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Abstract

Socioeconomic status (SES) can impact cognitive performance, including working memory (WM). As executive systems that support
WM undergo functional neurodevelopment during adolescence, environmental stressors at both individual and community levels
may influence cognitive outcomes. Here, we sought to examine how SES at the neighborhood and family level impacts task-related
activation of the executive system during adolescence and determine whether this effect mediates the relationship between SES
and WM performance. To address these questions, we studied 1,150 youths (age 8–23) that completed a fractal n-back WM task
during functional magnetic resonance imaging at 3T as part of the Philadelphia Neurodevelopmental Cohort. We found that both
higher neighborhood SES and parental education were associated with greater activation of the executive system to WM load,
including the bilateral dorsolateral prefrontal cortex, posterior parietal cortex, and precuneus. The association of neighborhood
SES remained significant when controlling for task performance, or related factors like exposure to traumatic events. Furthermore,
high-dimensional multivariate mediation analysis identified distinct patterns of brain activity within the executive system that
significantly mediated the relationship between measures of SES and task performance. These findings underscore the importance
of multilevel environmental factors in shaping executive system function and WM in youth.
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Introduction
Socioeconomic status (SES) is a multifaceted construct
measuring the social standing or access to resources of
an individual or group, and often includes factors like
income, education, and neighborhood environment. Low
SES has been related to differences in diverse measures
of brain development and cognition in youth (Bradley
and Corwyn 2002; Pollak and Wolfe 2020). In partic-
ular, working memory (WM), a component of execu-
tive function, has been consistently shown to vary by
SES, with low-SES individuals having poorer performance
(Noble et al. 2007; Hackman et al. 2015; Leonard et al.
2015). The impact of SES on WM may be particularly
important during youth, when WM improves dramati-
cally (Gur et al. 2012, 2014; Satterthwaite et al. 2013;
Ullman et al. 2014; Luna et al. 2015; Simmonds et al.
2017). Indeed, prior work suggests that differences in WM
may in part explain SES-related differences in academic

performance (Gathercole et al. 2004; Best et al. 2011).
However, the neurobiological mechanisms that link low
SES to WM differences in youth remain incompletely
described (Hart et al. 2007; Sheridan and McLaughlin
2014; Rosen et al. 2019).

Studies have provided evidence that WM perfor-
mance is subserved by a spatially distributed set of
brain regions within the executive system, including
the dorsolateral prefrontal cortex (DLPFC), anterior
insula, intraparietal sulcus, precuneus, and cerebellum
(Satterthwaite et al. 2013; Samartsidis et al. 2019;
Rosenberg et al. 2020). During WM tasks, activation of
this distributed executive system has been shown to be
reduced in youth with low family income (Finn et al.
2017), while lower parental education has also been
associated with inefficient recruitment of elements of
the executive system (Sheridan et al. 2017). Additionally,
higher levels of early life stress, including measures of
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financial strain and housing challenges, predict greater
resting-state homogeneity in the left middle frontal
gyrus, which in turn is associated with lower levels of
cognitive control (Demir-Lira et al. 2016). These results
from functional magnetic resonance imaging (fMRI)
cohere with findings from studies using structural MRI,
which have reported that low-SES youth have reduced
cortical surface area in executive regions (Noble et al.
2015; Leonard et al. 2019).

Notably, most studies examining the neural underpin-
nings of the relationship between SES and cognitive func-
tion have operationalized SES using individual-specific
variables, such as family income or parental education.
However, accruing evidence suggests that neighborhood-
level factors can impact cognition above and beyond
individual-specific measures (Brito and Noble 2014; Tom-
linson et al. 2020). Specifically, recent work has begun
to utilize measures of environmental adversity at the
neighborhood level, which include crime rates, social
capital, or access to housing (Leventhal and Brooks-Gunn
2000). These factors have been shown to impact both
physical (Boylan and Robert 2017) and mental health out-
comes (Aneshensel and Sucoff 1996), through proposed
mechanisms such as environmental toxins or allostatic
load, both of which are found at higher levels in low-
income neighborhoods (Gustafsson et al. 2014; Liu and
Lewis 2014; Robinette et al. 2016).

Studies have shown that cognitively enriched care
within the home supports neurocognitive development
in young children (Farah et al. 2021; Lurie et al. 2021)
aligning with work in animal models, which suggest that
an enriched environment may support cognitive perfor-
mance (Yuan et al. 2012). Such enriched environments
have been linked to various neurocognitive measures
including brain size and cortical thickness (Kolb et al.
2012). Children in low-SES neighborhoods are more likely
to attend disadvantaged schools or have less access to
cognitively enriching experiences, like a trip to a museum
or a library (Entwisle et al. 1994; Bradley and Corwyn
2002; Evans 2004). Given these considerations, it is pos-
sible that cognitive stimulation and exposure to novel
experiences at the neighborhood level support cognitive
function in the same capacity.

Work using large-scale neuroimaging studies has
found environmental adversity measured on the neigh-
borhood scale is associated with neurocognitive per-
formance across a variety of domains of executive
function, including WM (Gur et al. 2019; Vargas et al.
2020). Neighborhood disadvantage has also been related
to other neuroimaging parameters, including lower
gray matter volume (Butler et al. 2018), blood-oxygen
level dependent (BOLD) activation in response to social
exclusion (Gonzalez et al. 2015), development of func-
tional networks (Tooley et al. 2019), as well as structural
differences including lower surface area in the prefrontal
cortex (Vargas et al. 2020) and lower volume in the
dorsolateral prefrontal cortex and right hippocampus
(Taylor et al. 2020).

These studies suggest that understanding the rela-
tionship between SES, cognition, and brain function
requires consideration of adversity measured at the
community level. However, relatively few studies have
examined the relationship of different measures of
SES and neurocognitive outcomes. Notably, Rakesh
et al. (2021) found that SES measured at the family
level and at the neighborhood level had distinct asso-
ciations with resting-state functional connectivity in
both the sensorimotor and frontoparietal networks.
Furthermore, neighborhood disadvantage and parental
support may interact in specific ways, with education-
oriented parental practices being more helpful for
children living in low-SES neighborhoods (Catsambis
and Beveridge 2001; Greenman et al. 2011). Additionally,
positive parenting, as measured by coded verbal and
non-verbal interactions during a problem solving task,
has been found to moderate the effect of neighborhood
disadvantage on brain development (Whittle et al. 2017).

In the current study, we investigated how family-level
and neighborhood-level indicators of SES relate to WM
and brain function during youth. Specifically, we used
geocoded block-level data and reported parental edu-
cation to investigate the association between different
metrics of SES and executive system activation during a
WM fMRI task. We hypothesized that both lower neigh-
borhood SES and parental education would be associ-
ated with reduced activation of the executive system,
with neighborhood SES accounting for a broader effect.
Additionally, we hypothesized that multivariate patterns
of brain activation within the executive system would
mediate the relationship between measures of SES and
performance on an in-scanner WM task.

Materials and methods
Participants
We examined a cross-sectional sample of 1,536 partici-
pants from the Philadelphia Neurodevelopmental Cohort
(PNC) (Satterthwaite et al. 2016) who underwent func-
tional neuroimaging while completing a fractal n-back
task (mean age = 14.9, range 8–23, 837 = female). Data
were collected from November 2009, through December
2011. Of these individuals, 378 were excluded for medical
comorbidities that impact brain function (n = 148), image
quality (n = 227), or incomplete clinical data (n = 11). The
final sample included in the analysis consisted of 1,150
individuals (mean age = 15.4, range 8–23; 622 = female). A
socio-demographic description of the sample is included
in Table 1.

Measure of neighborhood socioeconomic status
The quantification of neighborhood SES in this sample
has been detailed previously (Moore et al. 2016). A set
of geocoded variables were obtained from participant
addresses and incorporated 2010 census data from the
greater Philadelphia area. Examples of characteristics
in this census-block level data included median family
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Table 1. Sociodemographic characteristics of the sample.

N Percent

Sex
Male 534 46.43%
Female 616 53.57%
Race
White 554 48.17%
Black/African American 457 39.74%
US Indian/Alaska Native 4 0.35%
Asian 12 1.04%
More than 1 race 123 10.70%
Ethnicity
Hispanic 80 6.96%
Not Hispanic 1,070 93.04%

income, percent of residents who are married, percent
of homes which are family homes, and percent of peo-
ple in poverty. Census block groups typically contain
600–3,000 persons and can also vary in square footage,
meaning they can vary (sometimes extremely) in den-
sity. A weighted factor score of neighborhood level SES
was generated from these variables using the Thurstone
Method (Thurstone 1935). The 2-factor solution in Table
1 of Moore et al. (2016) includes 1 factor capturing SES-
related variables (e.g. median family income) and a sec-
ond factor capturing household characteristics “typical”
of that area (e.g. percent with children, percent English
speakers). Here, we used Factor 1 as our neighborhood
measure of SES. As Factor 2 was related to the char-
acteristics of households (largely reflecting immigration
status independent of SES), which was not the focus of
the current study, it was not analyzed here. The compos-
ite score for the neighborhood SES factor (mean = −0.15,
sd = 1.02) was a weighted combination of the following
variables: percent of residents who are married, median
family income, percent of residents with at least a high
school diploma, percent of residents employed, median
age, percent of residents that are female, percent of real
estate that is vacant, population density, and percent of
residents in poverty.

To measure family level SES, we used the mean of
maternal and paternal education, or, if only 1 measure
was available, whichever measure was reported (mean
parental education = 14.13, sd = 2.33). Measures of family
and neighborhood SES were significantly correlated with
each other (r = 0.55, P < 0.001).

Task design
The fractal n-back task used in the PNC has previously
been described in detail (Satterthwaite et al. 2012; Shan-
mugan et al. 2016). Briefly, participants completed a
fractal n-back WM task (Ragland et al. 2002) during fMRI
as a measure of WM (Fig. 1A). The task was structured
with a block-design using 3 conditions of increasing WM
load: 0-back, 1-back, and 2-back. In the 0-back condition,
participants responded to a single target image. In the
1-back condition, participants responded if the image
presented was the same as the previous image. In the

2-back condition, participants responded if the image
presented was the same as the image presented 2 trials
previously. Each condition included 20 trials over 60s, and
was repeated over 3 blocks. Participants were cued with
verbal instructions as to which condition they would be
completing at the beginning of each block.

Image acquisition
Participants completed a neuroimaging protocol that
included fMRI, T1, and B0 sequences, collected at a
single scanner (Siemens 3-T, 32-channel head coil). A
magnetization-prepared rapid acquisition gradient echo
T1-weighted image was acquired to aid spatial nor-
malization to standard atlas space, using the following
parameters: TR, 1,810 ms; TE, 3.51 ms; TI, 1,100 ms;
FOV, 180 × 240 mm; matrix, 192 × 256; 160 slices; slice
thickness/gap, 1/0 mm; flip angle, 9◦; effective voxel res-
olution, 0.9 × 0.9 × 1 mm. Blood oxygen level-dependent
fMRI was acquired using a whole-brain, single-shot,
multislice, gradient-echo echo-planar sequence with
the following parameters: 231 volumes; TR, 3,000; TE,
32 ms; flip angle, 90◦; FOV, 192 × 192 mm; matrix 64 × 64;
46 slices; slice thickness/gap 3/0 mm; effective voxel
resolution, 3.0 × 3.0 × 3.0 mm. Additionally, a B0 field
map was acquired for application of distortion correction
procedures, using the following double-echo gradient
recall echo sequence: TR, 1,000 ms; TE1, 2.69 ms; TE2,
5.27 ms; 44 slices; slice thickness/gap, 4/0 mm; FOV,
240 mm; effective voxel resolution, 3.8 × 3.8 × 4 mm.

Image processing
Image preprocessing is described in detail in our prior
work describing this dataset (Satterthwaite et al. 2014;
Shanmugan et al. 2016). Briefly, basic preprocessing
of n-back task images used tools from FSL, including
slice time correction, skull stripping, motion correction,
spatial smoothing, and grand mean scaling. Time-series
analysis of subject-level imaging data modeled the n-
back task’s 3 condition blocks (0-back, 1-back, and
2-back) using FEAT. Subject-level statistical maps of
the primary 2-back > 0-back contrast were distortion
corrected, coregistered to the MNI 152 1-mm template
registered T1 image, and normalized using Advanced
Normalization Tools (Avants et al. 2008). Images were
downsampled to 2 mm resolution before group-level
analysis. All transforms were concatenated so that only
a single interpolation was performed.

Behavioral analysis
We summarized performance during the n-back task
using the signal detection measure d’.

(d’ = z(F) − z(H))

where F and H are the false alarm and hit rates during
the task.

This measure incorporates both correct responses and
false positives in order to limit the impact of response
bias on the measure of accuracy (Snodgrass and Corwin
1988).
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Fig. 1. The effect of WM load on brain activation. (A) WM was measured using a fractal version of the n-back WM task. (B) Increased WM load,
operationalized by the 2-back > 0-back contrast, robustly activated the distributed executive system, while deactivating nonexecutive regions (image
was thresholded at z > 3.09, cluster corrected at P < 0.05).

Group-level analysis
Our primary group-level analysis sought to characterize
the association between neighborhood SES, parental
education, and changes in brain activation under WM
load (2-back > 0-back). We conducted mass-univariate
voxelwise analyses using tools from FSL (Jenkinson
et al. 2012), where activation in the 2-back vs. 0-back
condition was the outcome, and neighborhood SES and
parental education were the predictors of interest; age,
sex, and in-scanner motion were included as covariates.
We controlled for multiple comparisons using cluster
correction as implemented in AFNI with 3dFWMHx and
3dClustSim (voxel height z > 3.09, cluster probability
P < 0.05). Visualizations were generated using Connec-
tome Workbench, developed under the auspices of the
Human Connectome Project at Washington University in
St. Louis and associated consortium institutions (http://
www.humanconnectome.org) (Marcus et al. 2011).

Sensitivity analyses
To evaluate the potentially confounding influence of
other participant factors, we conducted sensitivity
analyses that included additional model covariates.

Specifically, we repeated the mass-univariate analysis
described above, but also included exposure to traumatic
stress, and task performance (d’) as model covariates.
Traumatic stress was assessed as part of a structured
clinical interview (GOASSESS), and quantified by the
lifetime number of categories of exposure to traumatic
stressful events experienced by a participant (range 0–8)
(Calkins et al. 2015; Barzilay et al. 2019).

Analysis of age by SES interaction
To examine the interaction of age and SES on activation
during WM, we repeated the mass-univariate analysis
described above in 2 models, including interaction terms
for age and neighborhood SES, and age and parental
education respectively.

Mediation analyses
As a final step, we sought to understand how multi-
variate patterns of brain activation might mediate the
observed association between both measures of SES and
WM performance. To do this, we examined principal
directions of mediation (Chén et al. 2018; Geuter et al.
2020) using the M3 Mediation toolbox from the Cognitive
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Fig. 2. Both higher neighborhood SES and higher parental education were significantly associated with greater activation throughout the executive
system. (A) A mass univariate analysis revealed higher neighborhood SES was related to increased activation in the bilateral dorsolateral prefrontal
cortex, ventromedial prefrontal cortex, right and left frontal poles, superior parietal cortex, precuneus, as well as the bilateral cerebellar crus I & II. (B)
Higher parental education was associated with increased activation in the precuneus cortex, primary motor cortex, right hippocampus, and bilateral
dorsolateral prefrontal cortex.

and Affective Neuroscience Lab (CANlab; available at
https://github.com/canlab/MediationToolbox). This type
of mediation analysis is guided by principal component
analysis, and seeks to extract linear combinations of
high-dimensional neuroimaging data that maximize the
indirect effect (i.e. the mediation) between independent
and dependent variables. The result is a set of orthogonal
principal directions of mediation (PDMs) that can be
mapped back to the original neuroimaging data space to
provide interpretable mediation effects between X and Y
variables (see Chén et al. 2018 for details).

To avoid overfitting and test the generalizability of the
PDMs observed in our data, we first divided our sample
into training (n = 576) and testing (n = 574) sets that were
matched on neighborhood SES. This enabled us to model
PDMs in the training set and then apply the model to
the unseen data in our test set. We tested 2 separate
mediation models, evaluating both neighborhood SES
and parental education as dependent variables. In order
to ensure that the PDM’s were generated controlling
for the other measure, we regressed the effects of each
measure out of the other. First, we conducted an ini-
tial principal component analysis in R, which resulted
in 10 principal components explaining more than 1%
of variance in the data. We then used singular value
decomposition to reduce the dimensionality of the neu-
roimaging data from the training subset. This resulted in
a 576 (participants) x 10 (principal components) matrix,
which was used to estimate the PDM’s. Next, we tested
significance of the indirect path between each measure
of SES and WM performance associated with each PDM,
which was determined using a bootstrap procedure with
10,000,000 iterations, controlling for age, sex, and motion
as nuisance covariates.

To validate the estimated PDM’s, we applied the model
generated on the training data to the unseen test data
and performed the same bootstrapping procedure to
assess significance of indirect path coefficients while
controlling for the same set of nuisance covariates. Thus,
the mediation effect encoded by each PDM was tested for
significance twice; once in the training data and again
on unseen test data. Next, in order to better interpret the
mediation effects, we extracted the weights at each voxel
from the PDM’s that yielded significant indirect paths on
both the training and the testing data. The contribution
of each voxel to the PDM was assessed for significance
using bootstrap analyses, while controlling for type I
error with cluster correction as stated above (voxel height
z > 3.09, cluster probability P < 0.05). This resulted in a
matrix of P-values which could be interpreted as a 3D
image.

Results
Lower socioeconomic status is associated with
attenuated activation of the executive system
As previously reported (Satterthwaite et al. 2013), the n-
back task robustly activated the distributed components
of the brain’s executive system (Fig. 1B) and deactivated
nonexecutive regions, including the default mode net-
work. We hypothesized that higher neighborhood and
family SES would be associated with greater recruitment
of the executive system. Mass univariate voxel-wise anal-
ysis revealed that higher neighborhood SES was associ-
ated with greater bold activation in 16 clusters within the
executive system, and greater deactivation in 2 clusters
in the default mode network (see Fig. 2A and Table 2A).
These regions included bilateral dorsolateral prefrontal
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Table 2. Main model including neighborhood SES and parental education.

Cluster region Voxels Max (z) Peak X (mm) Peak Y (mm) Peak Z (mm)

A. Neighborhood SES

Superior frontal gyrus, middle frontal gyrus 4,553 11.6 30 4 66
Lateral occipital cortex, precuneus cortex 4,060 12.69 12 76 58
Right frontal pole 1,050 8.28 −40 −50 22
Left frontal pole 946 9.42 36 −54 24
Cerebellum 457 9.11 4 78 −30
Cerebellum 436 8.36 −42 66 30
Cerebellum 280 7.9 36 40 −38
Frontal orbital cortex 269 8.94 30 −28 −4
Lingual gyrus 205 5.65 12 70 2
Lateral occipital cortex 179 6.5 46 68 −12
Postcentral gyrus 158 6.11 48 32 46
Inferior frontal gyrus 144 6.45 46 −12 6
Middle temporal gyrus 139 −5.51 66 50 −4
Superior temporal gyrus 134 4.91 −68 18 −10
Frontal orbital cortex 114 7.17 −32 −28 −4
Left thalamus 108 6.05 16 30 12
Supramarginal gyrus 94 5.3 −48 30 46
Right frontal pole 91 −5.27 −42 −52 −8

B. Parental education

Precuneus cortex, lateral occipital cortex 472 9.37 10 −76 −56
Supramarginal gyrus 215 6.98 28 46 40
Right precentral gyrus 189 5.47 −42 −2 32
Cingulate gyrus 175 5.17 0 34 20
Left precentral gyrus 169 6.23 40 −4 36
Cingulate gyrus 129 6.47 −10 −20 24
Left middle frontal gyrus 108 6.84 3 −20 24
Right hippocampus 107 5.54 −28 36 4
Angular gyrus 92 6.51 −40 50 36
Right middle frontal gyrus 89 5.99 −38 −24 30

cortex (DLPFC), anterior insula, paracingulate, frontal
pole, and the supplementary motor area, regions of the
parietal cortex and cerebellum, including bilateral supe-
rior parietal cortex, precuneus, bilateral cerebellar crus I
& II, as well as parts of the inferior temporal cortex and
temporal pole. Higher parental education was associated
with increased activation in 10 clusters in the executive
system (see Fig. 2B and Table 2B). These clusters were
located in spatially distinct parts of the bilateral dorso-
lateral prefrontal cortex, cingulate cortex, and parietal
cortex. Furthermore, several regions showed significant
associations with both measures of SES, including the
parietal cortex and precuneus, as well as parts of the
dorsolateral prefrontal cortex (see Fig. 3).

Next, to better understand what was driving the
2b > 0b effect, we conducted post-hoc analyses examin-
ing the effect of 0-back and 2-back conditions separately.
For both parental education and neighborhood SES,
there was a significant relationship between the average
BOLD signal across activation related to each measure
in the 2-back condition, but not in the 0-back condition,
suggesting that the main effect was driven primarily by
the 2-back condition (Fig. 4).

Sensitivity analyses
A separate mass univariate voxelwise analysis that
controlled for additional covariates including in-scanner
task performance (as measured by d’) and exposure to
traumatic events, revealed a highly convergent pattern
of results for neighborhood SES (Table 3), while activation
related to parental education did not survive correction
for multiple comparisons.

Effect of neighborhood SES varies by age
We observed a significant age by neighborhood SES inter-
action in a cluster that was located on the
border between the task-negative posterior cingulate
and task-positive precuneus (Supplementary Fig. S1A).
The interaction was such that older participants demon-
strated more task deactivation in this region as neighbor-
hood SES increased, and younger participants demon-
strated more task activation as neighborhood SES
increased (Supplementary Fig. S1B). There was no
significant interaction between age and parental
education.
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Fig. 3. Higher neighborhood and parental education were each associated with distinct patterns of increased activation. There were also some regions
of overlapping associations, including parts of the parietal and dorsolateral prefrontal cortices.

Fig. 4. The effect of neighborhood SES on executive system activation was driven by individual differences in activation during the high WM load
condition (2-back). Significant clusters were observed within the executive system for both (A) neighborhood SES (top) and parental education (bottom).
The average effect in all significant clusters is presented in (B). To understand what was driving the main contrast, each condition was modeled separately
in post-hoc analyses. (C) Post-hoc mixed effect models of the effect of each measure on activation during the 2-back and 0-back conditions each revealed
significant relationships between SES and 2-back activation (P < 0.0001). In contrast, neither indicator of SES was significantly associated with activation
during the 0-back condition.

Multivariate patterns of activation mediate the
relationship between measures of socioeconomic
status and working memory performance
Given the observed association between both measures
of SES and executive activation, the significant associ-
ation between measures of SES and task performance

(Fig. 5), and the known relationship between neural acti-
vation and WM performance (Shamosh et al. 2008; Sat-
terthwaite et al. 2013), we investigated whether multi-
variate patterns of brain activation mediated the rela-
tionship between parental education or neighborhood
SES and task performance.
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Table 3. Sensitivity analysis including traumatic stress exposure and task performance as additional covariates.

Cluster region Voxels Max (z) Peak X (mm) Peak Y (mm) Peak Z (mm)

Lateral occipital cortex, precuneus cortex, superior parietal cortex 1,282 7.09 −12 68 64
Left superior frontal gyrus, precentral gyrus 1,022 6.55 30 6 66
Right precentral gyrus, middle frontal gyrus, superior frontal gyrus 627 5.98 −30 −2 68
Left frontal pole 364 5.27 39 −54 24
Right frontal pole 159 5.36 −42 −52 26
Left post central gyrus 141 4.5 48 30 38
Left middle temporal gyrus 134 −5.2 52 50 −4
Right superior temporal gyrus 101 5.23 −66 22 0
Right postcentral gyrus 96 4.72 −50 30 42

Fig. 5. Both neighborhood SES and parental education are positively associated with WM task performance. WM performance was quantified as d’ across
all n-back conditions, while covarying for age and sex.

First, we evaluated how multivariate patterns of
activation might mediate the relationship between WM
performance and neighborhood SES, independent of
parental education (Fig. 6A). In our training sample,
bootstrap analysis revealed that 1 PDM had a significant
ab path after FDR correction (p-trainfdr < 0.0001). Next, we
applied the PDM generated in our training data to a held-
out test set of 574 participants and tested the significance
of the absolute ab paths. The ab path of the first PDM
remained significant in the left out testing sample and
survived FDR correction (p-testfdr < 0.001; Table 4A) while
controlling for age, sex, and in-scanner motion. As a
final step, we examined the spatial distribution of the
significant PDMs (Table 5A). The PDM associated with
neighborhood-level SES included unique clusters in the
ventromedial prefrontal cortex, orbitofrontal cortex, and
lateral occipital cortex (Fig. 6B).

Second, we evaluated whether associations between
parental education independent of neighborhood SES

and WM performance might be similarly mediated by
activation patterns. Bootstrap analysis in the training
sample revealed 1 PDM had a significant ab path
after FDR correction (p-trainfdr < 0.001), which remained
significant when evaluated in the testing sample,
(p-testfdr < 0.05; Table 4B). The PDM associated with
parental education included unique clusters in the left
dorsomedial prefrontal cortex, right inferior frontal
gyrus, and anterior insula (Table 5B, Fig. 6C). Both
measures had overlapping activation in the medial
prefrontal cortex, bilateral dorsolateral prefrontal cortex,
paracingulate, superior parietal cortex, and precuneus
(Fig. 6D).

These findings suggest that the association between
WM and both neighborhood SES and parental education
may in part be mediated by differences in executive
system activation, and these multivariate PDMs gener-
alize to unseen data. In both cases, the a and b path
coefficients were positive (note that a paths are always

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhac120/6554953 by U

niversity of Pennsylvania Library user on 05 April 2022



Kristin Murtha et al. | 9

Fig. 6. Multivariate patterns of executive system activation mediate the relationship between neighborhood SES and WM performance. (A) We assessed
whether multivariate patterns of activation mediated the relationship between different measures of SES and WM performance using high-dimensional
mediation analysis. Large circles labeled X and Y represent independent (SES) and dependent (WM performance) variables. Smaller circles labeled M
represent potential principal directions of mediation (PDM’s), or patterns of brain activation that mediate the relationship between the dependent and
independent variables. This analysis revealed 1 significant pattern of brain activation that mediated the relationship between each measure of SES
and task performance (p-trainfdr < 0.01, p-testfdr < 0.05). (B) The relationship between neighborhood SES and task performance was partially mediated
by spatially distinct patterns of activation in the ventromedial PFC, orbitofrontal cortex, and parietal cortex. (C) The relationship between parental
education and task performance was partially mediated by spatially distinct patterns of activation in the dorsolateral PFC and premotor cortex. (D)
Regions of activation associated with both indicators of SES included the dorsolateral PFC, precuneus, and parietal cortex, as well as areas of the motor
cortex.

Table 4. Path coefficients, Z-scores, and bootstrapped P-values for train and test data in PDM’s 1 & 2.

Train Test

Coeff z P Coeff z P

A. Neighborhood-level SES

a 845.36000 5.23 <0.0001 575.86020 4.13 <0.0001
b 0.00009 5.14 <0.0001 0.00011 5.25 <0.0001
c’ 0.08431 3.41 0.0006 0.11083 4.56 <0.0001
c 0.15783 5.18 <0.0001 0.17583 5.22 <0.0001
ab 0.07352 5.33 <0.0001 0.06500 4.18 <0.0001

B. Parental education

a 215.45361 3.99 <0.0001 148.15367 2.72 0.0064
b 0.00010 5.20 <0.0001 0.00013 5.35 <0.0001
c’ 0.01763 1.57 0.1159 0.03283 2.89 0.0039
c 0.03851 3.17 0.0015 0.05230 3.94 <0.0001
ab 0.02088 3.98 <0.0001 0.01947 2.75 0.0059

fixed as positive by this method), meaning that higher
indicators of SES were linked to more activity in the brain
regions associated with each PDM, and that activation in
these regions was also positively correlated to better WM
performance.

Discussion
We found that both higher neighborhood SES and
parental education were associated with partially
overlapping patterns of greater activation to WM load
in multiple regions within the distributed executive

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhac120/6554953 by U

niversity of Pennsylvania Library user on 05 April 2022



10 | Cerebral Cortex, 2022

Table 5. Mediation results.

Cluster region Voxels Max (Z) Peak X (mm) Peak Y (mm) Peak Z (mm)

A. Neighborhood SES

Medial prefrontal cortex 3,320 10.28011 0 64 0
Superior parietal cortex, precuneus 2,488 9.881181 −12 −76 58
Left dorsolateral prefrontal cortex 1,216 8.775183 −36 56 24
Supplementary motor area 916 8.545436 −22 −28 74
Primary motor cortex, premotor cortex 819 9.000845 −28 2 66
Right dorsolateral prefrontal cortex 594 8.575234 38 46 38
Right somatosensory cortex 337 6.616755 62 0 6
Premotor cortex 327 8.115926 26 2 68
Paracingulate 276 5.74272 0 18 46
Left somatosensory cortex 195 5.510158 −62 −2 8

B. Parental education

Medial prefrontal cortex 2,385 8.298537 −4 42 56
Left dorsolateral prefrontal cortex 1,100 8.298537 −32 64 4
Superior parietal cortex, precuneus 861 5.579839 −36 −58 60
Right dorsolateral prefrontal cortex 438 8.076499 26 66 2
Primary motor cortex, premotor cortex 355 8.298537 −28 0 66
Frontal pole 275 6.072657 50 42 6
Premotor cortex 258 6.340738 26 10 66
Left dorsolateral prefrontal cortex 199 6.103474 −44 34 36
Supplementary motor area 195 5.077501 −26 −28 72
Paracingulate 149 5.398947 0 18 48
Lateral occipital cortex 147 4.587439 18 −96 26
Right dorsolateral prefrontal cortex 132 4.764823 30 42 44
Temporal pole 88 5.495156 56 12 −2

system. Our findings indicate that SES measured at
the neighborhood level is related to executive system
recruitment over and above other related factors, while
greater activation related to parental education did not
survive sensitivity analyses controlling for exposure to
traumatic events or task performance. Furthermore, we
demonstrate that multivariate patterns of executive
system activation partially mediate the relationship
between each indicator of SES and performance on a
WM task. These results replicate associations of parental
education with cognitive function (Roberts et al. 1999;
Goltermann et al. 2021), and provide novel evidence
that neighborhood characteristics may influence WM
performance through their impact on the brain’s
executive system.

Higher neighborhood SES and parental education
were each associated with increased activation in brain
regions associated with WM performance (Crone et al.
2006; Satterthwaite et al. 2013; Samartsidis et al. 2019;
Rosenberg et al. 2020). Specifically, SES was associated
with activation across regions including the bilateral
DLPFC, paracingulate cortex, bilateral superior parietal
cortex, and precuneus. These findings expand on earlier
work in the same sample, showing reduced regional
homogeneity and amplitude of low-frequency fluctu-
ations during resting-state fMRI in frontoparietal regions
associated with neighborhood SES (Gur et al. 2019; Tooley
et al. 2019). The current results also align with findings

that higher family SES, measured by income-to-needs
ratio, is associated with increased BOLD activation in
the prefrontal cortex during WM tasks (Rosen et al.
2018). Furthermore, this work expands on findings that
measures of SES at the neighborhood and family level
have distinct effects on measures of neural outcomes,
including resting-state connectivity in regions of the
brain necessary for cognitive functions like WM (Rakesh
et al. 2021). Here, we found that neighborhood SES
accounted for a more broad pattern of activation in the
distributed executive system than parental education,
including the dorsolateral prefrontal cortex and superior
parietal cortex.

Notably, we found that our observed pattern of effects
was driven by the 2-back task condition, where the
greatest WM load was present. This suggests that the
relationship between SES and executive system activa-
tion is most evident in more cognitively demanding task
contexts. No significant relationship between activation
and SES was noted in the 0-back condition, which
has low WM demands, and mainly serves as a control
condition or measure of sustained attention (Miller et al.
2009). While these findings are consistent with prior
work from this sample documenting greater activation
associated with higher WM load (Satterthwaite et al.
2013), they contrast with another study reporting that
low-income adolescents recruit certain regions of the
executive system, including the bilateral medial frontal
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gyrus and intraparietal sulcus, during low-load 0-back
trials, whereas high income adolescents recruit these
regions only in high-load trials (Finn et al. 2017). These
divergent results suggest that future work examining the
relationship between SES and WM performance should
manipulate WM load over a range of task difficulties to
identify load-specific effects.

The current study replicates previous work demon-
strating positive associations between SES and perfor-
mance on a WM task (Noble et al. 2007) and extends prior
findings by identifying executive system activation as
a significant mediator of this relationship. The findings
from our mediation analysis are consistent with other
work that identified activation of the middle, inferior,
and superior frontal gyri during a WM task as mediators
of individual measures of SES and WM performance
(Finn et al. 2017; Rosen et al. 2018). However, our use of
high-dimensional mediation analysis allowed for a data-
driven approach that uncovered distinct multivariate
patterns of brain activation that mediated the relation-
ship between SES and WM performance. This approach
facilitates the identification of neural mediators that
may be contingent on other brain regions, and allows the
detection of mediators encoded in distributed patterns
of activation (Geuter et al. 2020). We identified 2 patterns
of activation that mediated the relationship between SES
and WM performance: the first in the medial prefrontal
cortex and left and right DLPFC, and the second in the
superior frontal gyrus, right middle frontal gyrus, and
frontal pole. The DLPFC has previously been linked to
performance on high-load WM tasks in lesion studies
(Volle et al. 2008; Barbey et al. 2013), as well as in studies
of transcranial magnetic stimulation during WM tasks
(Brunoni and Vanderhasselt 2014). Furthermore, these
results align with previous findings that DLPFC volume
mediated differences in SES and executive function in
white adults (Shaked et al. 2018).

Notably, our approach used measures of SES defined
at the block group (“neighborhood”) level, which allowed
us to capture facets of an individual’s circumstances
beyond their immediate family or household environ-
ment, yet at a finer geographic resolution than the more
commonly used ZIP code. Previous work in public health
has found that neighborhood-level factors predict health
outcomes over and above measures at the individual
level, like chronic kidney disease (Merkin et al. 2007) or
coronary heart disease (Pollack et al. 2012). The current
data emphasize that neighborhood-level indicators of
SES are important to the study of neurocognitive effects
as well. Importantly, we found that neighborhood-level
SES was associated with executive system activation over
and above the effects of individual measures of adversity,
such as parental education or exposure to traumatic
events. These results suggest that neighborhood-level
variables capture important variability not captured
at the individual level. As children and adolescents
spend significant time in communities outside of
their immediate families, it is important that studies

of brain development examine neighborhood-level
variables.

This study informs the broader literature on how
the neighborhood environment supports cognitive
development. Studies suggest that children growing
up in poorer neighborhoods have less access to higher
quality community and educational resources, in terms
of school funding and physical infrastructure (Macintyre
et al. 1993; Evans 2004), and have parents who are
less involved in their children’s education, inside and
outside of the classroom setting (Benveniste et al.
2003). These relationships are consistent with proposed
theories that cognitive stimulation in the home and
school environment may scaffold cognitive development,
including WM function (Hackman et al. 2015; Rosen et al.
2018; Rosen et al. 2019). Given these considerations, it
is possible that children in low-income neighborhoods
are not having experiences outside the home useful
for developing conventional WM, and that a safe and
stimulating neighborhood environment may be equally
important to cognitive development.

This hypothesis is consistent with recent work show-
ing that protective measures, like cognitively enriched
care or positive parenting, may alter the effects of early
life adversity on neural measures such as brain vol-
ume (Farah et al. 2021), patterns of myelination and
cortical thickness (Hong et al. 2021) or altered brain
development in the temporal lobes (Whittle et al. 2017).
It is important to note that women in low-wage posi-
tions have inflexible and unpredictable schedules, (Dod-
son and Luttrell 2011; Jacobs and Padavic 2015), and
multiple-job holders have less time for sleep or house-
hold and leisure activities (Marucci-Wellman et al. 2014).
This unpredictability has been associated with higher
rates of general work life conflict and time-based conflict
(Henly and Lambert 2014), which may contribute to the
differences in parenting styles. Furthermore, the conflict
between balancing employment and childcare has been
associated with higher levels of distress and risk for
depression in low-income mothers (Jacobs et al. 2016;
Bruns and Pilkauskas 2019).

Furthermore, the link between individual SES and the
socially constructed categories of race are well docu-
mented (Bryant et al. 2021 Dec 8), as Black Americans
have higher unemployment rates (U.S. Bureau of Labor
Statistics 2021) and lower median income than white
Americans (U.S. Census Bureau 2021). This wealth gap
reached record highs after the 2009 recession (Taylor
et al. 2011; Shapiro et al. 2014). There are racial disparities
in neighborhood quality, such that middle-class Black
families live in more disadvantaged neighborhoods than
middle-class white families (Adelman 2004). Neighbor-
hood disadvantage can be caused by structural racism,
i.e. the policies, ideologies, and institutional practices
that result in systemic inequity among racial and ethnic
groups (Powell 2007; Gee and Ford 2011; Riley 2018). Fac-
tors of structural racism have been hypothesized as the
root cause for the academic achievement gap, typically
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attributed to differences in SES (Merolla and Jackson
2019), as well as found to be related to lower voca-
tional expectations among minority students (Diemer
and Hsieh 2008). These social determinants likely play a
large role in the relationship between SES and neurocog-
nitive outcomes; however, we were not able to measure
this explicitly in the current dataset, as experiences of
racism were not measured.

Future studies could aim to separate the effects of
structural racism from the effects of adverse environ-
ment, by using units of neighborhood measurement that
are more informative of the policies in place, for exam-
ple, school or congressional districts, rather than cen-
sus tracts (Riley 2018). This is demonstrated in recent
work finding that more generous anti-poverty programs
decrease SES related differences in hippocampal volume
(Weissman et al. 2021). This serves as an important lim-
itation of the current work, as the sample was not col-
lected with the intention of examining these structural
factors, and therefore is ill-equipped to tease apart the
close relationship of race and both neighborhood SES and
parental education within the data. Future studies may
consider collecting data tied to more meaningful regional
districts, or stratifying their sample by race.

Certain limitations present in the current work should
be noted. The data reported in this study are cross-
sectional, and the sample was not obtained with the
goal of studying early life environmental adversity.
Furthermore, our measurement of exposure to traumatic
events measures the sum of types of exposures, and
cannot account for repeated exposures within a category.
The sample is representative of the Greater Philadelphia
area, and may not generalize to communities with dif-
fering sociodemographic characteristics. Despite strong
evidence of BOLD activation during WM as a partial
mediator of SES and WM performance, cross-sectional
mediation relationships cannot serve as evidence of
causality, and other chains of causality between neigh-
borhood SES and cognitive function cannot be ruled out.
While our measure of neighborhood SES included various
important measures describing an individual’s block-
level environment, we did not include measures of crime
or community violence, which have been shown to vary
along with other aspects of SES (Hsieh and Pugh 1993),
and may have differential effects on cognitive function
(Sheridan and McLaughlin 2014). Additionally, our
analysis was limited by the use of parental education as a
proxy for family-level SES, rather than parental income.
While education level is not always directly related to
earnings, they are highly correlated (Davis-Kean 2005)
and has been used as a measure of SES in prior work
(Noble et al. 2015; Sheridan et al. 2017).

Conclusion
The current study provides evidence that neighborhood-
level SES is associated with executive system activation.
Additionally, we identify key brain regions that mediate

the relationship between neighborhood SES and cog-
nitive performance. These results highlight the impor-
tance of neighborhood factors in shaping the executive
system and underscore the importance of identifying
and protecting against environmental adversity occur-
ring at the community level that contributes to differ-
ences in executive functioning. Additionally, given the
known relationship between low-SES and risk for psy-
chopathology, (Bradley and Corwyn 2002; Peverill et al.
2021), the current reported association between SES and
WM performance supports executive dysfunction as a
general risk factor for diverse psychopathology (Wolf
et al. 2015; Shanmugan et al. 2016). Future research may
investigate targeted interventions, including community
based-interventions, which may be utilized to improve
WM performance.
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