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Abstract

Head motion correction is particularly challenging in diffusion-weighted MRI (dMRI)

scans due to the dramatic changes in image contrast at different gradient strengths

and directions. Head motion correction is typically performed using a Gaussian Pro-

cess model implemented in FSL's Eddy. Recently, the 3dSHORE-based SHORELine

method was introduced that does not require shell-based acquisitions, but it has

not been previously benchmarked. Here we perform a comprehensive evaluation

of both methods on realistic simulations of a software fiber phantom that provides

known ground-truth head motion. We demonstrate that both methods perform

remarkably well, but that performance can be impacted by sampling scheme and

the extent of head motion and the denoising strategy applied before head motion

correction. Furthermore, we find Eddy benefits from denoising the data first with

MP-PCA. In sum, we provide the most extensive known benchmarking of dMRI

head motion correction, together with extensive simulation data and a reproducible

workflow.

Received: 19 September 2023 Revised: 22 November 2023 Accepted: 4 December 2023

DOI: 10.1002/hbm.26570

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2024;45:e26570. wileyonlinelibrary.com/journal/hbm 1 of 11

https://doi.org/10.1002/hbm.26570

https://orcid.org/0000-0002-1931-4734
https://orcid.org/0000-0002-1985-8475
https://orcid.org/0000-0002-2036-5571
https://orcid.org/0000-0001-9080-5010
https://orcid.org/0000-0002-4448-986X
https://orcid.org/0000-0002-1728-9782
https://orcid.org/0000-0001-7346-2669
https://orcid.org/0000-0002-6183-4493
https://orcid.org/0000-0002-0454-3112
https://orcid.org/0000-0003-0679-1985
https://orcid.org/0000-0003-4015-3151
mailto:matthew.cieslak@pennmedicine.upenn.edu
mailto:sattertt@pennmedicine.upenn.edu
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm
https://doi.org/10.1002/hbm.26570
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fhbm.26570&domain=pdf&date_stamp=2024-01-30


Practitioner points

• Both Eddy and SHORELine head motion correction methods performed quite well

on a large variety of simulated data.

• Denoising with MP-PCA can improve head motion correction performance when

Eddy is used.

• SHORELine effectively corrects motion in non-shelled diffusion spectrum imag-

ing data.

K E YWORD S

artifact, diffusion MRI, diffusion spectrum imaging, ensemble average propagator, head motion,
software

1 | INTRODUCTION

Diffusion-weighted MRI (dMRI) modulates the MR signal to encode

information about the distribution of water diffusion, which is con-

strained by the orientation and permeability of tissue (Basser, 1995;

Callaghan, 1993; Stejskal & Tanner, 1965). This method has become

widely used to non-invasively image the structural properties of white

matter in the brain. Over the course of three decades, dMRI

sequences have advanced to capture signal in many directions

(e.g., higher angular resolution) and diffusion sensitizations

(Tuch, 2004; Wedeen et al., 2005) with most modern sequences cap-

turing hundreds of images over the course of 5–30 min of scanning.

Any scanning sequence where multiple images are acquired over

time is highly susceptible to artifacts related to head motion during

the scan. The effects of head motion during functional MRI (fMRI),

another imaging technique that acquires images in a series over time,

are well-known and typically addressed by simply aligning each image

to a reference image using a rigid or affine transformation (Jenkinson

et al., 2002), followed by further corrections to the time series data in

each voxel (Ciric et al., 2018). The use of a single reference image

works well for spatially correcting fMRI because the contrast and SNR

remain relatively constant over the acquisition.

dMRI sequences acquire images that can have dramatically differ-

ent spatial contrasts and SNR depending on the diffusion-encoding

gradient moment (i.e., b-value in s/mm2) and direction. The set of

directions and b-values that define a dMRI sampling scheme are what

allow the method to estimate the ensemble average diffusion propa-

gator (EAP) in each voxel (Callaghan, 1993). However, such differ-

ences in contrast also preclude the use of a single image as the

registration target for head motion correction. Instead, for each b > 0

image in the dMRI series, an image with similar spatial contrast must

be generated as if it were aligned with all other images in the dMRI

series. Each image can then be registered to the target image, correct-

ing the effect of bulk head motion in each volume.

At present the most widely-used method for dMRI head motion

correction is Eddy (Andersson & Sotiropoulos, 2015), which is included

in the fMRIB software library (FSL). Eddy has been widely adopted,

including by large imaging consortia such as the Human Connectome

Project (Glasser et al., 2013) and the UK BioBank (Alfaro-Almagro

et al., 2018). In addition to estimating bulk head motion, Eddy esti-

mates and corrects spatial warping related to eddy currents, fills in

dropped slices (Andersson et al., 2016), estimates intra-volume motion

and optionally incorporates susceptibility distortion correction if a field-

map is estimated using the TOPUP tool (Andersson & Sotiropoulos,

2016). Many of these features rely on Eddy's algorithm for generating

registration targets. Eddy operates on shelled dMRI sequences, which

acquire multiple gradient directions at the same b > 0 value. Given that

all images on the same shell are sampling the surface of a sphere in q-

space, the differences in their signal can be represented as a Gaussian

process (GP) on the azimuth and elevation coordinates on the unit

sphere S2. Eddy estimates one GP per shell and uses the GP to pro-

duce registration targets. A rigid registration is performed between

each b>0 image and its GP prediction, followed by a linear or qua-

dratic warp in the Phase Encoding Direction of the dMRI acquisition

to correct for Eddy current-related distortion.

Although shelled acquisitions are popular, there are other

methods of sampling q-space that have unique advantages. Diffusion

spectrum imaging (DSI) samples a Cartesian grid in q-space, enabling

the direct reconstruction of the EAP with a simple Fourier transform

(Wedeen et al., 2005). Shelled schemes require more complex model-

ing and leave open the issue of which b-values to acquire shells at: a

question with no universal answer. DSI scans typically have required

the acquisition of more than 200 images, resulting in long scan

times—particularly when multiband imaging is not available. However,

sparse, random subsets of the Cartesian grid scheme along with a

compressed-sensing reconstruction approach (CS-DSI) have been

shown to provide comparable EAP reconstructions to the full grid

sampling scheme at a fraction of the scanning time (Merlet &

Deriche, 2013; Paquette et al., 2015). However, until recently, there

has been no widely accepted head motion correction for these non-

shelled schemes, limiting the application of DSI in translational

research.

The SHORELine algorithm (Cieslak et al., 2021) was introduced to

fill this gap and provide a method to generate registration targets for
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any dMRI sampling scheme with both radial and angular variability in

its q-space sampling scheme. SHORELine is a cross-validated method

where, for each b > 0 image, the 3dSHORE basis set (Özarslan et al.,

2013) is fit to all other images using L2-regularization. A registration

target for the left-out image is estimated based on the 3dSHORE fit

and the image is registered with a Rigid (6DOF) or optional Affine

(12DOF) transform using ANTs (Figure 1). This process is repeated up

to two times based on user specifications. The 3dSHORE basis func-

tions are defined in three-dimensional space (R3) and are therefore

appropriate for multi-shelled, Cartesian as well as sparse/random sam-

pling schemes. The original SHORELine evaluation showed an overall

improvement in the Neighboring DWI Correlation (NDC) quality mea-

sure of both shelled and non-shelled sampling schemes compared to

the unprocessed data (Cieslak et al., 2021).

The SHORELine and Eddy methods have some notable differ-

ences. No Eddy current correction is explicitly attempted in SHORE-

Line. Like Eddy, SHORELine can incorporate a susceptibility distortion

correction along with head motion correction in a single interpolation.

Unlike Eddy, shells are not treated separately in SHORELine, which

may be beneficial in the presence of sparsely-sampled shells like

ABCD's b = 500 shell. Importantly, SHOREline has a far more permis-

sive license (BSD 3-Clause) than Eddy, which makes it attractive to

clinical and industry users.

Independent of head motion correction, denoising algorithms are

often applied prior to head motion correction. One popular denoising

algorithm included in the MRtrix package is dwidenoise (Veraart

et al., 2016), which implements a non-aggressive denoising method

commonly called Marchenko-Pasteur PCA (MP-PCA). MP-PCA oper-

ates on small patches of dMRI signal, estimating a noise level used as

an optimal cut-off for PCA denoising. The application of MP-PCA

denoising is enabled by default in both QSIPrep (Cieslak et al., 2021)

and the MRtrix3_connectome (Smith & Connelly, 2020) pipelines.

However, denoising is not applied in the HCP (Glasser et al., 2013) or

UK Biobank (Alfaro-Almagro et al., 2018) pipelines. There are reason-

able arguments both for and against performing denoising prior to

motion correction. The registration targets generated by Eddy and

SHOREline may be more realistic if their underlying models are fit

with less-noisy data. However, denoising is not currently recom-

mended by the developers of Eddy because it will affect how noise is

distributed in the dMRI signal, possibly violating assumptions of the

GP (Andersson, 2019).

Both Eddy and SHORELine are considerably more complex than

standard fMRI head motion correction methods. Despite this, it may

surprise many investigators that there has not been a systematic eval-

uation of how well these methods perform on commonly acquired

sequences with different levels of head motion, nor has there been a

systematic evaluation on the effect of denoising dMRI data prior to

head motion correction. Previous evaluations of Eddy on phantom

data were performed on a simulated 2-shell (b = 700,2000, 104 total

b > 0) scheme with 2.5 mm voxels (Andersson et al., 2017; Graham

et al., 2016) and neither were designed to benchmark motion estima-

tion accuracy. Instead, they demonstrated Eddy's higher accuracy than

eddy_correct and demonstrated the importance of slice-to-volume

correction respectively. Other studies have shown that head motion

correction is beneficial in general for calculating anisotropy measures

or performing tractography (Brun et al., 2019; Kreilkamp et al., 2016;

Sakaie & Lowe, 2010; Yamada et al., 2014). Denoising has likewise

been shown to increase the detectability (Moeller et al., 2021) and

reliability (Schilling et al., 2021) of dMRI derivatives, but no interaction

with head motion correction has been investigated. To address this

gap, here we simulated hundreds of thousands of dMRI images from

common shelled and non-shelled schemes incorporating known head

motion and realistic MR artifacts to determine how accurate these

methods are at estimating true head motion with and without denois-

ing. Critically, all data, operations, and analyses of this are tracked

using DataLad in a reproducible workflow. Together, this effort repre-

sents the most extensive benchmarking of dMRI head motion correc-

tion methods to date, is the first evaluation of SHORELine, and

provides extensive simulation data together with a reproducible

workflow.

2 | MATERIALS AND METHODS

2.1 | Simulation of images and motion

MITK FiberFox (Neher et al., 2014) was used to simulate the entire

dMRI series for a set of commonly acquired sampling schemes,

F IGURE 1 SHORELine. Images shown here are from an actual
scan using the CS-DSI sampling scheme. The slice in the yellow-
dashed box is the SHORELine-predicted slice for the left-out volume.
The actual left-out slice is shown on the left in Step 3. The contrast in
the predicted slice is visually very similar to the actual left-out slice,
which enables standard image registration methods to work.
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including ABCD, HCP, a Cartesian DSI half sphere and a Cartesian/

random CS-DSI. The simulation used streamline segments from the

ISMRM 2015 fiber phantom (http://www.tractometer.org/ismrm_

2015_challenge/data) to define a fiber ODF in each voxel and con-

verted into a diffusion ODF to generate an MRI signal. MRI signal was

combined with N/2 aliasing, eddy currents, thermal noise and suscep-

tibility distortion artifacts. Simulation parameters used here are identi-

cal to the ISMRM simulated phantom, except that the original study

contained only three volumes with simulated head motion, whereas

we simulated hundreds of thousands of volumes under different sam-

pling schemes and conditions (see below). A docker image of the exact

version of Fiberfox can be downloaded at https://hub.docker.com/r/

pennbbl/fiberfox using tag 1.0.

To introduce controlled head motion, a random rigid transform

was applied to the streamline data before the MR signal was simu-

lated (Hering et al., 2014). Translation and rotation about each axis

were sampled from a random uniform distribution with a maximum

absolute displacement of 5 mm and a maximum absolute rotation of

5� (Figure 2). The range of translation and rotation values was

selected based on the empirical motion parameters observed in large-

scale public datasets. Specifically, ABCD and HBN were selected

because their public releases include scans that include both low and

high motion scans (Figure S1). Two simulations were created for each

sampling scheme: one with no head motion and one including random

motion in every volume. To generate the many individual dMRI series

we replaced a random subset of images from the no-motion simula-

tion with the motion-included simulated images. Unique dMRI scans

were generated to have a specific motion prevalence such that 15%,

30% or 50% of the volumes in the series included head motion. A

total of 30 unique scans were generated for each sampling scheme

for each of the three motion prevalence values, yielding 90 simulated

complete series per scheme. In total this resulted in 360 unique simu-

lated dMRI scans. Other than the empirical estimates of head motion

in Figure S1, all subsequent analyses are based on these

simulated data.

2.2 | Image processing

Eddy and SHORELine were run on each simulated scan using QSIPrep

(v0.14.3). This version of QSIPrep included FSL version 6.0.3. Eddy

was run twice, once with Linear and once with Quadratic models.

However, a comparison of these approaches revealed that these

options do not appear to have a substantial impact on head motion

F IGURE 2 Simulation of head motion in DWI images with Fiberfox. Fiberfox simulates MRI data based on a set of streamlines. Here we show
the streamlines used for benchmarking (top row). We introduced motion to our test data by applying rigid (6-DOF) transformations to the
streamlines before the volumes were simulated. The diffusion restriction introduced by the fibers represented by the streamlines is included in
the signal attenuation in each voxel, which is then “acquired” in k-space where artifacts can be introduced (middle row). Finally, the k-space data
is reconstructed into realistic 3d volumes that are used for benchmarking.

4 of 11 CIESLAK ET AL.
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estimation. Accordingly, we report the results from the Eddy with the

quadratic setting because this is the way it is typically used as part of

the HCP Pipelines. SHORELine was also run twice, once with a Rigid

(6DOF) and once with an Affine (12DOF) transformation model. The

rigid model had minor benefits and also a shorter run time; as such,

the results for the rigid model are used to characterize SHORELine's

performance. Each configuration was run with and without MP-PCA

denoising (from MRTrix 3.0.3) prior to head motion correction. In all, a

total of 2160 QSIPrep preprocessing runs were executed, encompass-

ing the processing of 375,840 b > 0 images (Table 1).

Importantly, to ensure complete reproducibility, the entire bench-

marking experiment was run using the FAIRly big workflow (Wagner

et al., 2022). This approach uses DataLad to track and distribute the

data and code used during data analysis. The entire FiberFox phantom

dataset along with a singularity image of the software used to run the

processing are publicly available. Each run of QSIPrep was recorded

as a git commit and can be reproduced locally by anyone with Data-

Lad who clones from the repository (https://github.com/PennLINC/

dMRI_HMC_Benchmark).

2.3 | Outcome measures

Performance was evaluated according to multiple metrics. First, the

mean error in head motion parameter estimation was calculated to

see whether the algorithm is an unbiased estimator. Second, to

TABLE 1 Properties of simulated datasets and how they were processed.

Algorithm Model Denoising

Type

ABCD HCP DSIQ5 HASC55

Shelled Shelled Cartesian Random

Max. b 3000 3000 5000 5000

Num. b > 0 96 270 257 55

Motion prevalence # Pipeline runs

Eddy Linear MP-PCA 15% 30 30 0 0

30% 30 30 0 0

50% 30 30 0 0

None 15% 30 30 0 0

30% 30 30 0 0

50% 30 30 0 0

Quadratic MP-PCA 15% 30 30 0 0

30% 30 30 0 0

50% 30 30 0 0

None 15% 30 30 0 0

30% 30 30 0 0

50% 30 30 0 0

SHORELine Rigid MP-PCA 15% 30 30 30 30

30% 30 30 30 30

50% 30 30 30 30

None 15% 30 30 30 30

30% 30 30 30 30

50% 30 30 30 30

Affine MP-PCA 15% 30 30 30 30

30% 30 30 30 30

50% 30 30 30 30

None 15% 30 30 30 30

30% 30 30 30 30

50% 30 30 30 30

Total scans 360 360 180 180

Total b > 0 volumes 69,120 194,400 92,520 19,800

Note: Each sequence was simulated such that 15%, 30% and 50% of volumes contained head motion. Each level of motion was processed both with and

without denoising.
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characterize the expected error of the estimators, we calculated the

RMSE of the estimated head motion. Low RMSE reflects accurate

head motion estimation and higher RMSE indicates greater estimation

error. To understand the factors that affect motion parameter estima-

tion, linear models were fit with root mean squared error (RMSE) as

the dependent variable. As rotation and translation are in different

units, we fit two linear models of RMSE for translation and rotation

separately. Relative performance between SHORELine and Eddy was

calculated by subtracting SHORELine's RMSE from Eddy's, resulting in

positive values when SHORELine's was more accurate at estimating

motion parameters than Eddy.

Third, we compared the interpolation-related smoothness of the

corrected images. Image smoothness is a measure of blurring during

preprocessing, which reduces anatomical detail; preprocessing should

seek to minimize the introduction of additional image smoothness.

We estimated the full-width at half-maximum (FWHM) of the mean

b = 0 image in the preprocessed data using AFNI's 3dFWMx program.

Fourth, we evaluated a summary measure of data quality – the neigh-

boring DWI Correlation (NDC) (Yeh et al., 2019). NDC summarizes

the pairwise spatial correlation between each pair of dMRI volumes

that sample the closest points in q-space; lower values reflect reduced

data quality, driven by noise and misalignment between dMRI

volumes.

3 | RESULTS

3.1 | Both Eddy and SHORELine accurately correct
simulated head motion

Both Eddy and SHORELine demonstrated excellent performance in

correcting head motion. While collapsing across all experimental con-

ditions, the mean error (calculated as the mean difference between the

estimated motion parameter and the ground truth motion parameter)

in estimated head rotation was very small: only 0.194�. Similarly, the

mean error in estimated head translation was only �1/100th of a

voxel: 0.012 mm. Such miniscule mean errors suggest that both Eddy

and SHORELine are accurate and unbiased estimators of head motion

parameters. Mean errors and RMSE (the first and second moments of

the error distribution) are provided in Table 2.

3.2 | Head motion correction accuracy varies by
sampling scheme and denoising

Next, we evaluated what factors impacted error (hereafter referring

to RMSE) following head motion correction (Figure 3). As described

below, results indicate that error following motion correction is pri-

marily due to uncontrolled factors such as the amount of head motion

present in the data but also preprocessing choices (use of denoising)

and factors related to experimental design (sampling scheme); see

Table S1 for complete statistical results.

In most cases, higher motion in the input data was associated

with greater error following head motion correction. However, this

effect was sometimes impacted by an interaction with the denois-

ing and motion correction methods chosen. While denoising with

MP-PCA had almost no impact on the error present in SHORELine

output, it had a major impact on Eddy: error was systematically

lower across both shelled schemes when the data was denoised

first. Somewhat surprisingly, and in contrast to nearly all other

parameter combinations evaluated, the amount of rotation in the

input data was not associated with greater error when Eddy was

used in conjunction with MP-PCA (this was not true for

translations).

Error also varied substantially across acquisition schemes. For

example, among shelled schemes, error was systematically lower in

the HCP than ABCD sampling scheme. In general, acquisition schemes

that acquired a greater number of directions tended to have less error

following head motion correction (Figure 4). The interaction in

Table S1 is driven by the exception to this trend: CS-DSI has the few-

est number of directions but retained a low RMSE. As SHORELine is

the only existing algorithm that can process non-shelled schemes,

data from these acquisition schemes could not be evaluated

using Eddy.

Next, we directly compared Eddy and SHORELine (Figure 5) using

simulated data from the shelled ABCD and HCP sampling schemes

where both methods were applicable. Overall, differences between

the methods were quite small and depended in part on use of denois-

ing, sampling scheme, and whether rotations or translations were

evaluated (see full statistical results in Table S2). For ABCD, SHORE-

Line had less error than Eddy in all scenarios when no denoising

was applied first. However, when the data was first denoised with

TABLE 2 Mean error of head motion
correction methods.

Sampling scheme Method

Translation (mm) Rotation (�)

Mean error RMSE Mean error RMSE

ABCD Eddy + MP-PCA 0.016 0.71 0.096 0.70

Eddy 0.071 1.1 0.27 2.3

SHORELine �0.086 0.80 �0.037 1.6

HCP Eddy + MP-PCA �0.044 0.73 0.0093 0.56

Eddy 0.063 0.71 �0.063 1.0

SHORELine �0.051 0.56 0.48 0.86

DSIQ5 SHORELine 0.10 0.61 0.24 0.96

HASC55 SHORELine 0.059 0.99 0.33 1.5
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MP-PCA, Eddy showed a slight superiority that scaled with the preva-

lence of motion in the input data.

In contrast, results from the data simulated with the HCP scheme

were more heterogeneous, and related to both the measure evaluated

(rotation vs. translation) and the amount of motion present in the

input data. For rotations, Eddy following MP-PCA outperformed

SHORELine as more motion is present in the simulation. However,

without MP-PCA denoising, SHORELine modestly outperformed Eddy

overall for HCP data. For translations, SHORELine error was lower

across all conditions, but differences were quite small.

3.3 | Output image smoothness is impacted
primarily by motion present in data

Next, we evaluated the image smoothness (quantified as FWHM) of

the preprocessed data following head motion correction (Figure 6).

Image smoothness is a measure of blurring during preprocessing,

which reduces anatomical detail. Ideally, preprocessing minimizes the

introduction of additional image smoothness. As expected, we found

that the largest driver of output image smoothness was the motion

prevalence in the simulated data: across all sampling schemes and

motion correction methods, more motion in the input data was associ-

ated with greater smoothness in the output images. Somewhat sur-

prisingly, denoising did not significantly impact output image

smoothness (see Table S3). Additionally, although differences were

small (i.e., <0.5 mm FWHM), SHORELine produced significantly

sharper output than Eddy.

3.4 | Output image quality is improved by head
motion correction and denoising

As a final step, we quantified the quality of the output images using

the neighboring DWI correlation (NDC; Figure 7). We calculated NDC

for both the unprocessed input data and the output from both

F IGURE 4 Head motion
correction error varies by number
of directions in sample scheme.

RMSE as a function of the
number of sampled directions.
Points near x = 103 are from the
ABCD sequence, near 270 are
HCP, x = 258 is DSIQ5 and
x = 55 is HASC55. SHORELine's
performance was equivalent with
and without denoising, so results
without denoising are shown. In
general, better performance was
seen with more directions and
when MP-PCA was used in
conjunction with Eddy.

F IGURE 3 Head motion correction error varies by motion present in input data, sampling scheme, and de-noising. Means and standard
deviations of the motion parameter estimate RMSE are plotted for both Eddy and SHORELine. Eddy does not support non-shelled schemes and
therefore could not be evaluated for DSIQ5 and HASC55. Error bars reflect the standard deviation of the RMSE for the sample, each of which
consist of 30 simulated scans. Error varied by sampling scheme, with lower errors present in simulated HCP data than ABCD data. Notably,
greater motion in the input data was associated with greater error. Additionally, greater error was observed when Eddy was used without MP-
PCA denoising; error was lower in Eddy than SHORELine when denoising was used, but higher when no denoising was performed.
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SHORELine and Eddy; this allowed us to examine how much pre-

processing improved data quality compared to the raw input data.

Notably, head motion correction yielded substantial improvements in

NDC across levels of input data motion and sampling schemes.

Indeed, the improvement in NDC with preprocessing in general scaled

with the prevalence of motion in the input data (see bottom row,

Figure 7). However, in nearly all cases, greater prevalence of motion

were associated with reduced output data quality even following

F IGURE 6 Spatial smoothness following motion correction is impacted by the amount of motion present in the input data. Both methods
produce blurrier images as the amount of motion present increases. Denoising with MP-PCA did not significantly impact smoothness, so variation
in de-noising is not shown. Eddy cannot process non-shelled schemes, so only data from SHORELine is shown. In general, Eddy produced blurrier
images than SHORELine, although differences were small.

F IGURE 5 De-noising impacts relative performance of motion correction methods. Violin plots of the difference between Eddy's and
SHORELine's RMSE for shelled schemes. Positive values indicate that SHORELine had lower RMSE than Eddy, while negative values mean Eddy
had lower RMSE than SHORELine. In general, Eddy performed slightly better than SHORELine when MP-PCA denoising was performed first,
whereas SHORELine was slightly superior when Eddy was used without denoising. However, overall absolute differences were quite small.

F IGURE 7 Motion correction and denoising improve data quality. Data quality was quantified as the neighboring DWI correlation (NDC). The
top row displays the mean and standard deviation of the NDC values after preprocessing. The bottom row shows the change in NDC from the
NDC calculated on the unprocessed scans. In general, NDC was improved by motion correction, especially following MP-PCA denoising. Eddy
yielded improvements in NDC that were significantly higher than SHORELine, although differences were small.
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preprocessing. One important exception to this was the use of Eddy

with HCP data, where higher prevalence of motion was not associated

with reduced NDC.

Additionally, we found that denoising with MP-PCA improved

NDC values in all scenarios that we evaluated (Table S4). Denoising

related improvements were particularly marked for non-shelled

schemes, which could only be processed with SHORELine. Further-

more, we found that Eddy had slightly higher NDC scores than

SHORELine; however, the difference was reduced when MP-PCA

was not performed. The small relative advantage for Eddy over

SHORELine scaled with greater motion prevalence in the input data.

4 | DISCUSSION

In this study, we conducted the largest known benchmarking of dMRI

head motion methods to date, and the first quantitative evaluation of

SHORELine. While prior studies have considered hundreds of b > 0

images (or even selected voxels), here we evaluated over 350,000

simulated b > 0 images across multiple sampling schemes and denois-

ing conditions. We found that both Eddy and SHORELine work quite

well. As expected, both data quantity and quality were the primary

determinants of performance. However, benchmarking yielded the

unexpected result that Eddy performance is improved when the data

is first denoised with MP-PCA. Moving forward, the publicly-shared

simulated data and our use of a completely reproducible workflow

with DataLad provide a data resource that will accelerate future

advances in dMRI motion correction.

Our primary finding is that across all methods, denoising, motion

prevalence, and sampling schemes, both Eddy and SHORELine esti-

mated head motion correctly, with observed errors being unbiased

and quite small. This analysis is a prerequisite to show that head

motion correction is accurate on real dMRI data: there would be little

hope that these methods would work on real world data if these ana-

lyses showed biased estimation of motion, or errors of more than a

fraction of a voxel translation or degree rotation were present. This

was clearly not the case, which should reassure users of both

methods, whether they are already in wide use (Eddy) or recently

introduced (SHORELine).

While observed errors were on average quite small, our evalua-

tion did identify several factors that influenced error magnitude.

These included input data quality (specifically motion prevalence),

denoising, and acquisition scheme. Across all scenarios examined, the

single biggest determinant of the amount of error observed was

the prevalence of motion in the simulated input data. Similarly, more

prevalent motion in the input data resulted in greater image blurring

(e.g., FWHM) and reduced data quality (as quantified by the NDC).

These results emphasize that acquiring high quality data remains of

critical importance for all studies, as no amount of image processing

can fully compensate for extensive in-scanner motion.

Nonetheless, one preprocessing step that is not always used in

standard pipelines—denoising—had remarkably salutary effects on the

outcomes we evaluated. Across all scenarios, data denoised with MP-

PCA improved in quality without impacting smoothness, meaning that

a simple increase in smoothness did not drive the increased perfor-

mance (Woods, Grafton, Holmes, et al., 1998; Woods, Grafton, Wat-

son, et al., 1998). However, use of denoising did interact with choice

of head motion correction method in an unexpected manner: while

denoising did not impact the error estimated by SHORELine, estima-

tion error was markedly reduced when Eddy consumed data that had

been first denoised by MP-PCA. This result was unanticipated: Eddy

developers do not recommend denoising prior to head motion correc-

tion because of theoretical concerns regarding the way denoising

might change the noise distribution in the data. When paired with

MP-PCA, Eddy performed uniquely well in some contexts, with rota-

tion error failing to scale with severity of motion. While some field-

standard pipelines—such as QSIPrep—do by default apply MP-PCA

denoising prior to head motion correction, other widely used pipelines

(such as HCP pipelines) do not. These empirical results suggest that

this recommendation may require re-evaluation, in particular for the

many large-scale data resources that rely on processing pipelines that

apply Eddy without denoising. These results may not generalize to

other denoising methods, particularly those that denoise by spatial

smoothing. Future work should consider other methods such as

Patch2Self (Fadnavis et al., 2020) and complex denoising (Moeller

et al., 2021).

Our study considered four different acquisition schemes—

including two commonly used shelled schemes and two non-shelled

schemes—that allowed us to examine how outcomes were impacted

by this important experimental design choice. We found that

sequences with more directions tended to have lower error, likely

because increased data volume facilitated model training and fitting.

However, perhaps the most important result of comparing these four

schemes was the finding that non-shelled schemes could be success-

fully corrected as well as shelled schemes. Notably, processing of non-

shelled schemes was only possible with SHORELine. As DSI methods

have important advantages for modeling the average ensemble propa-

gator, this represents a milestone for the preprocessing of non-shelled

schemes and may accelerate their adoption by the neuroimaging com-

munity. Furthermore, the particularly impressive performance on the

very-brief 55-direction CS-DSI scheme emphasizes the promise of

compressed sensing methods for the many translational applications

where scan time is limited and motion may be prominent (i.e., children

and clinical populations).

In contrast to the impact of input data quality, denoising, and

acquisition scheme, direct comparisons of Eddy and SHORELine were

notable mainly for the small effects that were observed. There

were small but significant differences in estimation error between the

two methods, but the direction of effect largely depended on whether

MP-PCA was also used. As noted above, adding denoising resulted in

a notable reduction in observed error for Eddy. Images processed by

SHORELine were slightly sharper than Eddy, but the magnitude of dif-

ference was of uncertain practical significance (i.e., 0.06 mm FWHM).

Conversely, we found that Eddy had a higher NDC than SHORELine.

However, this difference was also of unclear practical impact. To put

the NDC difference in context, Eddy on average had an NDC that was

0.02 units higher than SHORELine-processed images; the difference

in NDC between unprocessed data and processed images was
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approximately 20 times larger. Overall, our results emphasize that

both methods perform quite well.

Several limitations of this study should be noted. First, we com-

pared Eddy and SHORELine, but other dMRI head motion estimation

methods exist. While not evaluated, we expect the MAPMRI-based

method implemented in TORTOISE (Irfanoglu et al., 2017) is likely to

perform similarly to SHORELine, as the MAPMRI and 3dSHORE basis

sets are very similar and should yield similar image predictions for reg-

istration. Both methods also use ITK-based (McCormick et al., 2014)

registration. Second, SHORELine requires sampling schemes with at

least two unique non-zero b-values, preventing a comparison of per-

formance on common single shell schemes. Third, real world data may

differ in both the types of artifacts and the types of movement

observed. For example, the FiberFox simulations do not simulate

within-volume motion and the corresponding slice dropout. This com-

plicates the comparison between Eddy and SHORELine, as Eddy may

be particularly useful in the presence of high motion/dropped slices in

real data. Our simulated data also only included linear Eddy current

distortion. Despite these limitations, our use of simulated data

allowed us to have a known ground truth by which to benchmark

these methods and systematically manipulate multiple distinct param-

eters in a factorial design. A limitation of the NDC metric is that it is

influenced by the spatial smoothness of the images (Cieslak

et al., 2021). In the digital phantom data evaluated here the Eddy

results are generally slightly smoother (Figure 6) due to a second inter-

polation, artificially raising their NDC.

Moving forward, we anticipate that preprocessing methods for

DWI will continue to advance. In particular, several important features

that are included in Eddy—such as eddy current correction—could be

included in SHORELine in future releases. Furthermore, the advent of

cutting-edge denoising techniques—such as Patch2Self (Fadnavis et al.,

2020)—that leverage self-supervised learning may have important impli-

cations for head motion correction, including providing slice dropout

correction when applied after SHORELine. Finally, we have released all

simulated images, processing software, analytic code, and results associ-

ated with this work; these may prove useful for future benchmarking

efforts and facilitate comparisons to existing methods. This open and

fully reproducible workflow both bolsters confidence in the current

results and are likely to accelerate evaluation studies moving forward.
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