying the 
youngest age at which the first derivative of the developmental spline was significantly negative. 
 
Analysis of thalamocortical connectivity atlas characteristics  

After creating a diffusion atlas of human thalamocortical connections, we assessed whether 
cortical regions without connections included in the atlas (“absent”) had smaller surface areas and 
greater sulcal depth than regions with thalamic connections represented in the atlas (“present”). To 
statistically test this, we computed the average surface area of cortical regions with absent thalamic 
connections, and compared this empirical value to a null distribution of surface areas obtained by 
spatially rotating the cortical surface area map. A spin testing-based pspin value was computed by 
calculating the number of times the empirical surface area value was less than the null value. The 
same spin testing procedure was implemented to determine whether regions with absent connections 
had significantly greater sulcal depth than those with present connections. 
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Analysis of thalamocortical connection anatomical properties   
 To study whether thalamocortical connections exhibited different patterns of connectivity with 
sensory versus association cortices, we assessed whether thalamocortical connection FA and C-Mt 

values exhibited ordered variation along the S-A axis. As described above, FA and C-Mt values were 
calculated for every thalamocortical connection reconstructed in every individual. To study alignment 
of these connectivity measures with the S-A axis, the average (across-participant) value was 
computed for each connection. Spearman’s correlations between connection FA or C-Mt values and 
S-A axis ranks were then calculated and the significance of these correlations were determined with 
spin tests. 
 
Analysis of thalamocortical connection development 
Developmental modeling 
 To quantitatively characterize diversity in the development of structural connections between 
the thalamus and individual cortical regions, we fit connection-specific GAMs with FA as the 
dependent variable, age as a smooth term, and sex and diffusion scan head motion (mean framewise 
displacement) as linear covariates. Models were fit separately for each individual thalamocortical 
connection using thin plate regression splines as the smooth term basis set and the restricted 
maximal likelihood approach for selecting smoothing parameters. All models were fit using the mgcv 
package85 in R. We used GAMs for developmental modeling given that they are capable of capturing 
a broad array of both linear and non-linear age-dependent relationships and can furthermore be 
harnessed to characterize age windows of significant developmental change and change offset. Each 
GAM produces a smooth function for age that is generated from a linear combination of weighted 
basis functions (splines) and that represents the connection’s developmental trajectory. As in our prior 
work2, to prevent overfitting of the flexible smooth function we set the maximum basis complexity (k) 
to 3. A value of k = 3 was selected given that model fits were relatively non-complex (requiring a 
smaller number of knots) and the k-index indicated this basis complexity was sufficient. Higher values 
of k were moreover visually deemed to result in overfitting in multiple connections. 
 After fitting connection-specific GAMs, we interrogated GAM-derived properties including the 
significance of the age effect, the magnitude of the age effect, and the age at which the connection 
stopped exhibiting significant developmental change. The significance of the age effect, which 
denotes the significance of the smooth function quantifying the relationship between FA and age, was 
determined by an ANOVA F-test that compared the full GAM model to a nested, reduced model with 
no age term (in the form of a generalized likelihood ratio test). A significant F-test (FDR-corrected; 
pFDR) indicates that including the smooth term for age in the model significantly improved the model fit 
as compared to a model with only sex and diffusion scan head motion as predictors. The magnitude 
of the age effect was calculated as the partial R2 between the full GAM model and the reduced model 
without age. To resolve the age at which each connection stopped exhibiting significant 
developmental change during childhood and adolescence—which can be interpreted as the 
connection’s age of maturation—we first calculated the first derivative of the age smooth function 

using finite differences, which provides an age-specific rate of developmental change ( FA /  age). 
We then identified the youngest age at which the rate of developmental change was not significantly 
different from 0 by obtaining a simultaneous 95% confidence interval for these first derivatives and 
pinpointing when the confidence interval first included 0. Derivative analyses utilized the gratia 
package86 in R. After fitting main developmental GAMs, we additionally fit models with a sex by age 
(factor-smooth) interaction to assess whether developmental trajectories of FA significantly differed by 
sex. The significance of the interaction term was extracted and corrected for multiple comparisons 
(pFDR). 
 
Developmental characterization 
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 A primary goal of this research was to empirically evaluate the hypothesis that the 
development of thalamocortical structural connections is coupled to the heterochronous patterning of 
developmental change across the cortex’s S-A axis. We assessed this hypothesis by characterizing 
how differences in ages of thalamocortical connection maturation were related to (1) cortical function, 
(2) cortical and thalamic axes, and (3) cortical developmental heterogeneity. To facilitate these three 
analyses, we computed the age of maturation for each connection and projected these ages onto 
HCP-MMP regions.  

First, to functionally decode cortical regions with earlier and later maturing thalamic 
connections, we computed Spearman’s correlations between the cortex-projected thalamocortical age 
of FA maturation map and each of the 123 psychological term meta-analytic maps made using 
Neurosynth. In this analysis, psychological terms with the most negative correlation values exhibit 
high fMRI activation-based z-scores in cortical regions with the earliest maturing thalamic 
connections. Terms with the most positive correlations display highest z-scores in cortical regions with 
the latest maturing thalamic connections. To provide insight into the types of functions ascribed to 
regions with early versus late maturing thalamocortical connections, we therefore identified the 10 
most negatively correlated and 10 most positively correlated cognitive terms that emerged in a given 
dataset (thus extracting 20 developmentally-pertinent terms total). We also constructed a term-overlap 
null distribution to statistically assess correspondence of the 20 terms across independent 
developmental datasets. For this term-overlap null, we computed the number of overlapping terms 
(n/20) obtained between two datasets as well as the probability of obtaining  >= n overlapping terms 
when randomly drawing 20 terms per dataset from the full 123 term list (without replacement; 10,000 
iterations). This null distribution of term overlaps was used to calculate a permutation-based pPERM 
value. 

Second, to further characterize how differences in thalamocortical connection development 
were instantiated across the cortex and thalamus, we correlated thalamocortical connection 
maturational ages with the S-A axis, with the cortex’s three primary anatomical axes (A-P, D-V, and 
M-L axes), and with the core-matrix thalamic gradient using Spearman’s correlations. We ascertained 
the significance (FDR-corrected) of these individual correlations with spin tests. We additionally 
assessed whether the correlation with the S-A axis was significantly greater in magnitude than 
correlations with A-P, D-V, and M-L cortical axes and the core-matrix gradient by implementing 
statistical tests (FDR-corrected) for comparing two dependent, overlapping correlations. These tests 
used a back-transformed average Fisher’s Z procedure to compare correlations and were executed 
using the cocor package87 in R with the hittner2003 test. 

Third, we aimed to study correspondence between the spatiotemporal patterning of 
maturational variability across cortical regions and across thalamocortical structural connections. To 
test for correspondence between cortical and thalamocortical development, we used the three 
previously described cortical charts of developmental heterochronicity. Specifically, we used 
Spearman’s correlations and spin tests to relate the thalamocortical age of maturation map to 
developmental maps of biophysical model-estimated E/I ratio, T1/T2 ratio-indexed cortical myelin, and 
functional MRI-based fluctuation amplitude.  
 
Analysis of environmental effects 
Measures of youths’ socioeconomic environments 
 We examined relationships between thalamocortical connection FA and socioeconomic 
features of youths’ household environments (education, income) and neighborhood environments 
(geocoding-derived factor scores). Not all datasets collected the same environmental information, 
thus the most relevant variables available were studied here. Household socioeconomic position was 
proxied by the average years of education obtained by both (when data was available) or one 
caregiver in both PNC and HCPD. Caregiver years of education were directly reported in PNC and 
were missing for 8 participants who were excluded from this analysis. In HCPD, caregiver education 
information was reported as the highest educational level achieved and was therefore recoded to a 
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numerical value to allow for continuous analyses. Grade levels were directly recoded (e.g., “8 th grade” 
to 8 years, “10th grade” to 10 years) and degrees were recoded based on average years to degree 
completion in the United States (e.g., “Bachelor’s degree” to 16 years, “Professional degree” to 19 
years, “Doctoral degree” to 22 years). Household socioeconomic position was additionally estimated 
by the income-to-needs ratio in HCPD (income was not provided in PNC). This ratio was calculated by 
dividing total annual family income by the federal poverty line based on the participant’s total family 
size. A city cost of living-adjusted ratio was then computed to account for geographic area (St. Louis = 
1, Minneapolis = 1.175, Los Angeles = 1.558, Boston = 1.624). To mitigate the potential impact of 
extreme income outliers and account for the right-skewed distribution of these data, the city-adjusted 
income-to-needs ratio was winsorized (lowest and highest 1% of the data) and the natural logarithm 
was taken, in accordance with prior studies37,88. 
 Information about the neighborhood, rather than household, environment was obtained using 
geocoding and was not available in HCPD given that participant addresses were not released. In 
PNC, data about each individual’s neighborhood (block-level) environment were extracted using home 
addresses and the census-based American Community Survey. Census-based variables were factor 
analyzed in Moore et al., 201689 to derive a factor score for each participant that captured multivariate 
features of the neighborhood environment a child lived in. The first factor from an exploratory two-
factor analysis performed in Moore et al., 2016 was used here, which has the following factor 
loadings: the percentage of residents who were married (loading = 0.85), median family income (0.82), 
the percentage of residents with a high school education (0.74), the percentage of residents who were 
employed (0.68), median age (0.61), the percentage of residents who were female (−0.26), the 
percentage of houses that were vacant (−0.60), population density (−0.71), and the percentage of 
residents in poverty (−0.86).  

Although neighborhood environment information could not be obtained in HCPD, participant 
addresses were collected in HBN, allowing us to assess whether neighborhood environment results 
replicated in a second sample. Mirroring the approach taken in the PNC, a neighborhood environment 
factor score was calculated for HBN participants by factor analyzing geocoded variables at the level of 
census block-groups. Specifically, variables from the American Community Survey and Environmental 
Protections Agency were factor analyzed using exploratory structural equation modeling, and five 
factors were extracted. The neighborhood socioeconomic factor included here had the following 
loadings: median family income (loading = 0.89), median home value (0.80), median owner upkeep 
cost (0.80), median rent (0.78), the percent of residents with a high school education (0.57), median 
rooms per dwelling (0.52), the percentage of residents who were married (0.50), the percent of 
residents without health insurance (-0.49), and the percent of residents in poverty (-0.61). Address 
information and associated neighborhood environment scores were missing for 13 individuals in HBN 
who were excluded from this analysis. 
 
Statistical testing of environmental associations 
 To model relationships between thalamocortical connection FA and environmental features, 
we re-fit developmental GAMs with environment variables included as linear continuous covariates. 
Model terms included a smooth term for age and linear terms for sex, diffusion scan head motion, and 
the environment variable under study (caregiver education, income, or neighborhood factor score). 
This model formulation allowed us to identify age-independent main effects of the environment across 
developmental stages. Significance of the linear environment term was FDR corrected (pFDR) across 
all connection-specific GAMs in an analysis. The direction and magnitude of the relationship between 
connection FA and the environment variable was determined by the t value of the linear environment 
term, which we refer to as the statistical environment effect. In addition to the above GAMs used to 
quantify main effects of the environment, we furthermore fit GAMs with an age by environment varying 
coefficient interaction to model how associations between the environment variable and connection 
FA vary over the smooth function of age. These varying coefficient interaction GAMs were used to 
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predict connection-specific FA developmental trajectories for varying levels of the environment 
variable. 
 
Environmental characterization 
 In a final series of analyses, we explored how significant environment effects varied across the 
S-A axis during youth. These analyses were only conducted for neighborhood environment effects, 
given that caregiver education and income effects were ultimately not significant. We first conducted 
an effect enrichment analysis wherein we tested whether the across-connection distribution of 
environment effects (t values) was homogeneous, or whether effects were significantly smaller or 
larger in magnitude for connections to certain portions of the S-A axis. To execute this enrichment 
analysis, we first computed the average environment t value in five quintiles of the S-A axis. We then 
compared this empirical t to a null distribution of quintile-specific t values obtained by applying 10,000 
spherical spatial rotations to the cortex-projected environment effect map, producing a spin-based 
enrichment pspin. To complement the quintile enrichment analysis, we furthermore correlated 
significant environment effects with the S-A axis and with A-P, D-V, and M-L cortical axes and the 
core-matrix thalamic gradient using Spearman’s correlations (with FDR-corrected spin tests). We 
compared the magnitude of correlations between the S-A axis and each of these four axes using the 
previously described cocor test (FDR-corrected) for comparing two dependent, overlapping 
correlations. 
 
Data availability 
 The present work utilized existing developmental data from the PNC 
(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2), the Lifespan 
2.0 HCPD release (https://nda.nih.gov/ccf), and the Healthy Brain Network 
(https://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/). These data are publicly 
available for download from the provided links. This study furthermore incorporated a diffusion MRI 
QSDR template (1.25 mm population-averaged FIB file) constructed from HCP Young Adult data that 
was made available (by F-C Yeh) at https://brain.labsolver.org/hcp_template.html. Analyses 
presented here used multiple cortical and thalamic annotations including the thalamic core-matrix 
gradient (distributed in MNI space at https://github.com/macshine/corematrix), Neurosynth meta-
analytic maps (made available through NiMARE at https://nimare.readthedocs.io/en/stable/), and the 
archetypal S-A axis (accessible via https://pennlinc.github.io/S-A_ArchetypalAxis/). The maps of 
T1/T2 ratio development (https://balsa.wustl.edu/study/P2DmK) and fluctuation amplitude 
development 
(https://github.com/PennLINC/spatiotemp_dev_plasticity/blob/main/cortical_maps/AgeofDeclineOnset
_FirstNegDeriv.pscalar.nii) are also publicly accessible via the accompanying links. The 
thalamocortical connectivity atlas created here from diffusion MRI is available for download along with 
instructions for employing it with DSI Studio at 
https://github.com/PennLINC/thalamocortical_development/tree/main/results/thalamocortical_autotrac
k_template.  
 
Code availability  
 Neuroimaging data were processed with containerized software packages. Diffusion MRI data 
were preprocessed and reconstructed with qsiprep (https://hub.docker.com/r/pennbbl/qsiprep/tags). 
Thalamocortical tractography was produced for the population-level atlas and for individual 
participants using a containerized version of DSI studio https://hub.docker.com/r/dsistudio/dsistudio 
(version chen-2023-02-17). All additional study analyses and statistics were conducted in bash, 
python, and R using original analysis code. All study code is provided at 
https://github.com/PennLINC/thalamocortical_development/tree/main. A detailed guide to code 
implementation and study replication describing all analytic steps can be accessed at 
https://pennlinc.github.io/thalamocortical_development/. 
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