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It has recently been reported (VanDijk et al., 2011) that in-scanner headmotion can have a substantial impact on
MRI measurements of resting-state functional connectivity. This finding may be of particular relevance for stud-
ies of neurodevelopment in youth, confounding analyses to the extent that motion and subject age are related.
Furthermore, while Van Dijk et al. demonstrated the effect of motion on seed-based connectivity analyses, it is
not known how motion impacts other common measures of connectivity. Here we expand on the findings of
Van Dijk et al. by examining the effect of motion on multiple types of resting-state connectivity analyses in a
large sample of children and adolescents (n=456). Following replication of the effect of motion on seed-
based analyses, we examine the influence of motion on graphical measures of network modularity, dual-
regression of independent component analysis, aswell as the amplitude and fractional amplitude of low frequen-
cy fluctuation. In the entire sample, subject age was highly related to motion. Using a subsample where age and
motionwere unrelated, we demonstrate that motion hasmarked effects on connectivity in every analysis exam-
ined. While subject age was associated with increased within-network connectivity even when motion was
accounted for, controlling for motion substantially attenuated the strength of this relationship. The results dem-
onstrate the pervasive influence of motion on multiple types functional connectivity analysis, and underline the
importance of accounting for motion in studies of neurodevelopment.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Resting state functional MRI (fcMRI) has been developed as a power-
ful tool to assess connectivity in large-scale brain networks (Biswal et al.,
1995; Fox and Raichle, 2007), and has been used to explore both individ-
ual and between-group differences in brain connectivity (Satterthwaite
et al., 2010; van den Heuvel et al., 2009; Wolf et al., 2007). However, an
important recent study (Van Dijk et al., 2011) has demonstrated that
head motion has a confounding effect on fcMRI, whereby increased mo-
tion is associated with diminished connectivity between distant nodes
while simultaneously increasingly local coupling.

This finding is of particular relevance to imaging studies of neuro-
development in youth. While it has not been formally examined, it is
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intuitive that a child's age may be highly related to the ability to stay
very still during scanning. Furthermore, past studies have reported
that neurodevelopment in youth is associated with increased distant
connectivity and reduced local connectivity (Dosenbach et al., 2010;
Fair et al., 2007, 2008, 2009). It is noteworthy that this pattern of con-
nectivity change is the inverse of the effect of in-scanner head mo-
tion, suggesting that uncontrolled motion might influence estimates
of neurodevelopmental trajectories of connectivity. However, several
of the most prominent studies of neurodevelopmental connectivity
have rigorously matched motion and age, thus reducing the likeli-
hood that reported effects were an artifact of motion (Dosenbach et
al., 2010; Fair et al., 2007, 2008). Two other recent studies took a dif-
ferent approach and included a summary measure of subject motion
as a confounding variable in the group-level regression (Zuo et al.,
2010a,b,c, 2011). Nonetheless, the relationship between motion and
connectivity in youth has not been previously examined directly. In
addition, while Van Dijk et al. demonstrated the effect of motion on
seed-based connectivity analyses, it is not known how motion affects
other common measures of connectivity including graphical mea-
sures of network modularity (Rubinov and Sporns, 2010), indepen-
dent components analysis (ICA; Beckmann et al., 2005) and power
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spectrum-based measures such the amplitude of low frequency fluc-
tuation (ALFF; Zang et al., 2007) and the fractional amplitude of low
frequency fluctuation (fALFF; Zou et al., 2008).

Our goals in this paper were three-fold. First, we aimed to repli-
cate the results reported by Van Dijk et al. in a completely indepen-
dent dataset. Second, we extend the analyses presented by Van Dijk
et al., and investigate how generalizable the effects of motion are to
other analyses of resting-state BOLD data. Specifically, we examine
how inter-node distance modulates the effects of motion, and then
evaluate the impact of in-scanner head motion on network modular-
ity, network connectivity as measured with dual-regression ICA, and
power-spectrum based measures such as ALFF and fALFF. Third and
finally, we demonstrate that subject age and motion are highly relat-
ed, and show the importance of accounting for motion in studies of
youth by comparing estimates of the effect of subject age in sub-
samples where age and motion are unrelated, related, or when mo-
tion is accounted for using regression. As revealed below, motion
had marked effects on all measures of connectivity, and had a sub-
stantial impact on estimates of connectivity change in youth.

Materials and methods

Subjects

The present study is a collaboration between the Center for Applied
Genomics (CAG) at Children's Hospital of Philadelphia (CHOP) and the
Brain Behavior Laboratory at the University of Pennsylvania (Penn).
Study procedures were reviewed and approved by the Institutional
Review Board of both CHOP and Penn. The target population-based
sample is of 10,000 youths who presented to the CHOP network for a
pediatric visit and volunteered to participate in genomic studies of
complex pediatric disorders. All research participants undergo assess-
ment with a structured neuropsychiatric interview, a neuroscience
based computerized neurocognitive battery (Gur et al., 2010), and re-
view of electronic medical records. A subsample of 1000 subjects is se-
lected for neuroimaging. This report represents an interim analysis of
the initial consecutively acquired subjects that underwent neuroimag-
ing, including 456 individuals aged 8–23 years old (mean age
15.6 years; standard deviation 3.4 years); 199 were male. All imaged
subjects were recruited as part of the larger study examining neurode-
velopmental genomics. Inclusion criteria for the overall study: 1. Able to
provide signed informed consent. For participants under age 18 assent
and parental consentwere required. 2. English proficiency. 3. Physical-
ly and cognitively able to participate in computerized neurocognitive
testing. Notably, the imaged sample was not recruited on the basis of
any specific disorder or symptoms. All imaged subjects were free
from active, ongoing medical disorders that would impact brain func-
tion; all had normal or corrected-to-normal vision and met no exclu-
sionary criteria for a MRI study.

Image acquisition

All subject data were acquired on the same scanner (Siemens Tim
Trio 3 Tesla, Erlangen, Germany; 32 channel head coil) using the same
imaging sequences. Blood oxygen level dependent (BOLD) fMRIwas ac-
quired using a whole-brain, single-shot, multi-slice, gradient-echo (GE)
echoplanar (EPI) sequence of 124 volumes with the following parame-
ters: TR/TE=3000/32 ms, flip=90°, FOV=192×192 mm, ma-
trix=64×64, slice thickness/gap=3 mm/0 mm. The resulting
nominal voxel size was 3.0×3.0×3.0 mm. A fixation cross was dis-
played as images were acquired. Subjects were instructed to stay
awake, keep their eyes open, fixate on the displayed crosshair, and re-
main still. Prior to time-series acquisition, a 5-minute magnetization-
prepared, rapid acquisition gradient-echo T1-weighted (MPRAGE)
image (TR 1810 ms, TE 3.51 ms, FOV 180×240 mm, matrix 256×192,
effective voxel resolution of 1×1×1 mm) was acquired to aid spatial
normalization to standard atlas space. Prior to scanning, in order to ac-
climate subjects to the MRI environment, a mock scanning session was
conducted for each individual using a decommissioned MRI scanner
and head coil. Mock-scanning was accompanied by acoustic recordings
of the noise produced by gradient coils for each scanning pulse se-
quence. During these sessions, feedback regarding head movement
was provided using the MoTrack (Psychology Software Tools, Inc,
Sharpsburg, PA) motion tracking system. In order to further minimize
motion, subjects' heads were stabilized in the head coil using one
foam pad over each ear and a third over the top of the head.

Assessment of in-scanner head motion

As in Van Dijk et al., our primary measurement of in-scanner head
motion was mean relative volume-to-volume displacement. This
standard measure summarizes total volume-to-volume translation
and rotation across all three axes. While this summary measure was
used in all of our analyses, we also examined the correlation between
mean relative displacement and other commonly used movement pa-
rameters, including maximum relative displacement, standard devia-
tion of relative displacements, maximum absolute displacement,
mean absolute displacement, and standard deviation of the absolute
displacement. Here, absolute displacement refers to the displacement
versus a median reference volume, rather than displacement when
compared to the previously acquired volume as in measures of rela-
tive displacement.

Subject sub-samples

As described below (see the section In-scanner motion is related
to subject age, and failure to control for motion inflates estimates of
the effect of age on connectivity), subject age and subject motion
were highly related in the complete sample of 456 subjects, and this
sample included subjects with gross motion that would be excluded
from any typical analysis. Therefore, in order to examine the effects
of motion on connectivity without age being a confounding factor,
we selected an age/motion-unrelated subsample of 348 subjects (age
range 8–23 years; mean age 16.6 y, SD 3.0 y; 146 male). Following
the exclusions of subjects with gross motion (see below), age and
motion were still significantly correlated in this age/motion-related
subsample. This relationship was driven primarily by young subjects
who had high levels of motion (see Fig. 5C). By excluding subjects
with relatively high levels of motion (i.e., +2SD MRD), this relation-
ship was attenuated (as high motion subjects tended to be younger),
but a significant correlation between motion and age remained.
Therefore, we next sequentially removed younger subjects with
higher levels of motion until the absolute value of the correlation be-
tween age and motion was less than or equal to r=0.03. In this sam-
ple mean relative displacement was not significantly different among
age groups when binned by quartile. We used this age/motion-unre-
lated subsample for both replication of the within-network effects de-
scribed by Van Dijk et al., (see the section Replication of Van Dijk et
al.: within-network connectivity) as well as the subsequent analyses
that investigated approaches beyond within-network connectivity
(e.g., modularity, dual-regression ICA, ALFF/fALFF).

As our final aim of this study was to investigate how in-scanner
motion might bias estimates of how connectivity changes with age,
we compared the effect of age in this age/motion-unrelated sample
to a sample where age and motion were related. This age/motion-re-
lated sample of 421 subjects (age range 8–23 years; mean age
15.9 y, SD 3.3 y; 181 male) was a subset of the complete sample of
456 subjects, created by simply excluding subjects with gross in-
scanner motion, without any attempt to match age and motion.
Gross motion was defined as relative mean displacement
>0.55 mm. While the selection of any exclusion threshold is ulti-
mately arbitrary, this threshold was in line with prior work, and



Table 1
Study sub-samples.

Sample N Mean MRD Standard deviation MRD

Entire Sample 456 0.142 0.226
Age/motion related sub-sample 348 0.062 0.038
Age/motion unrelated sub-sample 421 0.089 0.086

MRD = mean relative displacement.
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produced a sample that had a similar amount of motion to other
large-studies of developmental connectivity (Fair et al., 2007, 2008).
Note that these subjects with gross motion (>0.55 mm) were exclud-
ed from all analyses, and also were not part of the age/motion-unre-
lated subsample. Summary motion statistics for the inclusive sample
and each subsample are presented in Table 1.

General image preprocessing

While each analytic approach required specialized preprocessing,
some steps were common to all. All fMRI data processing was con-
ducted using tools that are part of FSL (FMRIB's Software Library,
www.fmrib.ox.ac.uk/fsl). BET was used to remove non-brain areas
(Smith, 2002). The first four volumes were removed to allow BOLD
signal stabilization. All functional timeseries were slice-time cor-
rected, motion corrected to the median image using a tri-linear inter-
polation with six degrees of freedom (Jenkinson et al., 2002), spatially
smoothed (6 mm FWHM, isotropic), and grand-mean scaled using
mean-based intensity normalization.

Preprocessing for seed analyses

In additional to the general preprocessing described above
(General image preprocessing section), for both within-network and
whole-brain seed analyses several additional steps were performed.
During preprocessing, data were band-pass filtered to retain frequen-
cies between 0.01 Hz and 0.1 Hz (van den Heuvel et al., 2008). As in
Van Dijk et al. and multiple prior studies (Andrews-Hanna et al.,
2007; Fox et al., 2006; Vincent et al., 2006), we removed the influence
of several confounding signals using linear regression. These includ-
ed: 1) six motion parameters, 2) mean white matter timecourse, 3)
mean CSF timecourse, and 4) mean whole-brain timecourse. CSF
and white matter timecourses were extracted from subject-specific
tissue-segments of the T1-weighted image created using FAST
(Zhang et al., 2001). Following regression of confound timecourses,
the residual functional timeseries for each subject was co-registered
with the anatomical image and transformed to standard anatomical
space (T1 Montreal Neurological Institute template, voxel dimensions
of 2×2×2 mm) using a non-linear normalization algorithm (FNIRT).

Replication of Van Dijk et al.: within-network connectivity

We conducted seed-based analyses in order to independently repli-
cate the results reported by Van Dijk et al. (2011). We examined the ef-
fect of motion on pairwise connectivity relationships in two of the
networks investigated in that study: the default mode network and
the frontoparietal control network. In order to replicate their results,
we used the same nodes for the default mode network (originally
based on Raichle et al., 2001), which included the posterior cingulate
cortex (MNI coordinates: 0, −53, 26), medial prefrontal cortex (0, 54,
−4), and left and right inferior parietal lobule (−48, −62, 36 and 50,
−62, 32). The frontoparietal control network (originally based on
Vincent et al., 2008) was also defined as per Van Dijk et al. (2011),
and included the anterior prefrontal cortex (−36, 57, 3 and 36, 57, 3)
and inferior parietal lobule (−44, −52, 54 and 48, −50, 52). Data
were preprocessed as described in General image preprocessing and
Preprocessing for seed analyses sections. Subsequently, at each ROI,
we extracted themean timecourse of the standard-space residual time-
series. This ROI timeseries was correlated with the timeseries for every
other ROI within each network using Pearson's correlations, generating
a connectivity matrix describing each network for every subject. In
order to improve normality, a Fisher's r-to-z transformation was ap-
plied prior to statistical testing. As in Van Dijk et al., averaging across
all within-network connections created a composite of total within-
network connectivity; this average valuewas correlated withmean rel-
ative displacement. Nonlinear effects were investigated using quadratic
regression. All statistical analyses of non-voxelwise data were con-
ducted in Matlab 7.11 (Math Works, Natick, MA, USA) using the Statis-
tical Toolbox. Unless specified otherwise, alpha for all comparisons was
set to p=0.05.

Whole-brain network definition

Next, in order to further examine the effect of motion on measures
of whole-brain network topology, we calculated the pairwise connec-
tivity relationship among a much larger set of ROIs that covered the
entire brain. Recent evidence suggests that anatomic ROIs may con-
tain functionally heterogeneous sub-regions, leading to the mixing
of disparate signals, with resultant negative consequences for net-
work estimation (Smith et al., 2011). Accordingly, we used 160 ROIs
(5 mm radius spheres) that were derived from a meta-analysis of a
large sample of task-based fMRI studies (Dosenbach et al., 2010). Sub-
sequent processing was otherwise the same as above.

Modulation of motion effects by inter-node distance

VanDijk et al. demonstrated thatmotion causes increased nonspeci-
fic coupling at ranges b12 mm compared to longer ranges, but did not
quantify the effect of motion on connectivity over a full range of node
distances. Using the 160×160 connectivitymatrix, we explored the de-
gree to which inter-node distance modulates the effect of motion on a
continuous basis. Mean relative displacement was correlated across
subjects with the connectivity measure for every node pair, generating
a second-level 160×160 correlation matrix containing 12,720 unique
cells. This matrix described howmotion impacted pairwise connectivi-
ty. In order to establish how distance influenced this relationship, a lin-
earmixed effect regressionmodel was fit using inter-node distance as a
fixed factor. Node variability wasmodeled as a random factor. To ascer-
tain if non-linear effects were present, a second model was run that in-
cluded both linear and quadratic effects of distance. In addition, this
effect was examined separately in positive and negative connections.
Lastly, to examine the influence of subject age, we conducted the ana-
lyses separately in younger and older subjects as defined by a median
split of subject age.

Modularity analysis

Within the whole-brain network of 160 ROIs, we evaluated the ef-
fect of motion on network modularity. Modularity provides a measure
of the degree to which a given set of nodes can be parsed into coherent
sub-networks (Rubinov and Sporns, 2010). Prior studies of network to-
pology have used thresholded correlationmatrices (Achard et al., 2006;
Bassett et al., 2008). However, threshold choice may be arbitrary, and
significantly impacts estimates of network topology (Rubinov and
Sporns, 2011). We therefore used the threshold-free modularity analy-
sis recently introduced by Rubinov and Sporns (2011), part of the Brain
Connectivity Toolbox (https://sites.google.com/a/brain-connectivity-
toolbox.net/). This measure allows estimation of modularity (using
the Louivan algorithm) for fully connected networks with positive and
negative weights. Modularity was linearly related to relative mean dis-
placement using Pearson's correlations. Nonlinear effects were evaluat-
ed with quadratic regression.

http://www.fmrib.ox.ac.uk/fsl
https://sites.google.com/a/brain-connectivity-toolbox.net/
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Independent component analyses

Temporal concatenation group independent component analysis
(TC-GICA) was conducted on the age/motion related sample using
MELODIC (Beckmann et al., 2005). Prior to TC-GICA, in addition to
the general preprocessing steps described above (General image
preprocessing section), data were high pass filtered (0.01 Hz) to re-
move drift, spatially smoothed at 6 mm FWHM, and resampled to
4 mm isotropic voxels in MNI template space. Component dimension-
ality was estimated automatically. All components resulting from TC-
GICA were submitted for subsequent dual-regression analysis. We
focused our analysis on three commonly-observed components, cor-
responding to the default mode network, the right-lateralized fronto-
parietal control network, and the dorsal attention network (Biswal et
al., 2010; Damoiseaux et al., 2006; Smith et al., 2009; Zuo et al.,
2010b; see ALFF and fALFF are influenced by motion section). As
part of the dual-regression procedure (Biswal et al., 2010; Filippini
et al., 2009; Zuo et al., 2010b), all group-level components were
first used as a spatial regressor for the participant's functional data,
resulting in a timeseries for each component reflecting how closely
the functional data spatially resembled the component at each
timepoint. Next, these timeseries was together fed into a second
regression as a temporal regressor for the functional data (effectively
functioning as a complex seed), producing subject-level spatial maps
of component connectivity containing both positive and negative
values. These subject-level maps were subjected to a final group-
level regression analysis examining the effect of motion (see the sec-
tion Voxelwise group level analyses of motion).

ALFF and fALFF

In contrast to seed-based or pairwise approaches, ALFF and fALFF
provide a measure of low frequency oscillations that contribute to con-
nectivity but are fundamentally different from between-region mea-
sures of connectivity (Zuo et al., 2010a). ALFF measures the amplitude
of low frequency oscillations, while fALFF measures the relative pre-
dominance of low frequency amplitude to the amplitude of all oscilla-
tions across the entire power spectrum (Zou et al., 2008). fALFF has
greater specificity than ALFF in that it is less susceptible to artifact in
the ventricles and near large blood vessels (Zou et al., 2008, 2010a);
however, both measures have been found to have high test-retest reli-
ability (Zuo et al., 2010a). Prior to calculation of ALFF and fALFF, data
underwent general preprocessing as described in General image
preprocessing section. fALFF was calculated as described by Zuo et al.
(2010a), and was implemented using scripts written by Biswal et al.
(2010) as part of the 1000 functional connectomes project (www.
nitrc.org/projects/fcon_1000/). Briefly, at each voxel, ALFF is the sum
of amplitudes within a specified low-frequency range of oscillations
(0.01–0.1 Hz). In contrast, fALFF is calculated as the sum of amplitudes
within this range compared to the total sum of amplitudes across the
entire frequency range. Prior to group level analyses, all subject-level
ALFF and fALFF maps were Z-transformed to improve normality, and
registered to a 2 mmMNI template as above. In order to provide an es-
timate of the effect size of motion on both ALFF and fALFF, we averaged
ALFF or fALFF signal across all gray matter voxels in template space
(using the Harvard-Oxford atlas, thresholded at probability >0.25)
and correlated this average cortical ALFF or fALFF value with mean rel-
ative displacement. As above, nonlinear effects were investigated using
quadratic regression.

Voxelwise group level analyses of motion

Subject-level ICA dual regression maps and ALFF/fALFF maps
were subjected to identical group-level analysis procedures. Group-
level analyses were performed in the age/motion-related sample
using a GLM where three regressors were included: age, sex, and
mean relative displacement. Mean relative displacement was the ef-
fect of interest. All group-level voxelwise analyses were conducted
using non-parametric permutation testing methods implemented
using RANDOMISE (Nichols and Holmes, 2002). Type I error was
controlled with threshold-free cluster enhancement (TFCE); clusters
of 100 voxels above a corrected p value b0.01 were considered sig-
nificant and reported in the text. For display, images were rendered
on a cortical map of the right hemisphere using Caret V5.6 (Van
Essen et al., 2001). All figures display uncorrected, unmasked t-
statistic maps.
Relevance of motion to estimation of relationship between age
and connectivity

While the above analyses used an age/motion related sample to
investigate how in-scanner motion impacted multiple different ana-
lytic approaches, the final aim of the paper was to examine how in-
scanner motion was related to age, and might impact estimates of
how connectivity changes with age. Therefore, the relationship be-
tween relative mean displacement and age was assessed in the ini-
tial inclusive sample of 456 subjects, and each sub-sample (related
and unrelated) using Pearson's correlations. In order to establish
the relationship between inclusion threshold and sample size, we
plotted the percent of the original sample retained using exclusion
thresholds ranging from 0 mm to 1 mm mean relative displacement.
In addition, we examined the effect of exclusion threshold on the
correlation between age and motion over the same range of exclu-
sion thresholds.

Next, we examined the potential confounding effects motion
might have on studies of the relationship between age and connec-
tivity. Prior investigations have highlighted the association of age
with increased long-range connectivity of cortical hubs involved in
higher-order mental processes (Fair et al., 2007, 2008), and more
generally demonstrated that with age short-range connectivity de-
creases whereas long-range connectivity is enhanced (Dosenbach
et al., 2010). We examined age effects on a voxelwise basis from
the seed region in the posterior cingulate cortex described above.
We chose to examine the effects of age using this specific analysis
as such a voxelwise approach is sensitive to the modulation of the
effects of age by distance. The voxelwise approach chosen here
may be more prone to type I error, but this was controlled using
the same statistical thresholding as used for the other voxelwise an-
alyses (TFCE corrected pb0.01; see the section Voxelwise group
level analyses of motion). Voxelwise PCC time-series analysis was
carried out using FILM with local autocorrelation correction as
implemented in FEAT (Woolrich et al., 2001). As in the pairwise
seed analyses, we included confound regressors in the GLM in addi-
tion to the PCC timecourse (e.g., motion parameters, mean white
matter timecourse, mean CSF timecourse, and mean whole-brain
timecourse). To investigate motion's impact on the estimate of the
effect of age, we conducted three group-level analyses. First, we ex-
amined the effect of age without controlling for motion in the age/
motion-related sample (n=421). We compared this to two analyses
where motion was accounted for: an analysis of age in the age/mo-
tion-unrelated sample (n=348), and an analysis of age in the age/
motiomn-related sample with each subject's mean relative displace-
ment included in the group-level regression as a confound variable
(“motion regressed”). Group level statistics were conducted with
RANDOMISE using the procedures described above (see the section
Voxelwise group level analyses of motion). For further illustration,
we also report correlation and partial correlation values between
the PCC seed and the MPFC ROI for each sample. It should be
noted that as these sub-samples were overlapping, in this descrip-
tive analysis direct statistical testing between subsamples was
not conducted.

http://www.nitrc.org/projects/fcon_1000/
http://www.nitrc.org/projects/fcon_1000/
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Results

Replication of the effect of motion on within-network connectivity

In the age/motion-unrelated sample, we replicated the findings of
Van Dijk et al.: motion diminished average within-network connec-
tivity for both the default mode network and the frontoparietal con-
trol network. Specifically, mean relative displacement was
negatively correlated with average connectivity in the default mode
network (r=−0.12, p=0.01). The effect of motion on the average
connectivity within the frontoparietal control network was similar
(r=−0.11, p=0.02). No significant nonlinear effects were found in
either network.
Fig. 2. Motion reduces network modularity.
The effect of motion is modulated by distance and reduces
network modularity

Next, we used a set of ROIs covering the entire brain to investigate
the modulating effect of inter-node distance on the effect of motion.
Euclidean distance among these 12,720 pairwise connections was ro-
bustly related to the effect of motion. The linear mixed effects model
revealed a significant inverse relationship between distance and mo-
tion (Fig. 1; r=−0.50; pb1.00×10−25). Inclusion of a quadratic
term for internode distance did not reveal a significant nonlinear as-
sociation of distance and motion (p=0.41). A linear fit of this effect
revealed that motion increased connectivity for distances less than
95.61 mm, but diminished connectivity for greater distances. Among
the 160 ROIs used, 29.5% of connections were separated by at least
this distance. This effect was present when positive connections
(r=−0.56,) and negative connections (r=−0.51) were considered
separately. The effect was equally present in both younger (r=
−0.46) and older subjects (r=−0.47) when the sample was split
by median subject age. Motion was additionally associated with re-
duced network modularity (Fig. 2; r=−0.38, p=1.58×10−13). No
significant nonlinear effects of motion on network modularity were
present.
Fig. 1. The effect of motion is modulated by inter-node Euclidean distance. Motion
tends to increase connectivity for locally adjacent nodes, but reduce connectivity be-
tween distant nodes.
Dual regression ICA is impacted by motion

The number of components generated by TC-GICA (23 compo-
nents) was consistent with other low-dimensional ICA analyses con-
ducted on large-scale datasets. We selected three well-described ICA
components for subsequent analysis with dual regression (Fig. 3): the
default mode-network, the (right-lateralized) frontoparietal control
network, and the dorsal attention network. Group-level regression
of subject-level dual regression maps demonstrated that in-scanner
motion had a marked impact on subject-level estimates of connectiv-
ity for each network. In the default mode network (Fig. 3B), motion
was associated with altered connectivity with a large cluster includ-
ing bilateral parietal and temporal cortex as well as subcortical
white matter (12,205 4 mm isotropic voxels; center of gravity MNI
coordinates 2, −26, 12). Motion also had a strong impact on connec-
tivity with the frontoparietal network (Fig. 3D), significantly altering
between that network and a large cluster of regions spanning frontal,
parietal, and temporal cortex (13,372 voxels; center of gravity 18,
−18, 20); motion influenced connectivity with left parietal and tem-
poral cortex as well (1102 voxels; center of gravity −42, −30, 0). Fi-
nally, motion also significantly impacted dorsal attention network
connectivity (Fig. 3F), altering connectivity with a large cluster in-
cluding bilateral frontal, parietal, and temporal cortex (12,875 voxels;
center of gravity 6, −30, 12). Alterations in connectivity were mainly
seen in component-positive voxels (Supplementary Figure 1).

ALFF and fALFF are influenced by motion

The average ALFF and fALFF maps produced in the age/motion-
unrelated sample accord with prior reports, with the highest ALFF
and fALFF seen in cortical gray matter (Figs. 4A and D). Increased mo-
tion was associated with diminished ALFF in a large bilateral cluster
centered on the posterior cingulate cortex (50,202 2 mm isotropic
voxels; center of gravity−4,−26, 20; Fig. 4B). Motion was also asso-
ciated with smaller regions of increased ALFF in the ventral orbito-
frontal cortex (4779 voxels; 20, 30, −16) and bilateral posterior
cerebellum (1630 voxels; −4, −82, −36). Overall, motion was asso-
ciated with diminished average gray-matter ALFF (r=−0.11;
p=0.036; Fig. 4C). No nonlinear effects of motion on average gray
matter ALFF were found. The effects of motion on fALFF were even
more prominent: fALFF was robustly reduced by motion throughout
the cortex (Fig. 4E; 76,892 voxels; 2,−26, 12). This effect was not re-
gional: the mean fALFF signal in gray matter was highly related to
motion (Fig. 4F; r=−0.59, p=2.62x10−24). No significant nonlinear
effects were detected. Motion also was associated with a significant
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Fig. 3. Effect of motion on dual-regression of independent components analysis net-
works. Three common networks were selected from the TC-GICA: the default mode
network (A), the right-lateralized frontoparietal control network (C), and the dorsal at-
tention network (E). Group level analysis of subject-level dual regression maps demon-
strated that motion impacted estimates of connectivity for each network (B, D, and F).
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increase of fALFF in ventral subcortical white matter and the brain-
stem (13,540 voxels; 2, −22, −22).
In-scanner motion is related to subject age, and failure to control for
motion inflates estimates of the effect of age on connectivity

As in Van Dijk et al., relative mean displacement was our primary
summary measure of motion. As expected, relative mean displace-
ment was correlated with all motion measures evaluated (Supple-
mentary Table 1). In the complete sample of 456 subjects, age was
related to in-scanner head motion (r=−0.34, p=2.2×10−14,
Fig. 5A). Selection of a threshold for exclusion due to gross motion
had predictable consequences on the proportion of the original sam-
ple retained, with smaller samples resulting from more stringent
thresholds (Fig. 5B). The selection of an exclusion threshold also
had an impact on the correlation between motion and age: more rig-
orous exclusion thresholds ameliorated, but did not eliminate the
correlation between age and motion. Indeed, correlations of r>0.10
between age and motion were present at all exclusion thresholds
above 0.07 mm relative mean displacement. However, a threshold
of 0.07 mm mean relative displacement would exclude 45% of the
original sample, reducing the practical utility of such a strategy. In
contrast to the age/motion-unrelated subsample used for the analyses
above (Fig. 5D), in the age/motion-related subsample (after exclusion
of gross motion of mean relative displacement >0.55 mm), the size of
the correlation between age and motion remained quite significant
(r=−0.34, p=7.13×10−13, Fig. 5C).

In this age/motion-related subsample (Fig. 6A) when motion was
not accounted for, increased age was associated with enhanced con-
nectivity between the PCC and the medial prefrontal cortex (14,812
2 mm isotropic voxels; −2, 36, 18). Additionally, in this subsample
subject age was associated with diminished connectivity in a large
cluster including occipital and parietal regions close to the PCC
(24,188 voxels; 8, −30, 24). These age effects remained significant
but were attenuated in both the age/motion-regressed analysis
(Fig. 6B) where motion was included as a confounding variable in
the group level analysis, as well as the age/motion-unrelated subsam-
ple (Fig. 6C). In the motion regressed analysis, age was associated with
increased connectivity with a reduced region of medial prefrontal
cortex (3117 voxels; −2, 40, 12) and left frontal pole (155 voxels;
−20, 54, 8); connectivity declined with age in a subset of regions sur-
rounding the PCC seed (3136 voxels; −20, −8, 20) and in the right
insula (1107 voxels; 50, 6, 2). In the age/motion-unrelated sample, re-
sults were similar: there was increased connectivity with age in the
medial prefrontal cortex (2283 voxels; −2, 44, 2) and the right cau-
date (114 voxels; 14, 14, 0). Connectivity also diminished near the
PCC seed in the age/motion-unrelated subsample in association with
age, but only at subthreshold levels.

When the pairwise correlation values between the PCC and MPFC
were examined specifically (Fig. 6D), the effect of age was also stron-
gest in the age/motion-related sample (r=0.26,p=6.95×10−8). This
effect was nearly halved in both the age/motion-unrelated subsample
(r=0.14, p=0.0085) and in the age/motion-related subsample when
motion was included in a partial correlation (r=0.14, p=0.0050).

Discussion

In this study we examined the effect of in-scanner head motion on
measures of functional connectivity in a large sample of children and
adolescents. After replicating the findings of Van Dijk et al., we con-
ducted additional analyses and demonstrated that in-scanner motion
influences multiple measures of connectivity beyond seed analyses.
Additionally, we demonstrated that motion is highly related to sub-
ject age, and that motion can impact estimates of the relationship be-
tween connectivity and subject age. The results of this study establish
that motion influences all common analyses of fcMRI data, and indi-
cate that this confound is of particular importance for studies of neu-
rodevelopment in youth.

Impact of motion on pairwise seed analyses

Using nearly identical analysis procedures, we replicated the find-
ings of Van Dijk et al., showing that motion reduced within-network
connectivity in specific seed-based brain networks. Additional analyses
further characterized the effect of motion by using an expanded set of
ROIs that cover the entire brain (Dosenbach et al., 2010), allowingquan-
tification of the modulating effect of distance on the motion-
connectivity relationship. This analysis showed that motion influences
connectivity to a degree that is linearly related to inter-node Euclidean
distance (Fig. 1). For both positive and negative connections, motion in-
creases the correlation for nodes that are closer together, but diminishes

image of Fig.�3


Fig. 4. Effect of motion on ALFF and fALFF. (A) Mean ALFF map. (B) Motion reduces ALFF in midline regions including the posterior cingulate. (C) Motion weakly influences mean
gray-matter ALFF. (D) Mean gray-matter fALFF. (E) Motion reduces fALFF throughout the cortex. (F) Motion strongly impacts average gray-matter fALFF.
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connectivity (even causing anticorrelations) for voxels that are farther
apart. Van Dijk et al. (2011) compared local versus distant connectivity
using a binary threshold of 12 mm; our results suggest that motion
transitions from causing increased connectivity to decreased connectiv-
ity at amuch greater distance (96 mm). Therefore, except for aminority
of particularly distant connections (29.5%), motion will tend to increase
connectivity between nodes. However, as large-scale brain networks in-
volved in higher-order cognitive processes are modular (see below)
and spatially distributed (Vincent et al., 2008), such long-range connec-
tions may be of particular interest. We suspect that the modulation of
the effect of motion by distance is driven by the differential displace-
ment of individual voxels in the brain during head motion: voxels that
are close togetherwill tend tomove and disturb BOLD signal to a similar
degree, whereas voxels that are far apart maymove in substantially dif-
ferent ways given the pivot-action of rotations about the neck. Ongoing
work explores this effect on amechanistic basis with simulated and real
data.

Influence of motion on modularity

Brain networks are composed of pairwise relationships between
multiple nodes (Bullmore and Sporns, 2009). However, relating
these pairwise relationships to subject level data (age, symptoms,
etc.) can be challenging due to the proliferation of multiple compari-
sons associated with increasing number of nodes. Graphical measures
such as modularity provide useful summary metrics of network
topology (Rubinov and Sporns, 2010), and have been increasingly
used to investigate brain connectivity in neuropsychiatric populations
(Bassett et al., 2008; Lynall et al., 2010). Here we found that motion
reduced network modularity (Fig. 2). This effect follows from the
distance-related action of motion described above: to the degree
that network modules describe large-scale brain systems that are
spatially distributed, motion's effects (increasing local connectivity
and diminishing distant connectivity) would be expected to add
noise and diminish modular organization. It should be noted that a
paper published while this work was under review found similar re-
sults (Power et al., 2011). This effect is of particular importance for in-
vestigations of connectivity in youth (see the section Implications for
studies of neurodevelopment in youth).

Impact of motion on dual-regression ICA and ALFF/fALFF

While seed-based connectivity analyses remain the most common
way of approaching rs-fMRI data, alternative methods have seen wide
use (Calhoun et al., 2009; Damoiseaux et al., 2006). Two of the most
prominent alternative approaches are ICA and power spectrum
based methods such as ALFF and fALFF. Previously, no study has ex-
amined the effect of in-scanner motion on either of these methods.
In ICA of fcMRI data, the most common approach is TC-GICA, where
all subjects' timeseries data are first temporally concatenated prior
to performing a group-level ICA (Beckmann et al., 2005; Calhoun et
al., 2001). Typically, multiple components resulting from TC-GICA
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Fig. 5. Relationship between age and in-scanner head motion. (A) Relative mean displacement by age of the complete original sample of 456 subjects. (B) Relationship between
exclusion threshold and% of sample retained (blue) and the correlation between age and motion at that threshold (red). As the exclusion threshold is made more stringent, the
correlation between age and motion is reduced, but study sample size is also reduced. (C) Scatterplot showing the relationship between age and motion in the age/motion-related
subsample, where only subjects with gross motion (>0.55 mmmean relative displacement) were removed. Even with the exclusion of subjects with gross motion, age and motion
were correlated. (D) Scatterplot showing the relationship between age and motion in the age/motion-unrelated subsample; subject age and motion were uncorrelated in this
sample.

630 T.D. Satterthwaite et al. / NeuroImage 60 (2012) 623–632
are “noise” components, usually attributed to in-scanner motion or
non-neuronal physiological signals arising from respiration or cardio-
vascular pulsations (Damoiseaux et al., 2006). As noise signals are
split off into their own components, it has been postulated that ICA
analyses may be less vulnerable to motion artifact; indeed, ICA has
been used for single-subject denoising of artifactual signals induced
by motion (Kochiyama et al., 2005; Liao et al., 2006).

However, TC-GICA does not provide an estimate of a given com-
ponent's strength in an individual subject, which is often of interest
for analyses of individual or between group-differences. In one ap-
proach that was implemented in this study, the strength of a
group-level ICA component map is estimated in an individual sub-
ject using a two-stage spatio-temporal regression (“dual-regres-
sion”; Biswal et al., 2010; Filippini et al., 2009; Zuo et al., 2010b).
However, this process ultimately treats the group ICA components
as a complex, weighted seeds in a multiple regression not unlike
Fig. 6. Effect of motion on estimates of age-related connectivity change from a posterior cin
subject age was associated with increased connectivity between the PCC and the MPFC (A). T
a confound regressor in the group level analysis (B) or when the age/motion-unrelated subsa
nectivity was reduced substantially when motion was taken into account (D).
traditional seed based methods, rendering the approach similarly
vulnerable to systematic influence by in-scanner head motion. Our
results indicate that motion had a marked impact on connectivity es-
timates produced by dual-regression ICA (Fig. 3). While our results
establish the effects of motion on dual-regression ICA, it should be
noted that other methods exist for estimating component strength
in individual subjects (Erhardt et al., 2011); future work is necessary
to evaluate the relative susceptibility of different methods to the
confounding effects of motion.

Power-spectrum metrics such as the amplitude of low-frequency
fluctuation (ALFF) and the related fractional amplitude of low-
frequency fluctuation (fALFF) represent a qualitatively different ap-
proach from either seed based analyses or ICA (Yang et al., 2007;
Zang et al., 2007; Zou et al., 2008, 2010b). Development of these
methods was based on the original observation that most resting-
state functional connectivity occurs at very low frequency (typically
gulate seed. In a sample of 421 subjects where age and motion were related, increasing
his effect, while still significantly present, was attenuated when motion was included as
mple of 348 subjects was used (C). The correlation of age with pairwise PCC-MPFC con-
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b0.1 Hz) (Biswal et al., 1995). Subsequent reports illustrated that re-
gions with a high ALFF/fALFF are typically cortical regions that also
tend to have high levels of functional connectivity. Both ALFF and
fALFF have been found to have good test-retest reliability (Zuo et
al., 2010a). Thus, ALFF and fALFF provide voxelwise measures of the
power of low-frequency oscillations, at a fraction of the processing
time required for voxelwise connectivity analysis using traditional
pairwise comparisons (Buckner et al., 2009; van den Heuvel et al.,
2008). Due to such considerations, ALFF and fALFF have been increas-
ingly used as part of both large-scale neuroimaging efforts and smal-
ler studies of psychopathology (Biswal et al., 2010; Zuo et al., 2010a).
However, the influence of head motion on ALFF or fALFF has not pre-
viously been investigated. We found that motion has an impact on
ALFF but an even more marked influence on fALFF, reducing it
throughout the cortex (Fig. 4). This may occur in part because motion
introduces high-frequency artifact into the data, altering the ratio of
low frequency to high frequency signal that fALFF represents.

Implications for studies of neurodevelopment in youth

In-scanner head motion is particularly relevant for studies of neu-
rodevelopment (Church et al., 2010). Although it is intuitively obvi-
ous, to our knowledge this study is the first to demonstrate that in-
scanner motion is inversely correlated with subject age in youth
(Fig. 5). Accordingly, the average motion in this sample was higher
than studies of adults such as Van Dijk et al. (2011); however, subject
motion was quite similar to previously published report studying
youth (Fair et al., 2008). The relationship between age and motion
was present despite the use of multiple measures to reduce motion
during data acquisition, including a mock-scanning procedure with
real-time feedback as well as physical head stabilization. Importantly,
this confound cannot practically be dealt with by simply excluding
subjects with gross motion: in the sample of 421 subjects where
gross motion was excluded using a typical threshold, mean relative
displacement was still highly related to age (Fig. 5C). Furthermore,
use of a lower threshold does not obviate this confound, as motion
was related to age above all but the most conservative (0.07 mm) ex-
clusion threshold. The use of progressively more stringent exclusion
thresholds is a relatively undesirable strategy, as it reduces sample
size in a predictable fashion (Fig. 5B).

Prior studies of neurodevelopment in youth have reported effects
of age on connectivity that are qualitatively similar to the effects of
motion described here (Dosenbach et al., 2010; Fair et al., 2007,
2008). In particular, development has been associated with “segrega-
tion and integration” of brain networks, with advancing age being cor-
related with increased long-range within-network connectivity and
diminished short-range and out-of-network connectivity
(Dosenbach et al., 2010; Fair et al., 2007, 2008, 2009). Importantly,
these studies have rigorously matched age andmotion. However, pre-
vious investigations have not reported how motion might influence
estimates of the effect of subject age on connectivity. In order to di-
rectly investigate this, we compared connectivity between a PCC
seed and the rest of the brain in three analyses (suggested by Church
et al., 2010 and Van Dijk et al., 2011), including samples where age
and motion were unrelated, age and motion were related, and age
and motion were related but motion was regressed as a confound as
part of the group-level analysis (Fig. 6). Our findings replicate prior re-
ports of developing connectivity in youth (Dosenbach et al., 2010; Fair
et al., 2009), demonstrating that increasing age is associated with en-
hanced long-range connectivity (primarily between the PCC and
MPFC) and diminished out-of-network (primarily short-range) con-
nectivity. However, descriptive comparison of age-motion related,
unrelated, and regressed samples demonstrated that the effect of age
in the age/motion-related sample was nearly double the effect seen
in the unrelated or regressed samples. These results are the direct con-
sequence of the fact that motion and age can produce similar effects,
and caution that not accounting for motion in studies of development
will lead to inflated estimates of the effect of age.

Conclusions, limitations, and future directions

This study establishes that in-scanner motion impacts functional
connectivity as measured by multiple common types of analyses.
This is a particularly problematic confound for studies where motion
is related to the effect of interest. While here we focused on the rele-
vance of this issue for studies of neurodevelopment in youth, this
problem is likely to also impact studies of psychopathology where
disease state or symptom load may be associated with increased (or
decreased) motion. This confound is particularly pernicious for stud-
ies where a diminished ability to remain still is inherently an effect of
interest (e.g., attention-deficit hyperactivity disorder). In such situa-
tions, it may be difficult or even impossible to disentangle the con-
founding effects of motion from the effect of interest. In other
situations, the effect of motion may be accounted for using matching
or regression. Notably, two recent studies by Zuo et al. (2010a,b,c,
2011) explicitly accounted for both linear effects of motion and
higher-order effects (such as the temporal derivative of motion) in
their group-level regression model. Further exploration of higher-
order summary measures of motion is needed in future work. None-
theless, both matching and regression approaches have their own
limitations. Matching may introduce a new confound by potentially
selecting for non-representative sub-populations. For example, by
comparing unusually still children to relatively more motion-prone
adults, potentially important developmental effects of interest may
be obscured. Similarly, regression will reduce the ability to detect a
significant effect in direct proportion to the strength of the correlation
between motion and the effect of interest.

Notably, both motion matching and regression can only hope to
control for linear effects. Van Dijk et al. demonstrated the presence
of nonlinear effects in certain analyses, but not others. Replicating
their results in part, we similarly did not find evidence for nonlinear
effects on average frontoparietal network and default mode network
connectivity. In addition, we did not find significant nonlinearities in
the influence of motion on network modularity or average gray-mat-
ter ALFF/fALFF. The data from this study and Van Dijk et al. suggest
that the presence of nonlinear effects may in some part be due to
the spatial location of network nodes. Further work is needed to fur-
ther define what nodes and pairwise relationships are most suscepti-
ble to nonlinear effects of motion.

Moving forward, as articulated previously (Van Dijk et al., 2011), a
more desirable approach would not just account for motion but also
reduce its occurrence in the scanner, and deploy processing tech-
niques that minimize its effects. Improvements in modeling the effect
of motion on the BOLD signal remain an active area of research (Jo et
al., 2010; Tohka et al., 2008). In particular, given the results presented
here, further mechanistic understanding of how motion impacts con-
nectivity is necessary to model it more effectively.

In summary, the results of this study highlight the confounding ef-
fects of motion on common analyses of functional connectivity. They
suggest that motion should be explicitly reported and accounted for
in any comparison of connectivity between groups or across individ-
uals. Such effects are of particular importance for studies of neurode-
velopment in youth, where age and motion are highly correlated. A
failure to account for the effects of motion may result in inflated esti-
mates of connectivity change with age.

Supplementary materials related to this article can be found on-
line at doi:10.1016/j.neuroimage.2011.12.063.
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