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Abstract: Brain development during adolescence is marked by substantial changes in brain structure
and function, leading to a stable network topology in adulthood. However, most prior work has exam-
ined the data through the lens of brain areas connected to one another in large-scale functional net-
works. Here, we apply a recently developed hypergraph approach that treats network connections
(edges) rather than brain regions as the unit of interest, allowing us to describe functional network
topology from a fundamentally different perspective. Capitalizing on a sample of 780 youth imaged as
part of the Philadelphia Neurodevelopmental Cohort, this hypergraph representation of resting-state
functional MRI data reveals three distinct classes of subnetworks (hyperedges): clusters, bridges, and
stars, which respectively represent homogeneously connected, bipartite, and focal architectures. Cluster
hyperedges show a strong resemblance to previously-described functional modules of the brain includ-
ing somatomotor, visual, default mode, and salience systems. In contrast, star hyperedges represent
highly localized subnetworks centered on a small set of regions, and are distributed across the entire
cortex. Finally, bridge hyperedges link clusters and stars in a core–periphery organization. Notably,
developmental changes within hyperedges are ordered in a similar core–periphery fashion, with the
greatest developmental effects occurring in networked hyperedges within the functional core. Taken
together, these results reveal a novel decomposition of the network organization of human brain, and
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further provide a new perspective on the role of local structures that emerge across neurodevelopment.
Hum Brain Mapp 38:3823–3835, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Understanding the human brain as a networked system
has offered important insights into the development of
brain function across the lifespan [Bassett and Sporns,
2017). In this perspective, brain regions are treated as net-
work nodes, and functional connections between brain
regions are treated as network edges [Bullmore and Bas-
sett, 2011]. Studies examining functional brain networks at
rest measured with functional MRI have revealed a modu-
lar functional organization [Dosenbach et al., 2007; Power
et al., 2011] comprised of reproducible network communi-
ties such as the default-mode [Raichle et al., 2001], cogni-
tive control [Sridharan et al., 2008], salience [Seeley et al.,
2007], visual [Lowe et al., 1998], and somatomotor [Biswal
et al., 1995] systems. These modules evolve considerably
during development in adolescence [Power et al., 2010;
Satterthwaite et al., 2013b; Gu et al., 2015a], and are
thought to allow for the expansion of cognitive and behav-
ioral capabilities that defines this period.

While such studies have offered critical insights into the
network neurophysiology of development, they constitute
relatively coarse levels of interrogation. Modules are meso-
scale structures, defined as sets of brain areas. As the
module structure depends on the average properties of
network edges, they are relatively insensitive to how these
edges are combined with each other. To resolve this level
of detail, we take an alternative approach by treating the
network edge as the unit of interest [Bassett et al., 2014;
Davison et al., 2015, 2016]. This choice is guided by the
fact that edges may develop differentially in a coordinated
fashion over the lifespan [Davison et al., 2016], leading to
architectural features that cannot simply be characterized
by modules or the nodes that compose them [Bassett et al.,
2014]. Intuitively, such developmental coordination of
functional connections may be driven by intrinsic compu-
tations [Bassett et al., 2014], and subsequently have mutu-
ally trophic effects on underlying structural connectivity
[Bassett et al., 2008]. From a computational standpoint, co-
varying functional connections can be thought of as cir-
cuits—edges that link disparate computational units—that
may form more fundamental structures that prefigure the
emergence of well-described cognitive systems observed in
adulthood.

To investigate functional brain network architecture at
this finer scale, we examine high-resolution edge-based
hypergraphs in a large sample of youth imaged as part of
the Philadelphia Neurodevelopmental Cohort. In contrast
to typical functional networks where nodes represent brain

regions, hypergraphs are built on the pairwise correlations
between network edges across individuals, allowing for
the detection of groups of coherent edges known as hyper-
edges. This particular emphasis on functional edges ena-
bles us to address several specific hypotheses. First, we
expected that hypergraphs would corroborate and extend
findings from prior (region-based) network analyses, and
reveal cluster hyperedges that form densely interconnected
brain systems. Second, we hypothesized that this approach
would allow us to uncover novel types of subgraphs that
were distinguishable from traditional network modules.
Third and finally, we hypothesized that age-related change
of hyperedge strength during adolescence would differ by
hyperedge type. As described below, such edge-base anal-
yses allowed us to uncover novel fine-scale functional sub-
graphs that display differential patterns of development
during adolescence.

MATERIALS AND METHODS

Data Acquisition and Preprocessing

Data were acquired as part of a collaboration between
the Center for Applied Genomics (CAG) at Children’s
Hospital of Philadelphia (CHOP) and the Brain Behavior
Laboratory at the University of Pennsylvania (Penn). Study
procedures were reviewed and approved by the Institu-
tional Review Board of both CHOP and Penn. Resting-
state fMRI data considered in the present study consisted
of 780 healthy youth age 8–22 years. For full details
regarding sample construction, inclusion, and exclusion
criteria see Satterthwaite et al. [2013b]. Of these youth, 333
were male and 447 were female. For a thorough account of
cognitive performance in the PNC, see Gur et al. [2012]
and Moore et al. [2015].

All subject data were acquired on the same scanner (Sie-
mens Tim Trio 3 Tesla, Erlangen, Germany; 32 channel
head coil) using the same imaging sequences. Blood oxy-
gen level-dependent (BOLD) fMRI was acquired using a
whole-brain, single-shot, multislice, gradient-echo (GE)
echoplanar (EPI) sequence of 124 volumes (372 s) with the
following parameters TR/TE 5 3000=32 ms, flip 5 908,
FOV 5 192 3 192 mm, matrix 5 64 3 64, slice thickness/
gap 53 mm/0 mm. The resulting nominal voxel size was
3:0 3 3:0 3 3:0 mm. A fixation cross was displayed as
images were acquired. Subjects were instructed to stay
awake, keep their eyes open, fixate on the displayed cross-
hair, and remain still.

Functional imaging used tools from FSL (FMRIB’s Soft-
ware Library) and AFNI with a preprocessing scheme
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described elsewhere [Satterthwaite et al., 2013a, 2014b]. A
detailed description of the preprocessing pipeline specifi-
cally as applied to this data can be found in Supporting
Information. The data reported in this article have been
deposited in the database of Genotypes and Phenotypes
(dbGaP), www.ncbi.nlm.nih.gov/gap (accession no.
phs000607.v1.p1).

Functional Network Construction

We extracted regional mean BOLD time series from 264
functionally defined regions (each region constituting a
5 mm sphere) covering cortical and subcortical areas
[Power et al., 2011]. The Power parcellation has important
merits, including demonstrating a superior reliability of
fMRI-based graph theoretical properties during working
memory, emotion processing, and resting state [Cao et al.,
2014]. Second, the Power parcellation has previously been
used in the PNC data set [Satterthwaite et al., 2013a,
2013b; Gu et al., 2015a; Chai et al., 2017]. By maintaining
consistency with these other studies, we facilitate compari-
son across analysis methods and data types.

Consistent with prior work [Bassett et al., 2011b, 2013b],
we estimated functional connectivity between any two pairs
of regions using a wavelet coherence [Grinsted et al., 2004]
in the frequency interval of approximately 0.01–0.08 Hz. We
chose to use a wavelet coherence for several statistical rea-
sons. First, we note that wavelet-based methods for decom-
posing the preprocessed fMRI time series offer useful
denoising properties [Fadili and Bullmore, 2004] are robust
to outliers [Achard et al., 2006], and can be used to construct
useful null models [Pritchard et al., 2014]. Wavelet-based
methods extract frequency-specific information in the time
series without the edge effects characteristic of bandpass fil-
tering [Percival and Walden, 2006]. The benefits of wavelet-
based decompositions are particularly relevant to fMRI time
series because of their long memory nature, displaying a
positive and slowly decaying autocorrelation function
[Maxim et al., 2005; Wink et al., 2006]. Traditional time- and
frequency-domain measures of association (including corre-
lation) are not properly estimable for long memory time
series [Beran, 1994]. In contrast, wavelets provide a means of
reliably estimating correlation between long memory time
series [Whitcher et al., 2000; Gencay et al., 2001], including
those derived from resting-state fMRI data [Achard &
Bullmore, 2007; Bullmore et al., 2004; Achard et al., 2008].

Second, we chose to use an estimate of coherence
because a simple linear Pearson correlation is sensitive to
outliers [Devlin et al., 1975; Huber, 2004]—such as those
caused by motion artifact—and moreover provides a per-
haps overly strict and narrow measurement of functional
connectivity based on only pointwise differences between
two signals [Gayen, 1951]. Coherence, in contrast, provides
a broader estimate of associations between time series
[White and Boashash, 1990], being sensitive to statistical
similarities in the power spectra of the two BOLD activity
traces. It is given by a ratio of the cross-spectral density

between time series x and time series y, and the product
of the autospectral density of x and the autospectral den-
sity of y. In the context of fMRI time series analysis, evi-
dence suggests that the coherence is a useful measure of
the magnitudes of time series similarity that is indepen-
dent of inter-regional differences in the HRF, which can
cause nontrivial variations in a Pearson correlation coeffi-
cient that are independent of the underlying neural activ-
ity [Sun et al., 2004, 2007]. Moreover, coherence as a
measure of functional connectivity has proven particularly
helpful in the examination of functional neuroimaging
data from a network perspective [Bassett et al., 2011a,
2011b; Chai et al., 2016; Telesford et al., 2016; Gu et al.,
2015b].

The fully weighted adjacency matrix therefore repre-
sents the functional brain network for a given subject in
which network nodes represent brain regions and network
edges represent functional connections between those
regions [Zhang et al., 2016].

Hypergraph Construction

To construct an edge-by-edge hypergraph [Berge and
Minieka, 1973], we stacked subject adjacency matrices to
create a three-dimensional adjacency tensor with elements
Aijs, where s indexes over subjects [Bassett et al., 2014]. For
an edge connecting a given pair of regions i and j, the ele-
ments Aijs, for all s could be treated as a vector: a series of
observations over the entire sample (N 5 780). For every
pair of edges, Aijs, and Akls for all s, we computed the Pear-
son correlation coefficient between these edge weight vec-
tors Hmn, where m indexes over edge pairs i and j and n
indexes over edge pairs k and l, and we stored these values
in the E 3 E hypergraph H. Following Bassett et al. [2014]
and to control the false-positive rate, we thresholded the
matrix H by setting all correlation coefficient values Hmn to
zero whose respective P values were greater than 0.05. Intu-
itively, the hypergraph H provides a cross-sectional repre-
sentation of functional connections that co-vary with one
another. Entries are positive if the weights of the corre-
sponding edges are positively correlated over subjects, and
entries are negative if the weights of the corresponding
edges are negatively correlated over subjects. We note that
4.57% of entries were negative, and for simplicity in the fol-
lowing analyses, we set these values to zero.

Hyperedge Archetypes

We identified hyperedges—significant clusters of co-varying
edges—by applying a common network-based community
detection algorithm [Porter et al., 2009; Fortunato, 2010] to the
hypergraph H. Specifically, we applied a generalized version of
a Louvain-like locally greedy algorithm [Blondel et al., 2008] to
maximize a modularity quality function [Newman, 2004]. This
widely used algorithm is computationally efficient even for
large networks, and is publically available at http://netwiki.
amath.unc.edu/GenLouvain/GenLouvain.
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Next, we defined hyperedge archetypes that each dis-
played interpretable spatial configurations in the brain, and
that corresponded to differential roles in the dynamic pro-
cesses of integration and segregation. For each hyperedge,
we listed the edges that composed the associated cluster r,
and then determined the set of nodes (brain regions) that
were touched by at least one of those edges. We then defined
a binary adjacency matrix whose elements indicated the
presence (1) or absence (0) of an edge between nodes i and j
that were also present in the cluster r. We observed that the
matrices Br fell into one of three categories: focal star hyper-
edge, bridging bipartite hyperedge, and cluster hyperedge
(Fig. 2). The classification here follows a two-step procedure:
(i) if the graph cannot be statistically partitioned into a bipar-
tite structure, then it is defined as a cluster; (ii) if the graph
can be statistically partitioned into a bipartite structure, then
we check the number of nodes in the smaller of the two
parts; if the number is less than 4, then the graph is defined
as a star; otherwise, it is defined as a bridge. Thus, intuitively,
stars consist of edges that are linked to one another via one,
two, or three nodes. Bridges consist of edges that connect

one set of nodes to a second set of nodes, but do not connect
nodes within the same set. Clusters consist of edges that con-
nect nodes both within and between sets. See Supporting
Information for a detailed description of the clustering
method and Figure S4 for details on parameter choices.

Hyperedge Connector Estimation

Bridges are particularly interesting as they represent the
collection of edges that can connect two or more hyperedges
with one another. We hypothesized that the bridges con-
nected clusters to stars. To test our hypothesis, we per-
formed the following analysis: First, we set the valid stars
and the clusters as fundamental modules. Second, for each
valid bridge, we computed the number of overlap regions
on each side with every fundamental module and calculated
the P values versus the null distribution where each side of
the bridge is randomly chosen from among all possible
regions while preserving size. Third, we thresholded the P
values in Step 2 by applying a Benjamini–Hochberg proce-
dure to control the false-discovery rate (FDR) at Q < 0.05.

Figure 1.

Schematic of hypergraph construction. (A) We first extract time

series for each region of interest. (B) Next, we calculate the

functional connectivity between pairs of regions using a wavelet-

based coherence, yielding an adjacency matrix. We perform the

steps outlined in panels (A) and (B) for each of the 780 youth in

the Philadelphia Neurodevelopmental Cohort and (C) stacked

the adjacency matrices across subjects. (D) We extract the vec-

tor of weights for each edge over subjects. (E) Finally, we

generate an edge-by-edge adjacency matrix (or hypergraph)

[Bassett et al., 2014] by computing the Pearson correlation coef-

ficient between pairs of edge weight time series. A hyperedge is

then defined as a cluster of edges that co-vary with one

another; we can identify these clusters by applying community

detection techniques to the hypergraph. [Color figure can be

viewed at wileyonlinelibrary.com]
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Finally, according to the type of module on each end of the
bridge, we classified the bridge into three subtypes of con-
nectors: star–star connector, star–cluster connector, and

cluster–cluster connector, and we examined how many sig-
nificant bridges there were of each subtype, normalized by
the number of possible bridges of that subtype.

Figure 2.

Hyperedge archetypes. Example of star (A), bridge (B), and clus-

ter (C) hyperedges with accompanying graph representations. In

the 363 hyperedges, we observed 326 that displayed star-like

structure (stars), 31 that displayed bipartite-like structure (brid-

ges), and 6 that displayed network-like structure (clusters). We

define (D) a star score as the number of times a node acts as a

core within a star-like structure, (E) a bridge score as the

number of edges belonging to a bipartite hyperedge that ema-

nated from a given node, and (F) a cluster score as the number

of edges belonging to a cluster hyperedge that emanated from a

given node. The color bars display the percentage of the

weighted scores in each system normalized by the number of

regions in the system. [Color figure can be viewed at wileyonli-

nelibrary.com]
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Edge Correlation Comparison

For the edge comparison in Figure 3, we computed the cor-
relation among edges within each predefined module and
compared its distribution with that of the average correlation
of edge pairs within the stars centered within the same mod-
ule. Multiple comparisons were controlled for using FDR
(Q< 0.05) [Storey, 2002].

Linear Model of Developmental Effects

To test which cluster hyperedges displayed associations
with age, we mapped back the 6 clusters to each subject,
computed the average connection strength and investi-
gated associations with age while co-varying for in-scan-
ner motion.

See Supporting Information for additional methodologi-
cal details.

RESULTS

We constructed high-resolution hypergraphs (Fig. 1) using
resting-state fMRI data acquired from 780 youth between the
ages of 8 and 22 years [Satterthwaite et al., 2014]. For each

participant, we created adjacency matrices by calculating the
wavelet coherence between all 34,716 pairs of 264 functionally
defined regions. Adjacency matrices were concatenated
across subjects to create a three-dimensional matrix, and then
collapsed to an edge-by-edge matrix whose elements were
given by the Pearson correlation coefficient between each pair
of edges. This hypergraph of dimensions 34; 716 3 34; 716
summarized the degree to which functional connections co-
varied with one another over subjects.

Hyperedges Reveal Novel Architectural Motifs

Within the full hypergraph, we identified statistically
significant functional hyperedges: groups of edges that
co-varied in strength over subjects [Bassett et al., 2014]. In
the 363 significant hyperedges (Fig. 1E), we detected 3 dis-
tinct topological classes (Fig. 2): stars (326 of 363), bridges
(31 of 363), and clusters (6 of 363). Stars were the most
numerous hyperedges in the hyergraph. In mathematics, a
star graph is one in which edges emanate from a small set
of nodes (Fig. 2A). These star-like structures indicate the
presence of neurophysiological drivers of functional con-
nectivity that are localized to very few (� 3) brain regions.
Bridges are bipartite graphs that are composed of edges
connecting two separate sets of nodes (Fig. 2B). These

Figure 3.

Edge correlations across subjects. To investigate whether the

star hyperedges displayed higher cohesiveness among edges than

well-known cognitive systems or network modules, we com-

pared the star hyperedges and 13 predefined modules [Power

et al., 2011] with the null hypothesis that the pairwise similarity

of edges in star hyperedges was no higher than that of the edges

within the modules. Except for the two smallest systems (the

cerebellum and memory retrieval), all other null hypotheses

were rejected with the FDR-corrected q < 0:001. Results

emphasize the higher level of coherence present in star hyper-

edges than in traditional node-based network modules. [Color

figure can be viewed at wileyonlinelibrary.com]
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bridging structures suggest the existence of connectors
among hyperedges. Clusters include edges that densely
link spatially distributed regions (Fig. 2C).

The Three Archetypes are Distributed

Differently in Space

We expected that bridges would be particularly preva-
lent in functional modules where clusters were also pre-
sent (i.e., visual, motor, default mode, and cingulo-
opercular systems). In contrast, we expected that periph-
eral stars would be likely to be more present over the
entire cortex. We quantified the loading of the three types
of hyperedges onto individual brain regions by counting
nodal occupation of the hyperedges. The presence of clus-
ter hyperedges was quantified by a cluster score, which
summarized how many times the nodes participated in
the significant cluster hyperedges. The presence of bridge
hyperedges was quantified similarly, and we refer to these
estimates as the bridge scores. As indicated in Figure 2E,
the bridge score was elevated in known functional systems
where cluster hyperedges were also found (Fig. 2F),
including the visual system, somatomotor system, default
mode network, and salience systems. A co-participation
plot emphasized that bridge hyperedges exclusively
formed links between these clusters to other nodes outside
the clusters (Fig. 2E bottom). The presence of stars was
quantified by a star score, which summarizes the degree
to which a given region participates in a star hyperedge.
In contrast to the striking regional focus of both cluster
and bridge hyperedges, star hyperedges were widely dis-
tributed across the cortex (Fig. 2D).

Stars Imply More Cohesive Collections of Edges

Than Predefined Cognitive Systems

As we note in the previous section, stars were broadly dis-
tributed across the brain (Fig. 2). To quantify this observa-
tion, we examined a set of systems or modules defined a
priori [Power et al., 2011] and tested the null hypothesis that
the cross-subject Pearson’s correlation of edge weights of
stars centered in nodes within a module was higher than
edge weights within the module overall. This would estab-
lish whether stars are fundamentally more cohesive subu-
nits than previously detected major systems. The
anticipated result of this test was not clear a priori for two
reasons: (i) edges included in the hypergraph were required
to be stronger than r 5 0.07, and therefore, these edges need
not be particularly high in connectivity, and (ii) stars tended
to contain between-system connections and therefore need
not be as strong as within-system connections. This
approach revealed that stars were more coherent than all
cognitive systems (FDR-corrected for multiple comparisons,
Q < 0:001), with the exception of the cerebellum (com-
posed of 4 nodes) and memory retrieval systems (composed
of 5 nodes). In these latter two systems, due to their small

module size, both the cohesiveness of modules and the cohe-
siveness of stars may vary greatly, widening the null distri-
bution and leading to a nonsignificant result. Yet the
significant findings in all other cognitive systems underscore
the utility of the hypergraph approach in uncovering more
coherent substructures than traditional community detec-
tions techniques uncovering network modules. It also sug-
gests that star-shaped hyperedges may constitute one of the
fundamental units of the brain’s functional architecture.

The Functional Core of Cluster Hyperedges

We next turned to examining the nature of the cluster
hyperedges, which occupy a central role in the hypergraph
architecture. We observed that (Fig. 4) clusters are remark-
ably similar to known functional subnetworks [Power
et al., 2011]. Of the six clusters identified, two were pre-
dominantly composed of regions in the default mode, two
were predominantly composed of regions in visual cortex,
one was largely composed of areas in somatosensory cor-
tex, and one was largely composed of areas in the salience
and cingular-opercular task control systems. These results
demonstrate that cluster hyperedges recapitulate previ-
ously described large-scale functional networks that have
strongly coherent, dense connections.

Bridges Connect Core Clusters

and Peripheral Stars

Intuitively, bridges are groups of edges that can facili-
tate network integration by linking two distinct sets of
brain areas (Fig. 5A). Given that hyperedges neatly com-
posed 3 distinct categories, we hypothesized that bridge
hyperedges served to link the densely connected core of
cluster hyperedges and less-connected star hyperedges.
More specifically, the null hypothesis here was that brid-
ges randomly connected two parts of the brain and were
not significantly enriched for any of the following: star–
star connections, cluster–cluster connections, and star–cluster
connections (see Methods). We observed that bridges were
far more likely to connect core cluster hyperedges to
peripheral stars than expected by chance (P < 1310220;
Fig. 5B). These results demonstrate that bridge hyperedges
are key integrative components in the core–periphery
functional architecture of the human brain.

Developmental Effects are Concentrated in

Cluster Hyperedges

Having defined the architecture, anatomy, and topologi-
cal role of each hyperedge archetype, we next examined
whether these co-varying structures were specifically
driven by development-related changes in brain connectiv-
ity. To address this question, we tested whether different
hyperedge archetypes exhibited differential age-related
differences in strength over the period of adolescence.
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Specifically, we computed the average edge weight within
each hyperedge and measured the correlation between
edge weight and age, while covarying for in-scanner
motion. We observed that correlations with age differed
by hyperedge class, with clusters displaying the largest
increases in strength over age (one-way ANOVA: F56:56,
df 52, P50:0016). Post-hoc comparisons with permutation

tests confirmed that stars and bridges displayed weaker
correlations with age than clusters (P 5 0.0019 and
P 5 0.0381, respectively). Next, for each hyperedge in the
collection of three archetypes, we calculated the partial
correlation between average edge weight and age while
controlling for in-scanner motion. We then applied a cor-
rection for multiple testing with FDR q � 0:01 on the

Figure 4.

Cluster hyperedges. (A) Six of the 363 hyperedges were clusters. Each cluster displayed a distinct

spatial organization that recapitulated well-known functional systems. (B) Each cluster hyperedge

connects a set of nodes, and each node (brain region) belongs to a previously defined cognitive

system. Of the nodes present in a cluster, we show the percentage that is a part of each cogni-

tive system. [Color figure can be viewed at wileyonlinelibrary.com]

r Gu et al. r

r 3830 r



Figure 5.

Bridges connect stars to clusters. (A) A schematic figure shows

bridge hyperedges (blue) connect stars (peach) and clusters

(pink). (B) Testing the intersection of hyperedges versus the null

distribution where the nodal occupation is uniformly sampled

from all brain regions (see Methods), we demonstrate that

bridges are more likely to connect stars with clusters than

expected (P < 1310220). Moreover, bridges are less likely to

connect stars to other stars (P < 1310220). [Color figure can

be viewed at wileyonlinelibrary.com]

Figure 6.

Cluster hyperedges track developmentally driven covariation of

functional connections. Two clusters displayed age-related

increased in average strength, as tested by a linear model with

age and movement. Panel (A) displays the relationship between

edge strength and age in cluster 2, composed predominantly of

regions in the visual system: F 5 6:34; P 5 0:00185. Panel

(B) displays the relationship between edge strength and age in

cluster 5, composed predominantly of regions in the default

mode: F 5 17:8; P 5 2:6931028. [Color figure can be

viewed at wileyonlinelibrary.com]
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associated P values. We observed that none of the stars or
bridges remained significant; by contrast, two clusters dis-
played an average strength that was significantly corre-
lated with age (Fig. 4): cluster 2 in the visual system,
where the t-tests of the coefficients gave t 5 3:25,
p 5 0:0012, for age, and cluster 5 in the default mode
with t 5 5:70, p 5 1:6931028.

DISCUSSION

We developed and applied a novel approach to examine
high-resolution edge-based hypergraphs in the developing
human brain. Hypergraphs are composed of hyperedges,
which are groups of functional connections whose
strengths co-vary with one another across subjects. We
applied this approach to resting state data acquired from
780 youth, uncovering an edge-based core–periphery
structure whereby peripheral stars are linked to clusters in
the functional core via topological bridges. Stars were cen-
tered on specific brain regions and clusters recapitulated
well-known cognitive systems including visual, default
mode, salience, and cingulo-opercular systems. Clusters in
the topological core of the hypergraph were driven by
development-specific changes in resting state brain
dynamics. By treating a functional connection as the fun-
damental unit of interest, these findings suggest a new
conceptualization of brain organization that is not offered
by typical network analyses.

Clusters Recapitulate Specific Functional

Brain Modules

Cluster hyperedges corresponded to some of the well-
known cognitive systems described in the neuroimaging
literature, including the visual, motor, default, and cin-
gulo-opercular/salience systems. The default mode net-
work was split into two components, both of which
included connections with the central regions of the ven-
tromedial prefrontal cortex and posterior cingulate/
precuneus. Notably, one default mode hyperedge was
preferentially focused around the medial temporal lobe,
paralleling prior accounts of default-mode subsystems
[Andrews-Hanna et al., 2010].

Beyond their anatomical specificity, clusters are also
topologically poised to perform specific functions. Indeed,
clusters are enriched for highly connected hub edges
(Supporting Information, Fig. S1), and therefore form a rel-
atively stable basis around which all other functional asso-
ciations in the brain can evolve over development. Such
edge cores are conceptually similar to core regions in the
brain’s “rich club” [Van Den Heuvel and Sporns, 2011],
and may similarly mediate information transfer over inte-
grating connections involving sensorimotor processes and
the default mode network. Clusters are thus well-situated
to serve as the backbone of developing information proc-
essing capabilities throughout adolescence.

Stars: Local Motifs Distributed Across the Brain

While cluster hyperedges align well with a few of the
known large-scale cognitive systems from previous region-
ally based network analyses, our high-resolution edge-based
network analysis additionally uncovered a novel subnet-
work type that we refer to as the star hyperedge. Stars are
centered around a small number of brain regions (one, two,
or three), with edges that radiate outward. Notably, such
star-shaped systems cannot be detected by network analyses
where nodes are represented by regions rather than edges:
community detection techniques by definition will group
together regions with similar patterns of connectivity [Bas-
sett et al., 2011b]. Indeed, when community detection analy-
ses of regionally based networks identify a subnetwork with
a single node, such a result is generally considered a frag-
ment and not considered further [Bassett et al., 2013a].

Intuitively, star-shaped subnetworks may represent key
partitions of connections that integrate processes from
diverse sources within a single node or broadcast to other
nodes. Such a regionally focused account of specialized
functional networks is consistent with lesion-based data
from both animals and humans, where localized injury
may have highly specific functional consequences [Lan-
glois et al., 2006; Alstott et al., 2009]. In contrast to the
densely connected core where cluster hyperedges are con-
centrated, stars are present in the relatively sparsely con-
nected hypergraph periphery. These peripheral stars tend
to be found in the frontal–parietal systems and other mul-
timodal regions [Sepulcre et al., 2012] that play central
roles in intramodule and intermodule communication.

Bridges Link Stars to Clusters

In addition to star-shaped formations, the hypergraph
approach identified the presence of bridge hyperedges for
the first time. In contrast to clusters, which have locally
dense connections, bridges exclusively link two disparate
sets of brain regions. We found that bridges preferentially
linked clusters in the brain’s functional core to stars in the
periphery. The linking architecture of a bridge hyperedge
implies a critical role within the brain’s core–periphery
framework, potentially facilitating information flow
between highly segregated functional systems and regions
where distributed higher order processing occurs. As with
the stars, bridges cannot be identified using typical regional-
based network analysis. It is important to note that we did
not predict the discovery of these bridges. However, bridge-
like (or bipartite) formations are a frequent feature of other
types of systems, including microbial complexity networks
[Corel et al., 2016] and microbiome data [Sedlar et al., 2016].

Development Drives Co-Varying Functional

Connections

As a final step, we examined how hypergraphs devel-
oped during youth. Developmental associations were
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concentrated among cluster hyperedges, suggesting that
the functional architecture captured by stars and bridges
may develop earlier in life and be stable during the late
childhood and adolescent epochs. Specifically, we found
significant associations with age in the strength of the
default mode and visual hyperedges. These results accord
with a pattern of network segregation: the visual and
default mode systems have very strong within-network
connectivity, and relatively limited connectivity between
other brain networks [Power et al., 2011]. Their strengthen-
ing during development is consistent with a pattern of net-
work segregation [Gu et al., 2015b, Satterthwaite et al.,
2013] that could support a greater diversity of the brain’s
dynamic repertoire [Betzel et al., 2016] and an enhanced
capability for adaptation [Mattar et al., 2016].

It is important to consider these finding in light of cur-
rent literature on developmental changes in functional
connectivity over similar age ranges [Menon, 2013; Di
Martino et al., 2014]. For example, in 82 subjects from the
ages of 8–24 years, Chai et al. [2014] demonstrate that the
default mode system becomes increasingly segregated
from task-positive systems during development. In 99 sub-
jects from the ages of 10–20 years, Hwang et al. [2013]
studied the developmental emergence and stability of
hubs in resting-state functional brain networks, demon-
strating that while hubs were present in late childhood,
the connectivity between hubs and nonhubs continues to
change into young adulthood, potentially supporting
mature cognitive function. In 192 subjects from the ages of
10–26 years, Marek et al. [2015] confirm the broad notion
that networks stabilize prior to adolescence and subse-
quently modulate their integration to support cognitive
performance. Our study complements these previous
efforts by examining not simply the average functional
connectivity within or between known cognitive systems,
but also by identifying and characterizing a data-driven
group of edges that co-vary in their strength over 780
subjects.

Methodological Considerations

Some limitations apply to this study. While the parcellation
was selected for its robustness and prominence in the litera-
ture [Power et al., 2011], other schemes are available and may
offer additional insights [Bassett et al., 2011a]. In particular,
this atlas undersamples subcortical and cerebellar regions,
which may be particularly important in development. In
addition, while the edge-by-edge hypergraph representation
is applicable to all estimates of functional connectivity [Bas-
sett et al., 2014], we employed a pairwise coherence between
region time series [Zhang et al., 2016]. Furthermore, inference
regarding developmental effects is limited by the use of a
cross-sectional dataset; longitudinal research designs would
be a useful complement to corroborate the findings reported
here. Finally, it will be interesting in future to better under-
stand the relationship between hyperedge strength and

individual differences in behavior, a question that would ben-
efit from multivariate statistical approaches including partial
least squares [Krishnan et al., 2011] and canonical correlation
analysis [Bruguier et al., 2008].
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