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Abstract

Diffusion Spectrum Imaging (DSI) using dense Cartesian sampling of q-space has

been shown to provide important advantages for modeling complex white matter

architecture. However, its adoption has been limited by the lengthy acquisition time

required. Sparser sampling of q-space combined with compressed sensing

(CS) reconstruction techniques has been proposed as a way to reduce the scan time

of DSI acquisitions. However prior studies have mainly evaluated CS-DSI in post-

mortem or non-human data. At present, the capacity for CS-DSI to provide accurate

and reliable measures of white matter anatomy and microstructure in the living

human brain remains unclear. We evaluated the accuracy and inter-scan reliability of

6 different CS-DSI schemes that provided up to 80% reductions in scan time com-

pared to a full DSI scheme. We capitalized on a dataset of 26 participants who were

scanned over eight independent sessions using a full DSI scheme. From this full DSI

scheme, we subsampled images to create a range of CS-DSI images. This allowed us

to compare the accuracy and inter-scan reliability of derived measures of white mat-

ter structure (bundle segmentation, voxel-wise scalar maps) produced by the CS-DSI

and the full DSI schemes. We found that CS-DSI estimates of both bundle segmenta-

tions and voxel-wise scalars were nearly as accurate and reliable as those generated

by the full DSI scheme. Moreover, we found that the accuracy and reliability of CS-

DSI was higher in white matter bundles that were more reliably segmented by the full

DSI scheme. As a final step, we replicated the accuracy of CS-DSI in a prospectively

acquired dataset (n = 20, scanned once). Together, these results illustrate the utility
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of CS-DSI for reliably delineating in vivo white matter architecture in a fraction of

the scan time, underscoring its promise for both clinical and research applications.
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1 | INTRODUCTION

Diffusion-weighted magnetic resonance imaging (dMRI) has become

the dominant imaging modality for noninvasively characterizing white

matter architecture in humans, with myriad applications in both

research and clinical practice. While a large and growing variety of

dMRI sequences exist, they all sample three spatial dimensions in k-

space and three additional dimensions in q-space, which is defined by

the diffusion-encoding gradients (Callaghan et al., 1988). Each 3D vol-

ume in a dMRI sequence samples a coordinate in q-space, with the

entire set of points defining a q-space sampling scheme. Investigators

have previously explored a wide range of q-space sampling schemes

(Afzali et al., 2021; Assaf et al., 2004; Assaf & Basser, 2005; Basser

et al., 1994; Caruyer et al., 2013; Jensen et al., 2005; Tuch, 2004;

Wedeen et al., 2005; Wu et al., 2008), with most sampling points on

the surface of one or more spheres (aka “shells”). One alternative

strategy densely samples q-space on a Cartesian grid, enabling the

direct estimation of the diffusion ensemble average propagator (EAP),

the physical process driving biologically meaningful derivatives of

dMRI. This scheme is often called diffusion spectrum imaging (DSI)

and can resolve crossing fibers and other complex tract architectures.

However, Cartesian sampling requires long scan times, which has lim-

ited the use of DSI in translational research or clinical practice.

Recently, sparse random sampling of q-space combined with com-

pressed sensing (CS) reconstruction techniques has shown massive

promise in both post-mortem and animal studies (Jones et al., 2021a;

Menzel et al., 2011; Naeyaert et al., 2021; Paquette et al., 2015).

However, the validity of common white matter derivatives generated

by compressed sensing accelerated DSI (CS-DSI) has not been ade-

quately tested in in vivo human data. Here, we sought to validate the

ability of CS-DSI to characterize both macro- and micro-scale white

matter properties in living humans by evaluating its accuracy and reli-

ability compared to a full DSI scheme.

The Cartesian sampling schemes used in DSI provide several prac-

tical and theoretical advantages due to their ability to model the EAP

directly. DSI allows direct measurement of the EAP in each voxel due

to the Fourier relationship between q-space and the EAP (Wedeen

et al., 2005). This relationship between the q-space signal and the EAP

obviates the choice of which shells to sample (i.e., which b-values for

each shell). For example, high b-value shells can be more useful for

tractography in the presence of crossing fibers (Raffelt et al., 2017;

Schilling et al., 2017) while low b-value shells are required for estimat-

ing some free water parameters (Assaf & Basser, 2005; Tuch

et al., 2002; Yoshiura et al., 2001). Conversely, higher b-values have

lower SNR, which may impact the accuracy of ODF estimation (Han

et al., 2015). While multishelled schemes can also approximate the

EAP, their limited sampling cannot always capture its full complexity

(Novikov et al., 2018; Tristán-Vega et al., 2023). DSI helps mitigate

these limitations by attaining a nonparametric sampling of the EAP at

a regular Cartesian lattice and densely sampling the q-space to avoid

aliasing artifacts (Wedeen et al., 2008). Nonetheless, DSI still requires

other parameters to be chosen, such as the maximum b-value or the

number of grid points, and these factors will be limited by scanner

hardware specifics and the amount of scan time available.

Previous research has demonstrated that DSI provides more

accurate fiber reconstructions: DSI produces more accurate ODF esti-

mates (Daducci et al., 2014) and achieves greater biological fidelity in

tractography (particularly when using anatomic tracing in non-human

primates as ground-truth; Maffei et al., 2021). Probability density

functions derived from DSI have also exhibited heightened sensitivity

to microstructural characteristics such as axon size (Hori et al., 2016),

age-related white matter changes (Fatima et al., 2013), and lesions in

individuals with multiple sclerosis (Assaf et al., 2002). Furthermore,

measures derived from DSI acquisitions may be sensitive to complex

biological changes like neuroinflammation, axonal loss, and demyelin-

ation (Wang et al., 2020, 2021; Yeh et al., 2013, 2016; Zhang

et al., 2013). EAPs reconstructed from DSI have been shown to result

in improved tractography (Yendiki et al., 2021) and enhanced gray-

white contrast (Jones et al., 2021b). Together, available research sug-

gests potential for DSI. However, DSI's Cartesian sampling scheme

comes at the cost of a much longer acquisition time: a typical DSI scan

can take upward of 20 min to acquire, limiting its applications in both

time-constrained research settings and clinical practice.

One potential solution to this obstacle is CS (Candes &

Wakin, 2008; Donoho, 2006). CS is a widely used technique that can

reconstruct signals from undersampled data and has been very valu-

able for advances in diverse fields including telecommunications

(Berger et al., 2010), astronomy (Bobin & Starck, 2009; Wiaux

et al., 2009), radar (Baraniuk & Steeghs, 2007; Herman &

Strohmer, 2009), and medical imaging (Carroll et al., 2009; Lustig
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et al., 2007). In MRI, CS is often used to accelerate acquisitions by

undersampling k-space (Adluru & Dibella, 2008; He et al., 2007;

Jaspan et al., 2015; Lustig et al., 2008). However, recent work has

shown that dMRI acquisitions can under-sample q-space and still

accurately estimate EAPs and other derivatives after using CS

methods. (Menzel et al., 2011; Merlet & Deriche, 2013; Michailovich

et al., 2011; Paquette et al., 2015; Pu et al., 2011; Ramirez-

Manzanares et al., 2007). Prior work has provided some guidance

regarding optimal q-space sampling strategies (Menzel et al., 2011;

Merlet & Deriche, 2013) and effective signal recovery methods (Bilgic

et al., 2012; Cheng et al., 2011; Gramfort et al., 2012; Tristán-Vega &

Westin, 2011; Ye et al., 2012). These sampling and recovery methods

have been validated in simulated data (Menzel et al., 2011; Merlet &

Deriche, 2013), post-mortem tissue (Jones et al., 2021a), and in small

samples of in vivo human data (n < 3; Bilgic et al., 2013, 2012;

Merlet & Deriche, 2013).

While these studies have underscored CS-DSI's promise, most of

this work has primarily focused on sequence development and recon-

struction techniques and no study to our knowledge has compared

CS-DSI outputs to full DSI outputs in living humans. Signal processing

theory dictates that under-sampled signals can be reconstructed with

CS at a low approximation error, but MRI acquisition includes sub-

stantial inherent noise. The diffusion signal and its derivatives vary

across scanners, protocols, and populations (Schilling et al., 2021b). It

is unclear how the approximation error arising from under-sampling

the q-space affects ODFs, and how these ODFs compare to those

derived from full DSI schemes. Moreover, as popular diffusion deriva-

tives such as tractography, bundle segmentations, or scalar maps are

not mere linear transforms of the ODF, it is unclear how these errors

are compounded in the interpretation of diffusion imaging outcomes.

As such, important benchmarks of in vivo validity, including the accu-

racy and reliability of commonly used derivatives such as white matter

bundles and scalar maps, have not been established. Furthermore, the

trade-off between undersampling and robustness remains unknown.

We sought to establish the validity of CS-DSI in living humans.

We were motivated by the possibility that CS-DSI could provide reli-

able measures of white matter anatomy in a fraction of the scan time

required by a full DSI scan. Such an advance would allow both

researchers and clinicians to harness the advantages of DSI sequences

that were previously impractical to deploy. We examined six different

CS-DSI schemes and evaluated whether these schemes could gener-

ate white matter bundles and scalar maps comparable to those

generated by a full DSI scheme. While there are many ways to

sparsely sample q-space, we focused on the homogenous angular

sampling scheme (HA-SC) (Merlet, 2013). HA-SC schemes ensure

homogenous angular coverage of q-space and have been shown to

produce more consistent reconstructions than other sampling strate-

gies (Jones et al., 1999; Menzel et al., 2011). To assess the relationship

between CS-DSI validity and scan time, we included a range of sam-

pling densities in our schemes that provided between 50% and 80%

reduction in scan time. We capitalized on a unique dataset of 26 par-

ticipants who were scanned over eight independent sessions using a

full DSI scheme. From this full DSI scheme, we subsampled images to

retrospectively generate synthetic CS-DSI images. Using these

images, we compared CS-DSI to full DSI on the accuracy and test–

retest reliability of commonly used derivatives. Finally, we replicated

our results in an independent dataset of 20 participants who were

prospectively scanned on a different scanner using CS-DSI acquisition

schemes. As described below, we found that CS-DSI schemes offer

highly accurate and reliable alternatives to the full DSI scheme, while

only requiring a fraction of the scan time.

2 | METHODS

2.1 | Overview

Our full DSI scheme sampled 258 points on a Cartesian grid in q-

space. The CS-DSI schemes we evaluate here (Figure 1) are all subsets

of this full DSI scan. As such, we can simulate their acquisition retro-

spectively by extracting the volumes contained in each CS sampling

scheme from a full DSI acquisition. The dataset of full DSI acquisitions

included 26 participants scanned over 8 sessions (average time

between sessions = 14 days), acquiring the same full 258-direction

scheme at each scan session (Cieslak et al., 2018; Nakuci et al., 2023).

We then subsampled six different CS-DSI schemes from this full DSI

dataset. Four of these schemes (HA-SC92, HA-SC55-1, HA-SC55-2,

and RAND57) were designed such that concatenating them would

result in the full DSI scheme. To explore a larger range in the number

of directions sampled, we generated two additional CS-DSI schemes

(HA-SC92 + 55–1, HA-SC92 + 55–1) by combining pairs of these

subsampled CS-DSI schemes (Figure 1). To additionally assess

whether the behavior of retrospectively assembled CS-DSI schemes

could be replicated in new data, we prospectively acquired four of the

CS-DSI schemes that together made up the full 258-direction grid on

an additional 20 participants who were each scanned once (Figure 2).

For all of the CS-DSI schemes, we first extrapolated a full DSI image

using an iterative L2-regularized algorithm (Bilgic et al., 2012). For

brevity, we will refer to this extrapolated full DSI image as the CS-DSI

image. These CS-DSI images were then reconstructed with General-

ized Q-Sampling Imaging (GQI) in both datasets (Yeh et al., 2010).

We evaluated the CS-DSI image's ability to segment bundles and

generate voxel-wise scalars on two criteria: accuracy and reliability. We

defined accuracy as the similarity between a measure derived from a

CS-DSI image and that derived from the full DSI image (the acquired

image for the retrospective data, and the concatenated image for the

prospective data). As described below, we evaluated accuracy both

within- and across scan sessions in the multisession retrospective data;

only same-scan accuracy could be evaluated in the prospective data.

Inter-scan reliability was operationalized as the similarity between a

given measure derived from the same diffusion scheme in different

scan sessions; this could only be calculated for the multisession retro-

spective data. Throughout, we compared bundles using calculated Dice

scores and scalar maps using Pearson correlations.

RADHAKRISHNAN ET AL. 3 of 19

 10970193, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26580, W
iley O

nline L
ibrary on [06/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2.2 | Data acquisition

2.2.1 | Retrospective full DSI data

The retrospective imaging data was extracted from a repeated mea-

sures dataset containing 8 full DSI scans (average time between

sessions = 14 days) in a group of 26 healthy adults (mean age

22 ± 3.5 years, 16 Female) (Cieslak et al., 2018; Gu et al., 2015; Mul-

doon et al., 2016; Nakuci et al., 2023; Teich et al., 2021). CS-DSI

schemes were created by extracting volumes from the full DSI scan.

The participants were scanned using a Siemens Prisma 3T MRI scan-

ner. Fitted padding was used to minimize head movements. Each

dMRI scan was acquired with a full DSI scheme (i.e., Q5, half-sphere)

comprised of 258 images with variable b-values (bmax = 5000 s/mm2)

corresponding to 258 different isotropic grid points in q-space. Bipolar

diffusion encoding gradients were used. The in-plane resolution and

slice thickness were both set to 2 mm. The images were acquired with

a TE of 100.2 ms and a TR of 4300 ms. The total scan time was

F IGURE 1 Description of the examined diffusion schemes with the histogram of b-values and distribution of b-vectors in q-space. B-vectors
are scaled, and color coded by b-value. HA-SC, Homogenous Angular Sampling Scheme; RAND, Random Sampling Scheme.

4 of 19 RADHAKRISHNAN ET AL.
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20 minutes (Table 1). Due to incomplete data, two participants were

removed from the final dataset, giving a total of 24 participants. We

refer to this dataset as the “retrospective” dataset.

2.2.2 | Prospective CS-DSI data

After initial analysis of retrospectively synthesized CS-DSI schemes,

we sought to replicate our results with prospectively acquired CS-DSI.

All participants provided informed consent before participation in this

study. All experimental procedures were approved by the University

of Pennsylvania Review Board. We scanned 20 healthy adults (mean

age = 26.5 ± 3.5 years, 9 Female) using a Siemens Prisma 3 T MRI

scanner under four different CS acquisition schemes (Figure 1). Three

of the four CS schemes were homogenous angular sampling schemes

(HA-SC) (Paquette et al., 2015) sampling 92, 55, and 55 directions,

respectively. HA-SC schemes are sampling schemes that ensure a ran-

dom but uniform angular covering of the q-space (Figure 1). Note that

some points in q-space were repeated across the three HA-SC

schemes to ensure consistency in the big and little deltas across scans.

F IGURE 2 Preprocessing
schematic and analytic overview.

RADHAKRISHNAN ET AL. 5 of 19
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The fourth scheme was a random scheme (RAND) sampling 57 direc-

tions. In the RAND scheme, samples were not uniformly distributed

and were rather designed such that combining the RAND scheme

with the unique samples of all the acquired HA-SC schemes resulted

in the balanced full DSI scheme used in the retrospective dataset

(Figure 1). The exact schemes tested in this manuscript are available

for download at https://github.com/PennLINC/cs_dsi/tree/main/b-

tables. The in-plane resolution and slice thickness were both set to

2 mm with a multiband acceleration factor of 4. The volume images

were acquired using a TE of 90 ms and a TR of 4300 ms. The acquisi-

tion times for the CS-DSI schemes were significantly lower than that

for the full DSI scheme (Table 1). We refer to this dataset as the “pro-
spective” dataset. This data is available in OpenNeuro for open access

under a CC0 license (https://10.18112/openneuro.ds004737.v1.0.0).

2.3 | Preprocessing

Preprocessing was performed using QSIPrep 0.4.0 (Cieslak

et al., 2021), which is based on Nipype 1.1.9 (Gorgolewski et al., 2011,

2017) on the retrospective data and QSIPrep 0.8.0 (Nipype 1.4.2) on

the prospective data. QSIprep was run on the full DSI scan in the ret-

rospective dataset and separately on each of the 4 directly acquired

CS-DSI scans in the prospective dataset. For all full DSI and CS-DSI

scans, initial motion correction was performed using only the b = 0

volumes. An unbiased b = 0 template was constructed over 3 itera-

tions of affine registrations. The SHORELine method (Cieslak

et al., 2022) was used to estimate head motion in b > 0 volumes.

SHORELine is a cross-validated method that entails leaving out each

b > 0 image and fitting the 3dSHORE basis function (Ozarslan

et al., 2013) to all the other volumes using L2-regularization. The sig-

nal for the left-out volume serves as the registration target. A total of

two iterations were run using an affine transform. Model-generated

volumes were transformed into alignment with each b > 0 volume.

Both slice-wise and whole-brain quality control measures (cross corre-

lation and R2) were calculated. No susceptibility distortion correction

was performed. The DWI time series were resampled such that they

were aligned to anterior and posterior commissures (ACPC),

generating a preprocessed DWI run in ACPC space. The accuracy of

b-table orientation was examined by comparing fiber orientations with

those of a population-averaged template (Schilling et al., 2019).

The four CS schemes used in acquiring the prospective data were

designed such that combining them resulted in a full DSI image. To

assess whether CS schemes longer than the ones acquired could gen-

erate results closer to the full DSI, two additional CS schemes were

also generated by combining the preprocessed HA-SC92 scheme with

each of the preprocessed HA-SC55 schemes (forming HA-SC92

+ 55–1 and HA-SC92 + 55–2). For each participant in the retrospec-

tive data, the 6 CS-DSI schemes mentioned above were generated

from the full-DSI scheme by extracting out only the relevant volumes

from the full preprocessed image. This distinction is important to note

as the object of comparison for CS-DSI derivatives is their corre-

sponding full-DSI derivatives. Critically, in the retrospective data, the

full-DSI is acquired in a single scan where all images are preprocessed

together. The prospective full-DSI is composed of four individual

scans that were each preprocessed separately and then concatenated.

2.4 | CS reconstruction

Following preprocessing, we used DSI Studio to perform fiber tracking

and to derive scalar metrics. GQI requires balanced q-space sampling,

so a full, balanced 258-direction DSI image was extrapolated from the

CS-DSI schemes. Extrapolation was performed via CS using

the 3DSHORE basis function (Ozarslan et al., 2013) with a radial order

of 8 and L2 regularization. For brevity, we will refer to this extrapo-

lated full DSI image as the CS-DSI image from now on. These GQI

reconstructions with a diffusion sampling length ratio of 1.25 were

used as the input for fiber tracking and anisotropy scalar estimation

(Figure 2).

2.5 | Tractography and bundle segmentation

A deterministic fiber tracking algorithm (Yeh et al., 2013) was used

with three augmented tracking strategies: parameter saturation, atlas-

based track recognition, and topology-informed pruning (Yeh, 2020)

to improve reproducibility. The exact methods used here are

described in Yeh et al. (2020). Briefly, fiber tracking seeds were

defined using the HCP842 tractography atlas (Yeh et al., 2018). The

tracking parameters were saturated using a random generator and

the generated streamlines were culled if their trajectory had a Haus-

dorff greater than 16 mm from the transformed atlas bundle. The

track-to-voxel ratio was set to two. Topology-informed pruning (Yeh

et al., 2019) was applied to the tractography with 32 iteration(s) to

remove false connections. Shape analysis (Yeh, 2020) was conducted

to derive shape metrics for tractography. A total of 56 fiber bundles

were segmented in this way (Table S1). Each bundle was segmented

1344 times for the retrospective dataset (24 participants, 8 scan ses-

sions, 7 diffusion schemes) and 140 times for the prospective dataset

(20 participants, 1 session, 7 diffusion schemes). Note, however, that

TABLE 1 Acquisition time for each scheme.

Scheme

Number of unique directions

(including b = 0)

Acquisition time

(minutes)

Full DSI 258 20

HA-SC92

+ 55–1a
146 11.9

HA-SC92

+ 55–2a
146 11.7

HA-SC92 92 7.4

HA-SC55–1 55 4.5

HA-SC55–2 55 4.3

RAND57 57 5.4

aThese schemes were concatenated from acquired schemes.
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the following bundles could not be segmented for some of the

schemes in some of the participants: Left vertical occipital fasciculus

(507 failures), right vertical occipital fasciculus (250 failures), left para-

hippocampal cingulum (118 failures), right parahippocampal cingulum

(153 failures), and the left fornix (1 failure). Failures were observed

evenly across all schemes and were excluded from the final analysis.

The segmented bundles were then converted into binary masks,

and Dice scores were calculated between the masks for each scenario

using the following formula:

Dice¼2� X\Yj j
Xj jþ Yj j :

High Dice scores denoted high overlap between the two bundles

examined and vice-versa (Figure 3). For each CS scheme and bundle,

accuracy of bundle segmentation was defined as the Dice score

between the bundle generated by the CS image and the bundle gener-

ated by the corresponding full DSI image. Two different types of accu-

racies were calculated: same-scan accuracy and inter-scan accuracy.

Same-scan accuracy was defined as the Dice score between the bun-

dle generated by the CS-DSI image and the corresponding bundle

generated by the full DSI image (the acquired full image for the retro-

spective data, and the combined image for the prospective data) for a

participant, within the same scan session. Hence each participant in

the retrospective dataset had 8 values for same-scan accuracy (one

for each scan session) for a given bundle and diffusion scheme, and

participants in the prospective dataset had one value. To account for

the noise between scan sessions, inter-scan accuracy was defined as

the Dice score between the bundle generated by the CS-DSI image in

one scan session and the bundle generated by the full DSI image

in another scan session, for the same participant. Inter-scan accuracy

was calculated for each pair of scan sessions, so each participant in

the retrospective dataset had 56 values for inter-scan accuracy (one

for each permuted pair of scan sessions).

Similarly, inter-scan reliability for a given diffusion scheme and

bundle was defined as the set of Dice scores between the bundles

generated by each pair of scan sessions. Notably, inter-scan accuracy

compared pairwise session differences between the CS-DSI and full

DSI images, while inter-scan reliability compared pairwise session dif-

ferences within a scheme. Inter-scan reliability was also calculated

independently for each participant in the retrospective dataset. As

above, given the number of session pairs, each participant had

28 values for reliability (one for each unique pair of scan sessions) for

a given bundle and diffusion scheme (Table 2). Inter-scan metrics

could not be calculated in the prospective dataset because of the

absence of multisession data. For brevity, we refer to the set of these

three metrics (same-scan accuracy, inter-scan accuracy and inter-scan

reliability) as validity metrics in the rest of this paper.

2.6 | Deriving whole-brain voxel-wise maps of
white matter microstructure

While macrostructural derivatives like bundles are very useful for

studying white matter connectivity, sometimes more localized mea-

sures are useful. Voxel-wise scalar metrics can provide additional

F IGURE 3 Graphical representation of range of Dice scores. The exemplar bundle shown here is the left arcuate fasciculus. The first two
columns (a and b) show the left arcuate fasciculus derived from different DSI images (top row: same participant, different full DSI sessions;
bottom row: same participant and session, RAND57 and full DSI). The third column shows voxels that overlap between the bundles (green) and
differences (red).
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insight into white matter structure and health and could capture

pathology or other information at the microstructural level. GQI also

allowed us to derive voxel-wise scalar maps, permitting more

fine-grained comparisons (Yeh et al., 2010). We examined three ODF-

based scalar metrics that quantified different fiber properties: Normal-

ized quantitative anisotropy (NQA), generalized fractional anisotropy

(GFA), and the isotropic value (ISO) (Yeh et al., 2013, Figure 4). All

three metrics were calculated from the orientation distribution func-

tion (ODF) of each voxel. Quantitative anisotropy (QA) is the value of

the highest peak of the ODF. QA is similar to the fractional anisotropy

(FA) measure derived from tensors, except QA is defined per fiber

population and so is less affected by crossing fibers. QA has arbitrary

units, so we scaled the maximum QA of a subject to 1 to generate the

more easily comparable normalized QA (NQA). In contrast to NQA,

GFA is defined as the standard deviation between all vertices of the

ODF divided by the root mean square of the vertices. Both GFA and

NQA are measures of directional integrity, but GFA is more sensitive

to differences in ODF shapes, as broadly different ODF structures can

have the same maxima but differing peak variances. Finally, ISO is the

minima of the ODF, and mainly measures background isotropic diffu-

sion from CSF (Yeh et al., 2013). Together, these scalars describe

diverse properties of a given voxel. For each scalar metric examined,

we calculated the Pearson correlation coefficient between whole-

brain maps generated by CS-DSI and full DSI images. As with the Dice

scores, the same-scan accuracy of each metric was defined as the

Pearson correlation between the voxel-wise metric calculated from

the CS-DSI image and that calculated from the full DSI image within a

particular scan session. The inter-scan accuracy was the Pearson cor-

relation between the voxel-wise metric calculated from the CS-DSI

image in one scan session and that calculated by the full DSI image in

a different scan session, for each pair of sessions. The inter-scan reli-

ability was the set of Pearson correlations between voxel-wise met-

rics derived from each pair of scan sessions within a single diffusion

scheme (see Table 2).

2.7 | Statistical analysis

Each of the validity metrics described in Table 2 was calculated for every

participant, session, and bundle/scalar. The inter-scan reliability of the full

DSI (from the retrospective dataset) was used as the “gold” standard for

all comparisons. Therefore, for each bundle/scalar, the distributions of

each of the validity metrics of CS-DSI across all participants were com-

pared with the distribution of the inter-scan reliability of the full DSI. To

determine if there was a statistically significant difference between these

distributions, we compared the median difference between these distri-

butions against a null distribution generated by permutation testing (see

Supporting Information). Two-sided p-values were calculated across sub-

jects per bundle for the Dice score comparisons. We corrected for multi-

ple comparisons (56 bundles for the Dice scores and three metrics

examined for the scalars) using the Benjamini/Hochberg false discovery

rate method at 5% (Benjamini & Hochberg, 1995).

TABLE 2 Definitions of validity metrics used to compare diffusion schemes.

Metric Definition Scheme Datasets

Same-scan accuracy Relationship between derivative produced by a CS-DSI

image and the corresponding derivative produced by

the full DSI image, within a participant and session

CS-DSI only Both retrospective and prospective

Inter-scan accuracy Relationship between derivative produced by a CS-DSI

image in one session, and the derivative produced by

the full DSI image in another session, within a

participant. Calculated between each pair of

sessions.

CS-DSI only Only retrospective

Inter-scan reliability Relationship between derivative produced by a DSI

image in one session, and the derivative produced by

the same DSI image in another session, within a

participant. Calculated between each pair of

sessions.

CS-DSI and full DSI Only retrospective

Note: The relationship is defined by the Dice score when the derivatives are bundle segmentations and by the Pearson correlation when the derivatives

are voxel-wise scalars.

F IGURE 4 Schematic of DSI scalars examined.
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3 | RESULTS

3.1 | CS-DSI schemes can segment major fiber
bundles

One of the main applications of dMRI is to delineate white matter

bundles. We first qualitatively examined whether both retrospectively

generated and prospectively acquired CS-DSI images could segment

white matter bundles of varying shapes, convergent with bundles seg-

mented by the corresponding full DSI image (i.e., the acquired full DSI

image for the retrospective data, and the concatenated full DSI image

for the prospective data). Inspection of data from individual partici-

pants revealed that we could adequately segment bundles from all

CS-DSI images (see exemplar results in Figure 5).

Next, we quantitatively validated CS-DSI's ability to delineate

bundles and calculated voxel-wise scalars, comparing CS-derived

results to those derived from the full DSI image. The inter-scan reli-

ability of the full DSI image was selected as the gold standard for com-

parison, as it captured noise and other session-related differences.

Inter-scan reliability was calculated from the retrospective dataset

and was defined as the set of relationships between derivatives pro-

duced by each pair of sessions within a given diffusion scheme

(Table 2).

3.2 | Bundles segmented by CS-DSI images are
similar to those segmented by their corresponding full
DSI images in the same scan session

To quantitatively compare the bundles segmented by CS-DSI images

and those segmented by full DSI images, we examined two measures

of accuracy in the retrospective data: same-scan and inter-scan accu-

racy. Same-scan accuracy was defined as the Dice score between

each bundle segmented by a CS-DSI image and the bundle segmented

by the full DSI image for a given participant within the same scan ses-

sion (Table 2). We found that all CS-DSI images showed high same-

scan accuracies across fiber bundles (with median Dice scores ranging

0.72–0.82, Figure 6a). For additional context, we used full DSI inter-

scan reliability as the standard of reference as test–retest differences

are inevitable in neuroimaging, even when using longer full-grid

schemes. We asked whether the difference between CS-DSI and full

DSI bundles were comparable with test–retest differences of full DSI

bundles. To this end, we compared the distributions of these same-

scan accuracies of each CS-DSI scheme with the distributions of the

full DSI inter-scan reliabilities across participants and sessions for

every bundle generated. p-values were calculated per bundle using

permutation testing on the median differences between these distri-

butions (see Supporting Information). For the more densely sampled

CS-DSI schemes, like HA-SC92 + 55–1, HA-SC92 + 55–2, and HA-

SC92, the same-scan accuracy was statistically the same as the full

DSI inter-scan reliability (FDR-corrected p-values >.1 for all bundles

where full DSI reliability > CS-DSI accuracy, Table S2). As expected,

the schemes with fewer directions sampled had an overall lower seg-

mentation accuracy, and the RAND57 scheme performed worse than

all the uniformly sampled HA-SC schemes. While the sparser sampling

schemes showed significant differences across almost all bundles, the

median difference between CS-DSI same-scan accuracy and full DSI

inter-scan reliability was still quite small (HA-SC55-1 = 0.039, HA-

SC55-2 = 0.058, RAND57 = 0.074, Figure 6a, Table S2). These

results suggest that bundles from CS-DSI are comparable to bundles

generated using the full DSI grid scheme and that accuracy scales with

the degree of undersampling.

Not all bundles are reliably segmented, even when a full DSI

image is used for tractography (Table S3). As such, we next asked

whether the accuracy of CS-based bundle segmentations was related

to how reliably that bundle was segmented with a full DSI scheme.

F IGURE 5 All CS images can segment both long-range and short-range bundles, comparable with those derived from a full DSI image. These
figures are exemplar segmentations of different bundles in a single participant from the retrospective dataset.

RADHAKRISHNAN ET AL. 9 of 19
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For example, the left and right reticular tracts had low same-scan

accuracy across most CS-DSI schemes. We reasoned that this might

be due to poorer segmentation reliability of this bundle even when

using full DSI. Across bundles, we found that CS-DSI same-scan accu-

racy was strongly correlated with full DSI inter-scan reliability

(Pearson R ranging from 0.78 to 0.89; p < .001 for all CS-DSI schemes,

Figure 6b). This suggests that bundles that are not reliably segmented

by the full DSI images were also less likely to be accurately

segmented by any of the CS-DSI images. Moreover, the more sparsely

sampled CS-DSI images were more severely affected by this relation-

ship and yielded lower Dice scores in bundles that showed low inter-

scan reliability with full DSI. Bundles with high inter-scan reliability

with full DSI were more accurately segmented by all CS-DSI images,

including the more sparsely sampled schemes. Notably, the HA-SC92

+ 55–1 and HA-SC92 + 55–2 schemes had same-scan accuracies

that were higher than the inter-scan reliability of the full DSI for most

F IGURE 6 CS-DSI bundle segmentation accuracy is comparable and correlated with full DSI inter-scan reliability both within and across scan
sessions. (a) Same-scan accuracy of CS-DSI schemes is comparable with inter-scan reliability of the full DSI scheme. Violins represent
distributions of Dice scores across all bundles. (b) Median distribution of the same-scan accuracy for each CS-DSI scheme is highly correlated with
the median distribution of the inter-scan reliability of the full DSI scheme. Here, each point on the scatter plot represents the median of Dice
scores for a single bundle across participants and sessions. The gray dashed line denotes x = y. (c) Inter-scan accuracy of CS-DSI schemes is
comparable with inter-scan reliability of the full DSI scheme. Violins represent distributions of Dice scores across all bundles. (d) Median
distribution of the inter-scan accuracy for each CS-DSI scheme is highly correlated with the median distribution of the inter-scan reliability of the
full DSI scheme. Here, each point on the scatter plot represents the median of Dice scores for a single bundle across participants and session
pairs. The gray dashed line denotes x = y.
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bundles (Figure 6b). This is likely due to the fact that differences

between scan sessions were greater than differences introduced by

subsampling of the same input data.

3.3 | Bundles segmented by CS-DSI images are
also similar to those segmented by full DSI images
acquired in a different scan session

The prior analysis compared bundles from the full DSI images to bun-

dles generated from sub-sampled CS-DSI images within the same

scan. To further examine CS-DSI segmentation accuracy while

accounting for scan differences, we examined a second measure:

inter-scan accuracy (Table 2). We defined inter-scan accuracy as the

set of Dice scores between CS-DSI bundles and full DSI bundles in

disparate sessions. Understandably, the inter-scan accuracies were

lower than the same-scan accuracies on average, as they were derived

from different sessions (median Dice scores ranging from 0.71 to

0.78, Table S4). This accuracy scaled with the number and uniformity

of directions sampled, with dense HA-SC schemes performing with

higher accuracy than the RAND scheme. While all bundles showed a

significant difference between CS-DSI inter-scan accuracy and full

DSI reliability for almost all diffusion schemes, the median difference

between these distributions was very low (<.09, Figure 6c, Table S4).

All CS-DSI schemes could still delineate very similar bundles with

comparable anatomy to those delineated by full DSI. These results

demonstrate that CS-DSI schemes can generate bundles similar to

those segmented by the full DSI scheme in a different scan session.

We next asked if the CS-DSI inter-scan accuracy of specific bun-

dles similarly scaled with their full DSI inter-scan reliability. We again

found that bundles that were more reliably segmented by full DSI had

higher inter-scan accuracies, and vice-versa (Pearson R ranging from

0.78 to 0.88; p < .001, Figure 6d). As observed previously, the slopes

of this relationship scaled with sampling density, and the more

sparsely sampled schemes were more severely affected by low inter-

scan reliability in the full DSI scheme. These results emphasize that

most bundles can be segmented by CS-DSI schemes with very high

accuracies.

3.4 | The inter-scan reliability of bundles from CS-
DSI is comparable to full DSI

Having demonstrated that CS-DSI schemes could segment bundles accu-

rately, we next asked whether the CS-DSI segmented bundles were as

reliable between scan sessions as bundles generated from the full DSI

scheme. For each diffusion scheme, we calculated the inter-scan reliabil-

ity for each bundle as the set of Dice scores between each pair of scan

sessions within a participant (Table 2). We found that the inter-scan reli-

abilities across bundles were high for all CS-DSI schemes (medians rang-

ing from 0.73 to 0.78). We then compared the distributions of inter-scan

reliabilities for each CS-DSI scheme to the full DSI scheme across all par-

ticipants within each bundle. We again found that the median difference

between these distributions scaled with sampling density (Figure 7a).

However, these median differences were low (<.07, Table S5) and after

correcting for multiple comparisons, no bundle showed a significant dif-

ference between CS-DSI and full DSI reliabilities for any scheme (p > .1,

Table S5). These results demonstrate that CS-DSI is as reliable as full DSI

for segmenting bundles.

Mirroring what we observed for bundle segmentation accuracy,

we found that the inter-scan reliability of the Dice scores for all CS-

DSI schemes was correlated with the inter-scan reliability of the full

DSI scheme (Pearson R ranging from 0.80 to 0.94; p < .001)

Figure 7b). Bundles that were most susceptible to noise between ses-

sions in the full DSI segmentations were also less reliably segmented

in the CS-DSI images over sessions. Again, the inter-scan reliability of

sparsely sampled CS-DSI schemes (like HA-SC55 and RAND57) was

more impacted in bundles that showed lower inter-scan reliability in

the full DSI scheme.

3.5 | CS-DSI and full DSI produce highly correlated
voxel-wise scalar maps in the same scan session

After showing that CS-DSI schemes studied could accurately and reli-

ably segment white matter bundles, we next turned to voxel-wise sca-

lar maps. We examined three different microstructural properties:

NQA, GFA, and ISO (Yeh et al., 2013). We evaluated each of these

voxel-wise scalars with the same validation metrics as done for bundle

segmentation: same-scan accuracy, inter-scan accuracy, and inter-

scan reliability (Table 2). We found that the CS-DSI derived voxel-wise

scalars were all highly correlated with the full DSI derived voxel-wise-

scalars, demonstrating high same-scan accuracy. Moreover, the distri-

bution of same-scan accuracies of all the CS-DSI maps was

comparable with the distribution of inter-scan reliability of the full DSI

maps for all the scalars studied (Figure 8a–c). For GFA and ISO, all

HA-SC images generated scalars with no significant difference

between their same-scan accuracy and the full DSI inter-scan reliabil-

ity distributions (Table S6). For NQA, there was no difference

between the HA-SC55-1 image and full DSI. In contrast, HA-SC55-2

and RAND57 had significantly lower same-scan accuracies than full

DSI inter-scan reliabilities, albeit with very low median differences

(<.05). Interestingly, HA-SC92 + 55–1, HA-SC92 + 55–2, and HA-

SC92 had significantly higher same-scan accuracy for NQA as com-

pared to the full DSI inter-scan reliability (Figure 8a, Table S6), which

again is likely because the CS-DSI schemes and full DSI schemes

within a scan session sub-sampled the same input data. Together,

these results indicate that CS-DSI and full DSI produce similar esti-

mates of voxel-wise scalar maps within the same scan session.

3.6 | CS-DSI and full DSI produce similar estimates
of voxel-wise scalar maps across scan sessions

As for the bundles, we next sought to further examine the accuracy of

a scalar map of microstructure while controlling for the effect of scan

RADHAKRISHNAN ET AL. 11 of 19
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session. Here, we defined inter-scan accuracy as the set of Pearson

correlations between a CS-DSI derived voxel-wise scalar and the full

DSI voxel-wise scalar in disparate sessions (Table 2). As expected,

inter-scan accuracies were lower than the same-scan accuracies and

scaled with the number and uniformity of directions sampled. These

distributions were significantly different for all CS-DSI schemes and

scalars examined (p < .05), but the median difference between the

CS-DSI inter-scan accuracy and full DSI reliability was low for all

HA-SC schemes (Figure 8d–f, Table S7). Together, these results dem-

onstrate that CS-DSI schemes can generate whole brain voxel-wise

scalars with high accuracy.

3.7 | The inter-scan reliability of CS-DSI derived
scalars is very similar to full DSI

Next, we examined how the inter-scan reliability of the voxel-wise

scalar maps generated by the CS-DSI images compared with that of

the full DSI image. As prior, we defined inter-scan reliability as the set

of Pearson R values between a voxel-wise scalar metric generated by

each pair of scan sessions. As for white matter bundles, we found that

the ability of a CS-DSI image to reliably estimate any of the scalar

metrics decreased with decrease in q-space sampling density

(Figure 8g–i). However, we found no significant differences in the

inter-scan reliabilities between the CS-DSI derived scalars and the full

DSI derived scalars (p > .05, Table S8). The median differences

between these distributions were also very low across scalar metrics

and diffusion schemes (<.05). Interestingly, we found that all the HA-

SC schemes had numerically (but not significantly) higher inter-scan

reliabilities that the full DSI scheme for GFA, suggesting that strategic

sub-sampling of q-space might be beneficial to reducing inter-scan

noise in this metric. (Figure 8h). These results suggest that CS-DSI

schemes can be used to rapidly measure local microstructural proper-

ties with a similar reliability as a full DSI scheme.

3.8 | CS-DSI accuracy can be replicated in an
independent, prospectively acquired dataset

The results in the previous sections are from a dataset where syn-

thetic CS-DSI data was generated retrospectively: full DSI schemes

were collected, and CS-DSI schemes were subsampled from the

acquired data. Furthermore, because these CS-DSI images were sub-

sampled after preprocessing the full DSI image, the CS-DSI volumes

benefitted from better motion correction as they could rely on points

in q-space that were not a part of the synthesized subsample. We

next asked whether prospectively acquired CS-DSI data without this

advantage could generate bundles and scalars at similar levels of accu-

racy. Note that in the prospective dataset, only a single session was

acquired for each CS scheme, so we could not evaluate inter-scan

accuracy or inter-scan reliability of the CS-DSI schemes. For this data-

set, the full DSI image was constructed by concatenating the four

acquired CS-DSI images (HA-SC92, HA-SC55-1, HA-SC55-2, and

RAND57). Same-scan accuracy was defined as the relationship

between the CS-DSI derivative and the concatenated full DSI deriva-

tive for each scheme. Critically, we replicated the finding that all CS-

F IGURE 7 CS-DSI inter-scan reliability of bundle segmentation is comparable to and correlated with full DSI inter-scan reliability. (a) CS-DSI
inter-scan reliability is comparable with full DSI inter-scan reliability. Violins represent distributions of Dice score across bundles and participants.
(b) Median distribution of the inter-scan reliability for each CS-DSI scheme is highly correlated with the median distribution of the inter-scan
reliability of the full DSI scheme. Here, each scatter dot represents the across-participant median of Dice scores for a single bundle. The gray
dashed line denotes x = y.
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DSI schemes had high same-scan accuracies across bundles (medians

ranged from 0.74 to 0.80; Figure 9a). Furthermore, we replicated the

result that bundle segmentation accuracy was highly correlated with

the between-scan reliability, again using the full DSI reliability from

the retrospective dataset as a reference (Pearson R ranging from 0.76

to 0.81, p < .001, Figure 9b).

Finally, we evaluated the accuracy of voxel-wise NQA, GFA, and

ISO maps in the prospective data. We found that the maps derived

from CS-DSI images were all highly correlated with maps derived from

the full DSI image. Here too, the distribution of Pearson correlation

coefficients between the CS-DSI derived scalars and the full DSI

derived scalars was comparable with inter-scan reliability of the full

DSI scheme (from the retrospective data) for almost all scalars studied

(Figure 10). This replication of our results in an independent dataset

that was prospectively acquired on a different scanner further bolster

confidence in our findings and underscore the utility of CS-DSI.

Pearson correlations of the voxel-wise scalars between the CS

schemes and the combined scheme in the prospective dataset are

similar to the full DSI inter-scan reliability from the retrospective data.

3% of observed outlier values were excluded from each plot for

clarity.

4 | DISCUSSION

CS-DSI has been shown to be a promising strategy to reduce DSI

acquisition time in post-mortem and animal studies. We examined the

capacity for six different CS-DSI schemes to noninvasively quantify

macrostructural and microstructural white matter properties in the

human brain. We found that both CS-DSI derived bundle segmenta-

tions and voxel-wise scalars were comparable in accuracy and reliabil-

ity to those derived from full DSI images. Our results demonstrate

F IGURE 8 Comparing full DSI reliability with CS-DSI same-scan accuracy (a–c), inter-scan accuracy (d–f), and inter-scan reliability (g–i) when
deriving whole-brain voxel-wise scalar maps. 3% of observed outlier values were excluded from each plot for clarity.
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that CS-DSI is an efficient and robust diffusion imaging technique that

can accurately and reliably quantify white matter in a fraction of the

acquisition time required by a full DSI scan, underscoring its clinical

and research potential.

There are many approaches to construct CS schemes for dMRI. In

this paper, we primarily examined HA-SC schemes with different q-

space sampling densities, and a random scheme (RAND57) designed

to enable concatenation to the full DSI scheme. The HA-SC scheme

ensured a homogenous angular covering of the q-space and had been

previously shown to provide the most efficient and robust

reconstruction of the EAP in simulated data (Paquette et al., 2015).

We observed that all HA-SC schemes performed better than the

RAND57 scheme, possibly because the homogenous distribution of

subsampled points allowed for more effective extrapolation of the

unacquired points in q-space. We also consistently observed that HA-

SC accuracy and reliability scaled with the number of directions sam-

pled, with the longer, more densely sampled schemes performing

better.

To further contextualize the performance of our accuracy mea-

sures, we compared them against the inter-scan reliability of the full

F IGURE 9 CS-DSI accuracy of bundle segmentation can be replicated in a dataset where CS-DSI images are prospectively acquired. (a) Dice
scores between most CS-segmented bundles and combined DSI-segmented bundles are similar to the inter-scan reliability of full DSI bundles
from the retrospective data. Violins represent distributions of Dice scores across all participants and bundles for a given scheme. (b) Median
distribution of the accuracy for each CS-DSI scheme is highly correlated with the median distribution of the full DSI inter-scan reliability from the
retrospective data. Here, each point on the scatter plot represents the median of Dice scores for a single bundle across participants. The gray
dashed lined denotes x = y.

F IGURE 10 CS-DSI accuracy of scalar map generation can be replicated in a dataset where CS-DSI data is prospectively acquired.
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DSI scheme. Inter-scan reliability reflects test–retest differences,

which are inevitable in neuroimaging, even when using longer acquisi-

tion schemes. We reasoned that if differences between CS-DSI deriv-

atives and full DSI derivatives were similar to the test–retest

differences in full DSI derivatives, the corresponding CS-DSI scans

could be considered as viable alternatives to full DSI. We showed that

CS-DSI schemes yielded similar reliability to the full DSI scheme for

both bundle segmentations and scalar quantification. Impressively,

while the HA-SC92 scheme took only around a third of the acquisition

time required for full DSI, this reduction in acquisition time had no

negative impact on its data quality: HA-SC92 accuracies and reliabil-

ities were not statistically different from full DSI reliabilities for almost

all derivatives examined. Though HA-SC92 + 55–1 and HA-SC92

+ 55–2 also performed very well, the HA-SC92 scheme had an acqui-

sition time of only 7.4 minutes. These results suggest that the infor-

mation lost from subsampling the q-space in the denser HA-SC

schemes was minimal and comparable with mere test–retest differ-

ences of the full DSI. This key finding demonstrates that the HA-SC92

scheme can be successfully used as an alternative for full DSI with

very few trade-offs for the derived measures we examined.

While the more sparsely sampled schemes with shorter scan

times differed significantly from the full DSI scheme, we found that

these differences were very small, especially for the HA-SC55-1 and

HA-SC55-2 schemes. All bundles segmented by HA-SC55-1 and HA-

SC55-2 were still qualitatively comparable to those segmented by full

DSI. Moreover, for bundles that were more reliably segmented by

full DSI (like the Corpus Callosum or the Parietal Aslant), even the

more sparsely sampled schemes were not significantly less reliable

than the full DSI scheme. These results suggest that scientific ques-

tions focused on these specific bundles could safely adopt a 4-minute

CS-DSI scan. This feature of the sparser CS-DSI schemes is particu-

larly valuable in contexts where scan time needs to be as low as possi-

ble, like in clinical care or in research of populations where extended

scans are impractical (e.g., children, clinical populations).

These differences in HA-SC and full DSI were even smaller when

computing the voxel-wise scalars. The median Pearson correlation

between HA-SC and full DSI scalar maps was consistently above 0.85

for all scalars examined. This finding is particularly promising as it sug-

gests that CS-DSI has the capacity to successfully detect specific and

localized microstructural changes. The high correlation between HA-

SC and full DSI scalars suggests that factors that are associated with

full DSI scalars would also be associated with HA-SC scalars, allowing

us to detect the same properties in a fraction of the scan time. Future

studies correlating HA-SC derivatives with factors of interest like age,

cognition, or clinical status, and comparing these relationships with

those from full DSI will be able to further ascertain CS-DSI's utility in

these contexts.

Despite being slightly longer, the RAND57 scheme did not per-

form as well as any of the HA-SC schemes and showed significant dif-

ferences compared to the full DSI in almost all measures. These

findings indicate that not all CS-DSI schemes are equivalent, and that

q-space subsampling must be performed strategically to be effective.

This observation also highlights the significance of our HA-SC results:

while not all CS-DSI schemes are effective, we identified a sampling

strategy that can approximate full DSI performance in a fraction of

the scan time.

Not only can HA-SC schemes be an effective alternative to full

DSI but they might also be able to improve all studies leveraging diffu-

sion imaging. Single shell diffusion schemes continue to be the most

popular DWI acquisitions, especially in clinical workflows, due in large

part to their short scan times. The HA-SC55 schemes have similar

acquisition times as a traditional single shell scheme required to gen-

erate tensors (Soares et al., 2013). However, existing work suggests

that DSI schemes can resolve crossing fibers and quantify more

specific microstructural properties. A recent study even showed that

CS-DSI was better than DTI at visualizing motor and language white

matter tracks in patients with brain tumors (Young et al., 2017), fur-

ther underscoring its clinical potential. Moreover, CS-DSI schemes

can be effectively resampled into other HARDI schemes (Jones

et al., 2021a), enabling analyses that require multishelled data like

NODDI (Zhang et al., 2012) or SANDI (Palombo et al., 2020). Simulta-

neously, unlike multishelled schemes, CS-DSI allows direct reconstruc-

tion of the full EAP (Jones et al., 2021a), resulting in improved

tractography (Yendiki et al., 2021) and better gray-white contrast

(Jones et al., 2021b). While a comparison between CS-DSI and multi-

shell schemes is beyond the scope of this work, future studies com-

paring the sensitivity and reliability of CS-DSI derivatives with those

derived from multishelled schemes would be highly valuable.

This study has several limitations that should be acknowledged.

First, the retrospective CS-DSI images were subsampled from the full

DSI dataset after preprocessing. Within each scan session, the motion

correction on the subsampled volumes could also leverage from volumes

that were not a part of the examined scheme, giving the retrospectively

synthesized images an advantage not available to prospectively acquired

CS-DSI data. Given this advantage, along with the absence of inter-scan

noise, it is unsurprising that same-scan accuracy was higher than full DSI

inter-scan reliability for some of the denser CS-DSI schemes. We

addressed this problem by both calculating inter-scan accuracy, as well

as replicating these results in prospectively acquired CS-DSI data. More-

over, while our results demonstrate minimal differences between CS-DSI

and full DSI derivatives, we cannot gauge the practical consequences of

these differences. While beyond the scope of this paper, future studies

examining the relationship between subsampling and correlations with

metrics of interest (like age, cognition, or pathological outcomes) will help

answer this question. Third, we used SHORE basis functions with

L2-regularization to perform CS. While L2-regularization has been shown

to be an effective way to extrapolate the full DSI signal from the CS-DSI

data (Merlet & Deriche, 2010, 2013), there are many other CS-DSI strat-

egies that use other approaches (discrete cosine transform, discrete

wavelet transform; Almasri et al., 2020; Hong et al., 2011; Lai

et al., 2016). Recent studies have demonstrated that adaptive dictionary-

based approaches can substantially improve reconstruction (Bilgic

et al., 2013, 2012; Jones et al., 2021a). While some of these improved

methods may require more computational resources, they have the

potential to further increase the bundle and scalar derivation validity of

even the sparser CS-DSI schemes. Investigating these algorithms using
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the framework presented here may further improve white matter mea-

sures derived from CS-DSI acquisitions. Fourth, it should also be noted

that different versions of QSIPrep were used for preprocessing the retro-

spective (v0.4.0) and prospective (v0.8.0) datasets. While there are no

major pipeline differences between these versions, it is possible that they

might produce slightly discrepant derivatives (Schilling et al., 2021a,

2021b). However, as all our validation metrics were only calculated

within datasets (i.e., Dice scores or Pearson correlations were only calcu-

lated internally within the prospective or retrospective dataset), any sub-

tle differences of pipeline version are unlikely to impact the results.

Finally, not all bundles were successfully segmented across all partici-

pants, scan sessions, and schemes. While these failures were not

restricted to CS-DSI schemes, future studies evaluating probabilistic

tracking algorithms could help characterize the effect of sparse q-space

sampling on these missing bundles. Moreover, while other scalars are

highly correlated with the GQI scalars we evaluated, future studies exam-

ining whether these CS-DSI scans can produce comparably reliable mea-

sures like DTI FA and MD will be valuable.

In conclusion, we demonstrated that CS-DSI can provide an accu-

rate and reliable characterization of white matter properties in human

brains in vivo, in a fraction of the scan time required for full DSI.

These results bolster confidence in CS-DSI and will accelerate its

adoption moving forward.
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