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Personalized functional brain network
topography is associated with individual
differences in youth cognition
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Individual differences in cognition during childhood are associated with
important social, physical, and mental health outcomes in adolescence and
adulthood. Given that cortical surface arealization during development
reflects the brain’s functional prioritization, quantifying variation in the
topography of functional brain networks across the developing cortex may
provide insight regarding individual differences in cognition. We test this idea
by defining personalized functional networks (PFNs) that account for inter-
individual heterogeneity in functional brain network topography in 9–10 year
olds from the Adolescent Brain Cognitive Development℠ Study. Across mat-
ched discovery (n = 3525) and replication (n = 3447) samples, the total cortical
representation of fronto-parietal PFNs positively correlates with general cog-
nition. Cross-validated ridge regressions trained on PFN topography predict
cognition in unseen data across domains, with prediction accuracy increasing
along the cortex’s sensorimotor-association organizational axis. These results
establish that functional network topography heterogeneity is associated with
individual differences in cognition before the critical transition into
adolescence.

Individual differences in cognition during childhood are associated
with academic performance1 and quality of life in youth2, as well as
social, physical and mental health outcomes in adulthood3–5. More-
over, cognitive deficits during youth are associated with heightened
risk for psychopathology6, risk-taking behaviors7, cardiovascular
disease8–10, and all-cause mortality11,12. Understanding how individual
differences in cognitive functioning emerge during childhood is a
critical prerequisite for efforts that seek to promote healthy neuro-
cognitive development. Prior neuroimaging studies have

demonstrated that complex cognitive tasks engage spatially-dis-
tributed, large-scale association networks13–15. However, less is known
about the relationship between individual differences in cognition and
the spatial layout of functional networks on the anatomic cortex—an
individual’s functional topography. Attempts at investigating this
important problem have faced two key challenges. First, methods
must account for person-specific variation in functional topography
across individuals, which is especially pronounced in association
cortices16. Second, recent studies have emphasized that reproducible

Received: 2 November 2022

Accepted: 29 November 2023

Check for updates

A full list of affiliations appears at the end of the paper. e-mail: sattertt@pennmedicine.upenn.edu

Nature Communications |         (2023) 14:8411 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-4708-1672
http://orcid.org/0000-0003-4708-1672
http://orcid.org/0000-0003-4708-1672
http://orcid.org/0000-0003-4708-1672
http://orcid.org/0000-0003-4708-1672
http://orcid.org/0000-0002-8640-668X
http://orcid.org/0000-0002-8640-668X
http://orcid.org/0000-0002-8640-668X
http://orcid.org/0000-0002-8640-668X
http://orcid.org/0000-0002-8640-668X
http://orcid.org/0000-0003-4385-8106
http://orcid.org/0000-0003-4385-8106
http://orcid.org/0000-0003-4385-8106
http://orcid.org/0000-0003-4385-8106
http://orcid.org/0000-0003-4385-8106
http://orcid.org/0000-0002-2691-3698
http://orcid.org/0000-0002-2691-3698
http://orcid.org/0000-0002-2691-3698
http://orcid.org/0000-0002-2691-3698
http://orcid.org/0000-0002-2691-3698
http://orcid.org/0000-0001-6554-1893
http://orcid.org/0000-0001-6554-1893
http://orcid.org/0000-0001-6554-1893
http://orcid.org/0000-0001-6554-1893
http://orcid.org/0000-0001-6554-1893
http://orcid.org/0000-0002-5027-6422
http://orcid.org/0000-0002-5027-6422
http://orcid.org/0000-0002-5027-6422
http://orcid.org/0000-0002-5027-6422
http://orcid.org/0000-0002-5027-6422
http://orcid.org/0000-0002-1025-8561
http://orcid.org/0000-0002-1025-8561
http://orcid.org/0000-0002-1025-8561
http://orcid.org/0000-0002-1025-8561
http://orcid.org/0000-0002-1025-8561
http://orcid.org/0000-0001-6862-6526
http://orcid.org/0000-0001-6862-6526
http://orcid.org/0000-0001-6862-6526
http://orcid.org/0000-0001-6862-6526
http://orcid.org/0000-0001-6862-6526
http://orcid.org/0000-0001-9426-7969
http://orcid.org/0000-0001-9426-7969
http://orcid.org/0000-0001-9426-7969
http://orcid.org/0000-0001-9426-7969
http://orcid.org/0000-0001-9426-7969
http://orcid.org/0000-0002-3622-0166
http://orcid.org/0000-0002-3622-0166
http://orcid.org/0000-0002-3622-0166
http://orcid.org/0000-0002-3622-0166
http://orcid.org/0000-0002-3622-0166
http://orcid.org/0000-0002-1728-9782
http://orcid.org/0000-0002-1728-9782
http://orcid.org/0000-0002-1728-9782
http://orcid.org/0000-0002-1728-9782
http://orcid.org/0000-0002-1728-9782
http://orcid.org/0000-0001-8602-393X
http://orcid.org/0000-0001-8602-393X
http://orcid.org/0000-0001-8602-393X
http://orcid.org/0000-0001-8602-393X
http://orcid.org/0000-0001-8602-393X
http://orcid.org/0000-0001-7072-9399
http://orcid.org/0000-0001-7072-9399
http://orcid.org/0000-0001-7072-9399
http://orcid.org/0000-0001-7072-9399
http://orcid.org/0000-0001-7072-9399
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44087-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44087-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44087-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44087-0&domain=pdf
mailto:sattertt@pennmedicine.upenn.edu


brain-behavior associations may require very large samples17. We seek
to overcome these challenges by capitalizing upon recent advances in
machine learning to identify individual-specific functional brain net-
works in large discovery and replication samples. We test the over-
arching hypothesis that the functional topography of
association networks is associated with individual differences in cog-
nitive function in children.

Studies in humans using fMRI have typically studied functional
brain networks using a “one-size-fits-all” approach with standardized
network atlases18,19. In this approach, a 1:1 correspondence between
structural and functional neuroanatomy across individuals is assumed,
as fMRI data is co-registered to a structural image and then normalized
to a structural template. This critical assumptionhas beenproven tobe
demonstrably false by studies from multiple independent
laboratories20–23. These studies have revealed substantial inter-
individual heterogeneity in functional topography20–25, with espe-
cially notable heterogeneity in networks in association cortex that
support higher-order cognition and are implicated in cognitive
impairments in psychiatric illness in adults21,26. To overcome this
challenge, precision functional mapping techniques have been devel-
oped as an alternative to using group-level atlases. These techniques
are used to derive individually-defined networks that capture each
brain’s unique pattern of functional topography. Such personalized
functional networks (PFNs) have been found to be highly stable within
individuals and to predict an individual’s spatial pattern of activation
on fMRI tasks21,22,27.

Notably, the same networks that both support higher-order cog-
nition and have the greatest variability in functional topography tend to
lie near the upper end of a predominant axis of hierarchical cortical
organization known as the sensorimotor-association (S-A) axis, which
spans from unimodal visual and somatomotor cortex to transmodal
association cortex28. The S-A axis summarizes the canonical spatial
patterning of numerous cortical properties, including myelination,
evolutionary expansion, transcriptomics,metabolism, and the principal
gradient of functional connectivity29. Prominent individual variation in
the functional topography of networks at the association pole—
including the fronto-parietal network, ventral attention network, and
default mode network—has been posited to impact individual differ-
ences in cognition23. Indeed, our collaborative group16 recently reported
that greater total cortical representation of fronto-parietal PFNs was
associated with better cognitive performance, and found that a model
trained on the complex pattern of functional topography could predict
cognition in unseendata. However, while these resultswere drawn from
a large study, it was collected at a single site, and has not yet been
replicated. This limitation points to the ongoing challenge of reprodu-
cibility in studies that seek to define brain-behavior relationships in
humans. The reproducibility crisis has been documented
extensively30,31,markedby failed replications of high-profilefindings32,33,
and has prompted a renewed emphasis on methods to increase the
generalizability of computational models to new datasets34. In addition
to the well-documented problems arising from small sample sizes17 and
over-fitting35, it may also be the case that a lack of consideration for
individual-specific neuroanatomy has also contributed to weak effect
sizes and non-reproducible findings of prior work.

Here, we aim to delineate the relationship between functional
topography and individual differences in cognition by conducting a
replication and extension of ref. 16 in two large, matched samples of
youth from the Adolescent Brain Cognitive Development℠ (ABCD)
Study36–38 (total n =6972). Using spatially-regularized non-negative
matrix factorization (NMF)39, we identify personalized functional brain
networks (PFNs) that capture inter-individual heterogeneity in func-
tional topography while maintaining interpretability. We seek to repli-
cate two key results16. First, we aim to demonstrate that predictive
models trained on PFN topography can predict youth cognition in
unseendata. Second, we aim to replicate thefinding that fronto-parietal

PFN topography is associated with individual differences in cognition.
Furthermore,we aim toextendpriorworkby investigatingwhether PFN
topography is predictive of general or specific cognitive abilities by
training models to predict three major domains of cognition40 (general
cognition, executive function, and learning/memory). Finally, we pre-
dict that the strength of associations between functional topography
and cognition will align with the cortical hierarchy defined by the S-A
axis, with the functional topography of PFNs in association cortex
yielding the most accurate predictions of individual differences in
cognition. As described below, this study constitutes the largest repli-
cation of precision functional mapping in children to date, identifying
reproducible brain-behavior associations and demonstrating that these
relationships align with a major cortical hierarchy.

Results
We aimed to understand how individual differences in functional brain
network topography relate to individual differences in cognitive
functioning in a sample of n = 6972 children aged 9–10 years old from
the ABCD Study. To account for inter-individual heterogeneity in the
spatial layout of functional brain networks, we used precision func-
tional mapping to define PFNs for each individual. Leveraging a
previously-defined group atlas16, we used an advanced machine
learning method – spatially-regularized NMF—to identify 17 PFNs
within each individual (Fig. 1). This procedure yielded a set of 17
matrices of networkweights across eachvertex (soft parcellation; used
for primary analyses) as well as a matrix of non-overlapping networks
describing the highest network weight at each vertex (hard parcella-
tion; used for secondary analyses and visualization). To determine
where each PFN fell along a predominant axis of cortical hierarchical
organization, we computed the average S-A axis rank across the ver-
tices within each PFN using the group-averaged hard parcellation.

PFN topography predicts individual differences in cognition in
unseen data
We first sought to replicate the prior finding that the multivariate
pattern of PFN topography could predict cognitive performance in
unseen data. Here, general cognition was operationalized as the first
principal component from a Bayesian probabilistic principal compo-
nents analysis (BPPCA) computed in aprior study, capturing the largest
amount of variance across nine cognitive tasks40. As previously16, we
trained ridge regression models using the cortical representation of
each PFN (network loadings at each vertex) while controlling for age,
sex, site, and head motion. Leveraging our matched discovery and
replication samples for out-of-sample testing, we first trained models
in the discovery sample using nested cross-validation for parameter
tuning, and then used the held-out replication sample for testing. We
then performed the opposite procedure, performing nested training in
the replication sample and testing in the held-out discovery sample.
We found that individualized functional topography accurately pre-
dicted out-of-sample cognitive performance in both samples (Fig. 2a,
discovery: r(3525) = 0.41, p <0.001, 95% CI: [0.39, 0.44]; replication:
r(3447) = 0.45, p <0.001, 95% CI: [0.43, 0.48]), with effect sizes at the
higher end of the expected range from predictive modeling studies
using functional connectivity in prior work41–43. Demonstrating that our
results were not dependent on the matched discovery and replication
sample split, we also applied repeated random cross-validation over
one hundred repetitions as previously16, which returned similar results
(Fig. 2b, mean r =0.44, p <0.001, 95% CI: [0.43, 0.44]). These results
show high consistency with correlations between actual and predicted
cognitive performance reported in prior work16 (Matched sample 1:
r =0.46, p <0.001; Matched sample 2: r =0.41, p <0.001; Repeated
random CV: mean r =0.42, p <0.001; see Fig. 7 in ref. 16). Given that
many prior studies in this dataset have demonstrated associations
between socio-economic status and cognitive functioning44–53, we also
note that our predictive models trained on PFN topography
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outperformed models trained on socio-economic status as measured
by areal deprivation index (ADI) alone (Supplementary Table 1) and
have separately characterized the multidimensional features of child-
hood environments that are reflected in PFN topography54.

To evaluate the relative contributions of each network to pre-
diction accuracy, we trained linear ridge regression models on the
functional topography of each PFN independently. We found that the
fronto-parietal and ventral attention networks tended to have the
highest prediction accuracies, whereas the somatomotor and visual
networks tended to have the lowest (Fig. 2c, d). These results are
consistent with the feature weights from models which used all fea-
tures and align with our prior report16 (see Supplementary Fig. 1 for

exact replication), with consistency in prediction accuracies across
datasets and samples. Together, these results suggest that individual
variation in functional network topographyhas important implications
for cognitive performance in youth.

PFN topography predicts executive function and learning/
memory with reduced accuracy
We next evaluated whether multivariate patterns of PFN topography
could be used to predict cognitive performance in held-out data across
other cognitive domains. We again trained linear ridge regression
models using PFN topography and identical covariates to predict either
executive function or learning/memory, which are the second and third

Fig. 1 | Identification and analysis of Personalized Functional Networks (PFNs).
a Using a previously-defined group atlas16 as a prior, we generated personalized
functional networks (PFNs) by applying non-negativematrix factorization (NMF) to
each individual participant’s vertex by time matrix. This procedure allows each
network in the consensus group atlas to have a varying cortical representation in
each individual, thereby capturing individual differences in the size and layout of
networks while simultaneously allowing for interpretable between-individual
comparisons. We also calculated the total cortical representation of each PFN by
summing each network’s loadings across all vertices. b To evaluate whether an
individual’s multivariate pattern of PFN topography could accurately predict cog-
nition in unseen data, we trained linear ridge regression models using the cortical
representation of each PFN while controlling for age, sex, site, and head motion.
Leveraging our matched discovery and replication samples for two-fold cross-

validation (2F-CV), we first trained models in the discovery sample using nested
cross-validation for parameter tuning, and then tested thesemodels in the held-out
replication sample. We then performed nested training in the replication sample
and testing in the held-out discovery sample. c To demonstrate that our results
were not dependent on the matched discovery and replication sample split, we
conducted repeated random cross-validation over one hundred iterations, each
time performing a random split of our full sample and applying two-fold cross-
validation. d Next, we calculated the average sensorimotor-association (S-A) axis
rank across the vertices contained within each PFN. e We then rank-ordered
each PFN according to its average S-A rank. Brain maps depict vertex loadings for
each PFN (D. Attn Dorsal Attention, V. Attn Ventral Attention, DMN Default Mode
Network, FPN Fronto-Parietal Network).
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ranked principal components capturing variance across nine cognitive
tasks40. We hypothesized that general cognition would show stronger
associations with functional topography than secondary or tertiary
cognitive domains. Notably, while the first cognitive accuracy factor
fromourprior report16 is typically referred to as “executive function and
complex cognition” (and abbreviated as “executive function”), it most
aligns with the general cognition factor from the ABCD Study55.

It is worth noting that while these prediction accuracies were less
strong than for the first principal component of general cognition, we
found that individualized functional topography predicted perfor-
mance in our two samples for both executive function (Fig. 3a, dis-
covery: r(3525) = 0.17, p < 0.001, 95% CI: [0.14, 0.20]; replication:
r(3447) = 0.16, p < 0.001, 95% CI: [0.13, 0.20]) and learning/memory
(Fig. 3e, discovery: r(3525) = 0.27, p <0.001, 95% CI: [0.24, 0.30];
replication: r(3447) = 0.27, p < 0.001, 95% CI: [0.24, 0.30]). Repeated

random two-fold cross-validation again returned similar results
(Fig. 3b, mean r =0.17, p < 0.001, 95% CI: [0.17, 0.17]; Fig. 3f, mean
r =0.28, p < 0.001, 95%CI: [0.28, 0.28]).When ridge regressionmodels
were trained using the topography of each PFN independently, fronto-
parietal and ventral attention PFNs yielded the highest prediction
accuracies for both executive function (Fig. 3c, d) and learning/mem-
ory (Fig. 3d, h). Associations between actual and predicted cognitive
performance across all three tasks are depicted as hexplots in Sup-
plementary Fig. 2 to visualize the density of points given the large
number of participants in this study.

Links between functional topography and cognition alignwith a
network’s position in the cortical hierarchy
Motivated by our observation that fronto-parietal association network
topography contributed most to the prediction of cognitive

Fig. 2 | Functional topography of association networks predicts individual
differences in general cognition in unseen data. a Association between actual
and predicted cognitive performance using two-fold cross-validation (2F-CV) with
nested cross-validation for parameter tuning across both the discovery (black
scatterplot; r(3525) = 0.41, p = 3.050 × 10-146) and replication (gray scatterplot;
r(3447) = 0.45, p = 3.850 × 10-174) samples. Inset histograms represent the distribu-
tions of prediction accuracies from a permutation test. b Repeated random 2F-CV
(100runs) provided evidence of stableprediction accuracy across splits of thedata,
which was far better than a null distribution with permuted data (inset). Two-sided
t-test reveals that repeated random 2F-CV prediction accuracies are significantly
greater than the null distribution of prediction accuracies with permuted data

(t(100) = 261.274, p = 2.595 × 10-253). c Prediction accuracy is shown for seventeen
models trained on each PFN independently for the discovery sample (dark bars)
and replication sample (light bars), with the highest prediction accuracies found in
the ventral attention and fronto-parietal control networks. Note that all p-values
associatedwith prediction accuracies are significant after Bonferroni correction for
multiple comparisons. (FP Fronto-Parietal, VA Ventral Attention, DA Dorsal Atten-
tion, DM Default Mode, AU Auditory, SM Somatomotor, VS Visual). d Functional
topography within association networks yield the most accurate predictions of
general cognition. Prediction accuracy across the full sample shown for seventeen
cross-validated models trained on each PFN independently.

Article https://doi.org/10.1038/s41467-023-44087-0

Nature Communications |         (2023) 14:8411 4



performance while somatomotor networks contributed the least, we
next investigatedwhether the predictive accuracy of a given network’s
ridge regression model was linearly associated with that network’s
rank along the S-A axis28. To account for the spatial auto-correlation of
the data, we leveraged a widely-used spin-based spatial permutation
procedure56.We found that prediction accuracy andposition along the
S-A axis were significantly correlated for predictions of general cog-
nition (Spearman r(17) = 0.601, pspin =0.012) executive function
(Spearman r(17) = 0.547, pspin =0.025) and learning/memory (Spear-
man r(17) = 0.537, pspin =0.028; Fig. 4). These results demonstrate that
a network’s position along the S-A axis is associated with the relevance
of its functional topography in predicting cognitive performance in
youth, providing a useful framework for describing and understanding
the spatial pattern of prediction accuracy results across networks.

The total cortical representation of fronto-parietal PFNs is
associated with cognitive performance
We also sought to replicate previously-reported associations between
the functional topography of individual PFNs and cognitive
performance16. We previously found that greater cortical representa-
tions of two fronto-parietal networks (networks 15 and 17) were asso-
ciated with better cognitive performance (see Figure 6 in ref. 16). As
previously16, we first calculated the total cortical representation of
each PFN as the sum of network loadings across all vertices, using the
soft parcellation to account for spatial overlap across functional brain
networks. As described in prior work16, this measure of total cortical
representation captures the spatial extent of each PFN on the cortical
surface. We then applied linear mixed-effects models to probe the
association between total cortical representation of each PFN and

Fig. 3 | Functional topography of association networks predicts individual
differences in multiple cognitive domains in unseen data. Results of ridge
regressionmodels predicting individual differences in executive function (a–d) and
learning/memory (e–h). Panels a/e: Association between actual and predicted
executive function (a) or learning/memory (e) using two-fold cross-validation (2F-
CV) across both the discovery (black scatterplot) and replication (gray scatterplot)
samples. Inset histograms represent thedistributionsof prediction accuracies from
a permutation test. Repeated random2F-CV (100 runs) provided evidenceof stable
prediction accuracy across many splits of the data for both executive function (b)
and learning/memory (f), which was far better than a null distribution with

permuted data (inset). The PFNs with the highest prediction accuracies for
executive function (c, d) and learning/memory (g, h) were found in association
cortex and were maximal in the ventral attention and fronto-parietal control net-
works. Prediction accuracy is shown for seventeen models trained on each PFN
independently for the discovery sample (dark bars) and replication sample (light
bars) in (c, g). Note that all p-values associated with prediction accuracies are
significant after Bonferroni correction for multiple comparisons. (FP Fronto-Par-
ietal, VA Ventral Attention, DA Dorsal Attention, DM Default Mode, AU Auditory,
SM Somatomotor, VS Visual).

Fig. 4 | Prediction accuracy of functional topography varies systematically
along the S-A axis. The sensorimotor-association (S-A) axis represents a hierarchy
of cortical organization. The prediction accuracies of models trained on each PFN
independently are significantly associated with the rank of each PFN along the S-A
axis as shown by statistically significant Spearman correlations (two-sided) for the
17 networks across all three cognitive domains: general cognition (left), executive

function (middle), and learning/memory (right). Shaded gray error bands represent
95% confidence intervals. Note: average S-A axis ranks for each PFN are z-scored for
visualization purposes. Inset histograms depict the distribution of Spearman cor-
relations between rank and prediction accuracy for 1000 spin-based permutations
of the S-A axis, with the vertical line showing the true Spearman correlation value.
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general cognition. Thesemodels accounted for age, sex (motivated by
prior findings57 that patterns of PFN total cortical representation differ
by biological sex), family (to account for siblings in the ABCD dataset),
and head motion (mean FD) as model covariates (Table 1; Fig. 5).
Multiple comparisons were accounted for using the Bonferroni
method. ComBat harmonization was applied to account for variability
across sites58,59.

We hypothesized that greater total cortical representation of
association networks would be associated with better general cogni-
tive abilities, in line with the intuition that more cortical surface space
dedicated to these networks would facilitate the functions they sub-
serve. We found that all three fronto-parietal PFNs (networks 3, 15, and
17) were significantly positively associated with general cognition

across both the discovery and replication samples. These findings
remained significant in sensitivity analyses controlling for psycho-
tropic medication use (Supplementary Table 2) as well as socio-
economic status (Supplementary Table 3). We also note that although
the effect sizes for these univariate associations are small, they fall
within or above the expected range for accurately-estimated brain-
behavior effect sizes in studies of this size17 and these effects are highly
reproducible across studies and samples. Together, these results
replicate the findings presented in Figure 6 of ref. 16. In addition to
replicating these prior results regarding fronto-parietal network
topography in two large samples, we additionally found that one
somatomotor network (network 4) was inversely associated with
cognitive performance in both discovery and replication samples, and

Table 1 | Linear mixed effects models depicting associations between general cognition and fronto-parietal PFN topography

PFN 3 PFN 15 PFN 17

Predictors β Std.
Error

t pbonf β Std.
Error

t pbonf β Std.
Error

t pbonf

Discovery

Intercept 0.02 0.02 0.69 0.488 0.07 0.02 2.95 0.003 −0.04 0.02 −1.52 0.128

Age −0.04 0.02 −2.54 0.011 −0.02 0.02 −1.28 0.201 −0.04 0.02 −2.58 0.010

Sex −0.05 0.03 −1.60 0.109 −0.15 0.03 −4.51 6.72 x 10−6 0.05 0.03 1.57 0.117

Mean FD 0.12 0.02 6.98 3.44× 10−12 0.12 0.02 6.82 1.06 x 10−11 0.04 0.02 2.22 0.027

General
Cognition

0.08 0.02 3.24 0.001 0.09 0.02 3.50 4.67 x 10−4 0.10 0.02 4.29 1.88 x 10−5

Replication

Intercept 0.01 0.02 0.43 0.665 0.07 0.02 2.82 0.005 −0.02 0.02 −1.00 0.320

Age −0.01 0.02 −0.84 0.400 −0.06 0.02 −3.32 9.02 x 10−4 −0.05 0.02 −2.65 0.008

Sex −0.04 0.03 −1.28 0.199 −0.15 0.03 −4.27 2.01 x 10−5 0.04 0.03 1.11 0.265

Mean FD 0.16 0.02 9.05 2.39x 10−19 0.08 0.02 4.54 5.81 x 10−6 0.04 0.02 2.11 0.035

General
Cognition

0.08 0.02 3.07 0.002 0.09 0.02 3.74 1.84 x 10−4 0.12 0.02 4.68 2.98 x 10−6

Note that data were harmonized across sites using ComBat58,59 and each model also included a random effect term for family ID. Bold font indicates statistically significant p-values (p < 0.05) after
Bonferroni correction for multiple comparisons

Fig. 5 | Total cortical representations of fronto-parietal PFNs are positively
associated with cognition. Ordering the seventeen PFNs by the strength of their
signed association with general cognition, we found significant positive associa-
tions between general cognition and the total cortical representation of all three
fronto-parietal PFNs andnegative correlationswith a somatomotor network inboth

the discovery (a–d) and replication (e–h) samples (PBonf < 0.05; dashed lines indi-
catenetworkswith effects thatwerenot statistically significant). Scatterplots depict
the relationship between general cognition and the total cortical representation of
fronto-parietal networks 3, 15, and 17. (FP Fronto-Parietal, VA Ventral Attention, DA
Dorsal Attention, DM Default Mode, AU Auditory, SM Somatomotor, VS Visual).
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another somatomotor network (network 2) was inversely associated
with cognition in only the discovery sample. Notably, the total cortical
representation of network 2was similarly found to be inversely related
to cognition in the original report by ref. 16.

Discussion
In the largest study to use precision functional brain mapping to
investigate cognition in children to date, we found reproducible
associations between individual differences in functional brain net-
work organization and individual differences in cognition. Replicating
key findings from a prior study16 in samples that were an order of
magnitude larger, we trained cross-validated models on the complex
multivariate pattern of PFN topography to predict individual differ-
ences in cognitive functioning in unseen participants’ data. Critically,
we identified a consistent spatial pattern that accounts for these
results, whereby association network topography yields the strongest
predictions and sensorimotor network topography yields the weakest
predictions of cognitive functioning, directly aligning with the S-A axis
of hierarchical cortical organization28. Together, these findings
demonstrate that the link between functional network topography and
cognition in children on the precipice of the transition to adolescence
is reproducible, representing an important step toward understanding
heterogeneity in neurocognitive development.

Scalable precision functional brain mapping in children
Our approach successfully overcame two key challenges: addressing
inter-individual heterogeneity in functional brain network organiza-
tion using precision functional mapping and addressing the need for
reproducibility by developing cross-validated models in two large
samples of thousands of individuals. The reproducibility crisis con-
tinues to pose a significant challenge for neuroscience and psychology
research, with recent findings further emphasizing the need for very
large sample sizes to uncover reproducible brain-wide associations
with behavior17. However, large-scale open-source datasets such as the
ABCD Study® provide significant hope for a feasible path forward. Our
results represent the largest successful replication of associations
between functional brain network topography and cognition in chil-
dren, with consistent findings across datasets and samples. Several
important factors are likely to have contributed to this success. First,
both the original study16 and our replication leveraged datasets with a
large number of fMRI scans of children’s brains (n = 693 in the original
study, and n = 6972 in our replication). These datasets allowed us to
uncover reliable associations between functional brain network
topography and cognition. Second, our studiesmade use of predictive
models that were trained and tested using rigorous cross-validation.
Third, our precision functional brain mapping approach of identifying
unique functional networks in individual children’s brains allowed us
to capitalize on inter-individual variability rather than treat such
variability as noise. This approach may have contributed to the rela-
tively larger effect sizes we observed compared with prior studies
using group atlases,whichmayhave bolsteredour ability to reproduce
these findings. In order to move toward the goal of supporting child
and adolescent mental health, moderate to large effect sizes and
generalizability to new samples are essential for predictive models to
have clinical utility. Our scalable precision functional mapping
approachmay therefore be leveraged in future studies of children and
adolescents to harness individual variability and identify important,
reproducible brain-behavior associations.

Association network topography supports domain-general
cognitive abilities
Having replicated key brain network-cognition associations fromprior
work16, we can begin to interpret these associations in the context of
brain development.Our observation that general cognitive abilities are
more strongly associated with PFN topography than other cognitive

domains suggests that greater spatial representation of association
networks across the cortex may support domain-general cognitive
abilities. This finding builds upon prior results highlighting the pre-
dominance of general cognitive abilities (also referred to as a g-
factor60,61) in accounting for shared variance across cognitive tasks.
Recent work in the ABCD dataset has highlighted the potential role of
this g-factor inmediating betweengenetic risk andpsychopathology in
children46, suggesting that our identification of functional topography
patterns associated with general cognition may represent a brain fea-
ture of interest for future studies of resilience.

We also found a similar pattern across all three cognitive domains
in terms of which PFNs most strongly contributed to predictions of
cognitive performance. This consistent pattern was well-described by
a major hierarchy of cortical organization known as the S-A axis, with
association networks contributing the most to associations with and
predictions of cognitive performance across domains. This finding
provides further evidence for the existence of a perception-cognition
processing hierarchy in the brain29,62 that aligns with the S-A axis28.
Indeed, the associationnetworkswhose topographywasmost strongly
associated with cognitive performance in children also show the
greatest evolutionary expansion between non-human primates and
humans63,64 and their function has been correlated with cognitive
performance in adults13–15. Prior studies have also demonstrated that
this S-A axis gradually becomes the predominant pattern of cortical
functional organizational with age, as the principal gradient of func-
tional connectivity shifts from a visuo-motor axis to the S-A axis from
childhood to adolescence65—a shift which happens during the pro-
tracted development of higher-order cognitive functions62. Future
studies may investigate how longitudinal developmental changes in
PFN functional topography along the S-A axis are related to the
maturation of complex cognitive abilities, complementing cross-
sectional work16,66.

Another potential explanation for why variability in functional
topography in the association cortices is the most strongly associated
with individual differences in cognition is that these regions, and
particularly regions of the fronto-parietal network, also tend to have
the highest degree of inter-individual heterogeneity in other
features16,19,67–69. Thus, while various networks across the S-A axis likely
contribute in diverse ways to cognitive functioning, the notable indi-
vidual variability in association network topography may be a more
salient feature for predicting individual differences in cognition.
Indeed, these regions tend to exhibit lower structural and functional
heritability70,71 and undergo the greatest surface area expansionduring
development63. Moreover, the extended window of plasticity for these
regions compared with other parts of the cortex72 renders themmore
likely to be shaped by an individual’s environment and experiences71,
potentially further contributing to their unique spatial patterning
across individuals. Encouragingly, this extended window in which
association networks remain plastic may also indicate that interven-
tions targeting these systems could be effective in supporting the
development of healthy cognition.

Limitations and future directions
This study had several limitations worth noting. First, this study was
conducted at a single timepoint, using the baseline cohort from the
ABCD Study®. As such, we were able to trainmodels that could predict
cognitive performance from functional brain network topography in
held-out participants data, but were not able to build predictive
models of future changes in cognition within an individual. Our work
therefore sets the foundation for future longitudinal studies using the
ABCD Study® dataset to identify changes in functional brain network
organization during development using the PFNs we have identified at
this baseline assessment. Second, head motion continues to pose an
ongoing challenge for neuroimaging studies73–75, particularly for stu-
dies of children73, and indeed our linearmixed effectsmodels revealed
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that the total cortical representation of fronto-parietal PFNs was sig-
nificantly associatedwith headmotion.We have attempted tomitigate
these effects in our analyses of interest by following best practices for
reducing the influenceof headmotion on our results, including using a
top-performing preprocessing pipeline and inclusion of motion as a
covariate in all analyses. Third, we used data combined across four
fMRI runs, including three where a behavioral task was performed
during scanning, in line with prior studies of PFNs16,66, aiming to
maximize the amount of high-quality data for our study. Prior studies
have shown that variation in functional networks is primarily driven by
inter-individual heterogeneity rather than task-related factors and that
intrinsic functional networks are similar during task and rest68. Fourth,
differences between the ABCD dataset and the dataset used in the
original study16 (e.g., differences in scanning sequences, registration
templates, and cognitive measures) prohibited us from directly
applying the same models from the original study to this dataset
directly. Our results therefore constitute a conceptual replication of
the prior findings that demonstrates the robust generalizability of the
results with both new data and newmethods. Fifth, the registration of
MRI data to a common reference space (fslr) has known limitations
(e.g., the spatialwarping to register individual brainswith this common
reference will necessarily differ across individuals). While this
approach had the advantage of allowing us to apply NMF with a
common spatial prior across individuals (allowing us to account for
individual variability in functional neuroanatomy in a standardized
space), future work may investigate whether the varying degrees of
stretching/squeezing of different cortical surface regions has an effect
on associations between functional topography and behavior. Finally,
our analyses focused on characterizing the cortical surface topo-
graphy of functional brain networks and thus did not include analyses
of subcortical regions. Future studies may use precision functional
brain mapping approaches in subcortical areas76,77 to further our
understanding of the role of the subcortex in cognitive development.
Future work may also expand upon our findings to explore other
cognitive domains (e.g., social perception) that may be supported by
distinct patterns of PFN topography as well as socio-demographic and
environmental factors (e.g., socio-economic resources and structural
racism) that may shape the development of PFN topography.

Critically, it is known that cognitive impairments in adulthood are
common across diverse psychiatric illnesses including mood26,78 and
anxiety79–81 disorders and our current first-line pharmacological treat-
ments fail to target these cognitive symptoms82,83. Given that the
functional topography of networks implicated in cognitive impair-
ments and psychiatric illness (e.g., the fronto-parietal network26) tend
to have the highest inter-individual heterogeneity16, studies of perso-
nalized networks may be essential in better understanding these
symptoms. Longitudinal studies of neurocognitive developmental
trajectories may therefore also provide a critical link between func-
tional brain organization in childhood and psychiatric illness in
adulthood, with the potential to identify individuals at risk for cogni-
tive impairments prior to the onset of psychiatric illness and in
advance of treatment attempts that are likely to fail. Moreover, this
study investigated PFNs in 9–10 year old children prior to the transi-
tion to adolescence; these children will be followed longitudinally into
adulthood as part of the ABCD Study®. These results therefore lay a
strong foundation for future work to uncover how PFNs derived at
baseline may predict trajectories of change in cognitive functioning
duringdevelopment as longitudinal data is collected. Such studiesmay
reveal distinct or overlapping neurobiological features that are pre-
dictive of future cognitive abilities andwhosedevelopment trackswith
the protracted development of higher-order cognition through child-
hood and adolescence.

Together, the findings of this study represent an important
advance in our understanding of the link between individual differ-
ences in functional brain network organization and individual

differences in cognitive functioning in youth. Further, these results
successfully replicated prior findings16 across two large samples of
youth, providing compelling evidence that these observations are
generalizable to new samples. Individual differences in cognition in
youth are associated with critical physical, mental, social, and educa-
tional outcomes in adolescence and adulthood, ranging from aca-
demic achievement and financial success to psychopathology, risk-
taking behaviors, and cardiovascular disease. Thus, our findings may
inform studies that seek to develop interventions that could promote
healthy neurocognitive development. By identifying PFNs whose
functional topography is associated with cognition, we provide a
foundation for future longitudinal studies of neurocognitive devel-
opment and psychopathology.

Methods
Participants
Data were drawn from the ABCD study36 baseline sample from the
ABCD BIDS Community Collection (ABCC, ABCD-316537), which inclu-
ded n = 11,878 children aged 9–10 years old and their parents/guar-
dians collected across 21 sites. Parents and guardians provided written
informed consent as part of the ABCD study. Institutional Review
Board (IRB) approval was received from the University of California,
San Diego and the respective IRBs of each study site. Inclusion criteria
for this study included being within the desired age range (9–10 years
old), English language proficiency in the children, and having the
ability to provide informed consent (parent) and assent (child).
Exclusion criteria included the presence of severe sensory, intellectual,
medical or neurological issues that would have impacted the child’s
ability to comply with the study protocol, as well as MRI scanner
contraindications. As depicted in Supplementary Fig. 3, we addition-
ally excluded participants with incomplete data or excessive head
motion, yielding a final sample of n = 6972.

To test the generalizability of our results, we repeated each of our
analyses in both a discovery sample (n = 3525) and a separate replica-
tion sample (n = 3447) that were matched across multiple socio-
demographic variables including age, sex, site, ethnicity, parent edu-
cation, combined family income, and others37,38. Socio-demographic
characteristics of participants in the discovery and replication samples
may be found in Table 2. We observed no statistically significant dif-
ferences betweenparticipants in thediscovery and replication samples
across any socio-demographic variables, psychotropicmedication use
(assessed by theMedication Inventory from the PhenX instrument and
coded as in ref. 84), externalizing, internalizing, or problem behavior
scores (assessed by the Child Behavior Checklist85), nor any of the
three cognitive domains.

Cognitive assessment
Participants completed a battery of cognitive assessments, including
seven tasks from the NIH Toolbox (Picture Vocabulary, Flanker Test,
List Sort Working Memory Task, Dimensional Change Card Sort Task,
Pattern Comparison Processing Speed Task, Picture Sequence Mem-
ory Task, and the Oral Reading Test)86 as well as two additional tasks
(the Little Man Task and the Rey Auditory Verbal Learning Task)87. To
reduce thedimensionality of thesemeasures and focus our analyses on
cognitive domains that explained the majority of behavioral variance
in these tasks, we used scores in three previously-established cognitive
domains derived from a prior study in this same dataset40: (1) general
cognition, (2) executive function, and (3) learning/memory. In this
study, a three-factor BPPCAmodel was applied to the aforementioned
battery of nine cognitive tasks. Scores generated by varimax rotated
loadings for this three-factor model for general cognition (highest
loadings: Oral Reading Test, Picture Vocabulary, and Little Man Task),
executive function (highest loadings: Pattern Comparison Processing
Speed Task, Flanker Test, and Dimensional Change Card Sort Task),
and learning/memory (highest loadings: Picture Sequence Memory
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Task, Rey Auditory and Verbal Learning Task, and List Sort Working
Memory Task) were downloaded directly from the ABCD Data
Exploration and Analysis Portal.

Image processing
Imaging acquisition for the ABCD Study® has been described
elsewhere88. As previously described37, the ABCC Collection 3165 from
which we drew our data was processed according to the ABCD-BIDS
pipeline. This pipeline includes distortion correction and alignment,
denoising with Advanced Normalization Tools (ANTS89), FreeSurfer90

segmentation, surface registration, and volume registration using FSL

FLIRT rigid-body transformation91,92. Processingwasdone according to
the DCAN BOLD Processing (DBP) pipeline which included the fol-
lowing steps: (1) de-meaning and de-trending of all fMRI data with
respect to time; (2) denoising using a general linear model with
regressors for signal and movement; (3) bandpass filtering between
0.008 and 0.09Hz using a 2nd order Butterworth filter; (4) applying
the DBP respiratory motion filter (18.582–25.726 breaths per minute),
and (5) applying DBP motion censoring (frames exceeding an FD
threshold of 0.2mm or failing to pass outlier detection at +/− 3 stan-
dard deviations were discarded). Following preprocessing, we con-
catenated the time series data for both resting-state scans and three
task-based scans (Monetary Incentive Delay Task, Stop-Signal Task,
and Emotional N-Back Task) as in prior work16 to maximize the avail-
able data for our analyses, though we note that all of our main results
hold when we derive PFNs using only resting-state data from a subset
of participants (n = 5968) who met our minimum threshold for clean
resting-state data (Supplementary Table 4). We note that the original
study16 utilized a concatenated time series from both resting-state and
two task-based scans yielding a time series length of 27min 45 s prior
to preprocessing, while the current study uses up to four resting-state
scans and three task-based scans yielding a maximum time series
length of 29min 36 s after motion scrubbing. Participants with fewer
than 600 remaining TRs after motion censoring or who failed to pass
ABCD quality control for their T1 or resting-state fMRI scan were
excluded. Since each of the participants has a variable number of
frames remaining per run following our strict motion correction, it is
not feasible to control for head motion independently for each run
without biasing our results. We therefore use only the concatenated
time series across all runs and the overall mean fractional displace-
ment as a motion covariate in our analyses, so as not to inadvertently
over- or under-correct for head motion for certain runs. We addi-
tionally excluded participants with incomplete data for our analyses
(Supplementary Fig. 3). We then applied ComBat harmonization58,59

using the neuroCombat package protecting age, family and sex as
covariates, separately in the discovery and replication samples to
harmonize the data across collection sites. Note that for our ridge
regression models (described below), we chose to include data col-
lection site as a covariate rather than apply ComBat harmonization to
avoid leakage across our samples.

Regularized non-negative matrix factorization
As previously described16,25, we used NMF39 to derive individualized
functional networks. NMF identifies networks by positively weighting
connectivity patterns that covary, leading to a highly specific and
reproducible parts-based representation39,93. Our approach was
enhanced by a group consensus regularization term derived from pre-
vious work in an independent dataset16 that preserves the inter-
individual correspondence, as well as a data locality regularization term
thatmakes the decompositionmore robust to imaging noise, improves
spatial smoothness, and enhances functional coherence of the subject-
specific functional networks (see ref. 25 for details of the method; see
also: https://github.com/hmlicas/Collaborative_Brain_Decomposition).
As NMF requires nonnegative input, we re-scaled the data by shifting
time courses of each vertex linearly to ensure all values were positive25.
As inpriorwork, to avoid features in greater numeric rangesdominating
those in smaller numeric range, we further normalized the time course
by itsmaximumvalue so that all the timepoints have values in the range
of [0, 1]. For this study, we used identical parameter settings as in prior
validation studies25, with the exception of an increase in thedata locality
regularization term from 10 to 300 to account for smaller vertices in fslr
compared with fsaverage5.

Defining individualized networks
To facilitate group-level interpretations of individually-defined PFNs,
we used a group consensus atlas from a previously published study in

Table 2 | Demographic characteristics and variables of inter-
est in the matched discovery (n = 3525) and replication
(n = 3447) samples

Total Discovery Replication P-
value

Age (Months) 119.5 (±7.5) 119.5 (±7.6) 119.5 (±7.5) 0.94

Sex (F) 3494 (50.1%) 1806 (51.2%) 1688 (49.0%) 0.06

General Cognition 0.1 (±0.7) 0.1 (±0.7) 0.1 (±0.7) 0.18

Executive Function 0.0 (±0.8) 0.0 (±0.8) 0.1 (±0.7) 0.23

Learning/Memory 0.1 (±0.7) 0.1 (±0.7) 0.0 (±0.7) 0.22

ADHD Medication 536 (7.7%) 283 (8.0%) 253 (7.3%) 0.30

Antidepressant
Medication

122 (1.8%) 69 (2.0%) 53 (1.5%) 0.20

Antipsychotic Medication 40 (0.6%) 23 (0.7%) 17 (0.5%) 0.43

CBCL Ext. 0.93

Mean (SD) 4.2 (±5.5) 4.2 (±5.6) 4.1 (±5.4)

Missing 1 (0.0%) 0 (0.0%) 1 (0.0%)

CBCL Int. 0.50

Mean (SD) 5.0 (±5.5) 5.0 (±5.6) 4.9 (±5.4)

Missing 1 (0.0%) 0 (0.0%) 1 (0.0%)

CBCL Prob. 0.99

Mean (SD) 17.3 (±17.2) 17.4 (±17.5) 17.1 (±16.9)

Missing 1 (0.0%) 0 (0.0%) 1 (0.0%)

Household Income 0.28

[<50K] 1645 (23.6%) 806 (22.9%) 839(24.4%)

[≥50K & <100K] 1902 (27.3%) 983 (27.9%) 919 (26.7%)

[≥100 K] 2870 (41.2%) 1451 (41.2%) 1419 (41.2%)

Missing 552 (7.9%) 284 (8.1%) 268 (7.8%)

Race 0.46

White 4723 (67.8%) 2426 (68.8%) 2297 (66.7%)

Black 910 (13.1%) 442 (12.5%) 468 (13.6%)

Asian 145 (2.1%) 71 (2.0%) 74 (2.1%)

AIAN/NHPI 41 (0.6%) 23 (0.7%) 18 (0.5%)

Other 242 (3.5%) 114 (3.2%) 128 (3.7%)

Mixed 823 (11.8%) 410 (11.6%) 413 (12.0%)

Missing 85 (1.2%) 38 (1.1%) 47 (1.4%)

Parent Education 0.31

<HS Diploma 236 (3.4%) 117 (3.3%) 119 (3.5%)

HS Diploma/GED 542 (7.8%) 254 (7.2%) 288 (8.4%)

Some College 1781 (25.6%) 905 (25.7%) 876 (25.4%)

Bachelor 1885 (27.0%) 980 (27.8%) 905 (26.3%)

Post Graduate Degree 2519 (36.1%) 1264 (35.9%) 1255 (36.4%)

Missing 6 (0.1%) 4 (0.1%) 2 (0.1%)

Therewerenostatistically significantdifferencesbetween thediscovery and replication samples
in any of the attributes included in this table, evaluated using analyses of variance (ANOVAs),
Fisher’s exact tests, or standard Chi Squares analyses as appropriate.
AIAN American Indian/Alaska Native, NHPI Native Hawaiian and other Pacific Islander, HS high
school, GED General Educational Development, CBCL child behavior checklist.
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an independent dataset16 as an initialization for individualized network
definition. In this way, we also ensured spatial correspondence across
all subjects. This strategy has also been applied in other methods for
individualized network definition23,94. Details regarding the derivation
of this group consensus atlas can be found in previous work16. Briefly,
group-level decomposition was performed multiple times on a subset
of randomly selected participants and the resulting decomposition
results were fused to obtain one robust initialization that is highly
reproducible. Next, inter-network similarity was calculated and
normalized-cuts95 based spectral clustering method was applied to
group the PFNs into 17 clusters. For each cluster, the PFN with the
highest overall similarity with all other PFNs within the same cluster
was selected as the most representative. The resulting group-level
network loading matrix V was transformed from fsaverage5 space to
fslr space using Connectome Workbench96, and thus the resultant
matrix had 17 rows and 59,412 columns. Each row of this matrix
represents a functional network, while each column represents the
loadings of a given cortical vertex.

Using the previously-derived group consensus atlas16 as a prior to
ensure inter-individual correspondence, we derived each individual’s
specific network atlas using NMF based on the acquired group net-
works (17 × 59,412 loadingmatrix) as initializationand each individual’s
specific fMRI times series. See ref. 25 for optimization details. This
procedure yielded a loading matrix V (17 × 59,412 matrix) for each
participant, where each row is a PFN, each column is a vertex, and the
value quantifies the extent each vertex belongs to each network. This
probabilistic (soft) definition can be converted into discrete (hard)
network definitions for display and comparison with other
methods19,23,94 by labeling each vertex according to its highest loading.
Split-half reliability of the PFN loadings were assessed in ten partici-
pants who had the longest duration of low-motion quality resting-state
data exceeding 20min allowing us to derive PFNs in two 10-minute
segments, as previously described in prior work97, given the necessity
of sufficient scan duration for the derivation of precision functional
networks20,21. This analysis revealed high intraclass correlation coeffi-
cients for PFN loadings across all 17 networks (ICCs: 0.84–0.99) indi-
cating excellent reliability of this measure (Supplementary Fig. 4) that
aligns with what has been found in prior work20,21. For our univariate
analyses, we calculated the total cortical representation of each PFN as
the sum of network loadings across all vertices as previously16, using
the soft parcellation to account for spatial overlap across functional
brain networks. As described in prior work16, this measure of total
cortical representation quantifies the spatial extent of each PFN on the
cortical surface.

Calculation of sensorimotor-association Axis Rank
To compute S-A axis rank for each PFN independently, we computed
the average S-A rank across vertices for each PFN according to the hard
network parcellation. Original S-A axis ranks by vertex represent the
average cortical hierarchy across multiple brain maps16 and were
derived from https://github.com/PennLINC/S-A_ArchetypalAxis.

Statistical analyses
Data analysis was performed using Matlab (R2022a), R (4.1.3) and
Python (3.9). All code is available at https://github.com/PennLINC/
keller-networks. For each statistical test reported, the data met the
assumptions of the statistical tests used.

Linear mixed-effects models
We used linear mixed effects models (implemented with the “lme4”
package in R) to assess associations between PFN topography (total
cortical representation) and performance in each cognitive domain
while accounting for both fixed and random predictors. We note that
these univariate association analyses are distinct fromourmultivariate
predictive modeling approach (using ridge regression, as described

below) in that we use a single measure (total cortical representation)
per network rather than the multivariate pattern of PFN topography
across all vertices (i.e., thousands of features per network). All linear
mixed effects models included fixed effects parameters for age, bio-
logical sex (self-reported sex assigned at birth), head motion (mean
fractional displacement), as well as a random intercept for family
(accounting for siblings). Note that data were harmonized across sites
prior to linear mixed-effects model analyses, and thus there was no
need to include a random intercept for site.

Ridge regression
We trained ridge regression models to predict cognitive performance
in each of the three cognitive domains (general cognition, executive
function, and learning/memory) using the functional topography
(vertex-wise network loading matrices) of each participant’s PFNs. In
line with the recommendation that predictive models of brain-
behavior associations be trained on multivariate patterns rather than
univariate measures98, these predictive models were trained on con-
catenated network loading matrices across the 17 PFNs. Independent
network models were also trained on the network-wise loadings at
each vertex. All models included covariates for age, sex, site, and
motion (mean FD).

Our primary ridge regression models were trained and tested on
the ABCD reproducible matched samples37,38 using nested two-fold
cross-validation (2F-CV), with outer 2F-CV estimating the general-
izability of the model and the inner 2F-CV determining the optimal
tuning parameter (λ) for the ridge regression model. For the inner 2F-
CV, one subset was selected to train themodel under a given λ value in
the range [210, 29,…, 24, 25] (i.e., 16 values in total)16, and the remaining
subset was used to test the model. This procedure was repeated 2
times such that each subset was used once as the testing dataset,
resulting in two inner 2F-CV loops in total. For each λ value, the cor-
relation r between the actual and predicted outcome as well as the
mean absolute error (MAE) were calculated for each inner 2F-CV loop,
and then averaged across the two inner loops. The sum of the mean
correlation r and reciprocal of the mean MAE was defined as the inner
prediction accuracy, and the λ with the highest inner prediction
accuracywas chosen as the optimal λ16. Of note, themean correlation r
and the reciprocal of the mean MAE cannot be summed directly,
because the scales of the raw values of these two measures are quite
different. Therefore, we normalized the mean correlation r and the
reciprocal of the mean MAE across all values and then summed the
resultant normalized values.

To ensure that our matched discovery and replication sample
selection procedure did not bias our results, we performed repeated
random cross-validation over 100 iterations, each time randomly
splitting the sample and repeating the nested 2F-CV procedure to
generate a distribution of prediction accuracies for each model. Fur-
thermore, we used permutation testing to generate null distributions
for both the primarymodels and the repeated randomcross-validation
models by randomly shuffling the outcome variable. Supplementary
Fig. 1 depicts the sum of model weights by PFN for the primary ridge
regressionmodels in each of thematched samples. To ensure that our
results were not overfit as a result of leakage across samples by the
cognitive outcome variables derived in the whole sample40, we also
trained ridge regressionmodels to predict cognitive scores derived by
two independent principal components analyses in the discovery and
replication samples separately. Repeating ourmainanalyseswith these
new predictive models, we find functionally identical results as shown
in Supplementary Fig. 5.We also found consistent prediction accuracy
results when training our ridge regression models to predict perfor-
mance in each cognitive task independently (Supplementary Table 5).
We also tested whether the prediction accuracy from these ridge
regression models was associated with the total size of each PFN,
defined as the number of vertices belonging to each PFN in the hard
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parcellation (Supplementary Fig. 6). However, we note that association
networks ranked higher along the S-A axis tend to occupy a larger
portion of the cortical surface than sensorimotor networks ranked
lower along the axis (see following section on associations between
prediction accuracy and S-A axis rank). We further note that our mul-
tivariate ridge-regression analyses leverage the full richness and
complexity of PFN topography across vertices, while our univariate
linear mixed effects analyses of total cortical representation use a
single scalar summary statistic (total cortical representation) per PFN.
Thus, effect sizes for these multivariate prediction analyses are
expected to be larger than effect sizes for our univariate association
analyses.

Associations between prediction accuracy and S-A axis rank
To compute associations between the prediction accuracy of each
individual network model and the average S-A rank for each network,
we used Spearman’s rank correlations for each of the three cognitive
domains: general cognition, executive function, and learning/memory.
To determine whether the alignment between these two spatial maps
were driven specifically by the S-A axis, we used spatial permutation
testing56 (Spin Tests; https://github.com/spin-test/spin-test). The spin
test is a spatial permutationmethod based on angular permutations of
spherical projections at the cortical surface. Critically, the spin test
preserves the spatial covariance structure of the data, providing a
more conservative and realistic null distribution than randomly shuf-
fling locations. With this approach, we applied 1000 random rotations
to spherical representations of S-A axis rank across the cortical surface,
each time re-computing the average S-A rank within each PFN and
calculating Spearman correlations between prediction accuracy and
the permuted average S-A rank in each PFN to generate a null dis-
tribution. We then compared the true Spearman correlation value to
the null distribution of spatially permuted Spearman correlations by
rank ordering.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data used in the preparation of this article were obtained from the
Adolescent Brain Cognitive Development Study® (https://abcdstudy.
org), held in the NIMH Data Archive (NDA). Only researchers with an
approved NDA Data Use Certification (DUC) may obtain ABCD
Study data.

Code availability
Code is available at https://github.com/PennLINC/keller-networks99.
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