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A B S T R A C T

Since initial reports regarding the impact of motion artifact on measures of functional connectivity, there has
been a proliferation of participant-level confound regression methods to limit its impact. However, many of the
most commonly used techniques have not been systematically evaluated using a broad range of outcome
measures. Here, we provide a systematic evaluation of 14 participant-level confound regression methods in 393
youths. Specifically, we compare methods according to four benchmarks, including the residual relationship
between motion and connectivity, distance-dependent effects of motion on connectivity, network identifiability,
and additional degrees of freedom lost in confound regression. Our results delineate two clear trade-offs among
methods. First, methods that include global signal regression minimize the relationship between connectivity
and motion, but result in distance-dependent artifact. In contrast, censoring methods mitigate both motion
artifact and distance-dependence, but use additional degrees of freedom. Importantly, less effective de-noising
methods are also unable to identify modular network structure in the connectome. Taken together, these results
emphasize the heterogeneous efficacy of existing methods, and suggest that different confound regression
strategies may be appropriate in the context of specific scientific goals.

Introduction

Resting-state (intrinsic) functional connectivity (rsfc-MRI) has
evolved to become one of the most common brain imaging modalities
(Craddock et al., 2013; Fox and Raichle, 2007; Power et al., 2014b;
Smith et al., 2013; Van Dijk et al., 2010), and has been critical for
understanding fundamental properties of brain organization
(Damoiseaux et al., 2006; Fox et al., 2005; Power et al., 2011; Yeo
et al., 2011), brain development over the lifespan (DiMartino et al.,
2014; Dosenbach et al., 2011; Fair et al., 2008), and abnormalities
associated with diverse clinical conditions (Baker et al., 2014; Buckner
et al., 2008; Fair et al., 2010). rsfc-MRI has numerous advantages,
including ease of acquisition and suitability for a wide and expanding

array of analysis techniques. However, despite knowledge that in-
scanner motion can influence measures of activation from task-related
fMRI (Friston et al., 1996), the impact of in-scanner motion on
measures of functional connectivity was not explored for 16 years after
its initial discovery (Biswal et al., 1995). However, since the near-
simultaneous publication of three independent reports in early 2012
(Van Dijk et al., 2012; Power et al., 2012; Satterthwaite et al., 2012), it
has been increasingly recognized that motion can have a large impact
on rsfc-MRI measurements, and can systematically bias inference. This
bias is particularly problematic in developmental or clinical popula-
tions where motion is correlated with the independent variable of
interest (age, diagnosis) (Satterthwaite et al., 2012; Fair et al., 2012),
and has resulted in the re-evaluation of numerous published findings.
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In response to this challenge, there has been a recent proliferation
of participant-level confound regression and censoring methods aimed
at mitigating the impact of motion on functional connectivity (Yan
et al., 2013a; Power et al., 2015). These methods can be broadly
grouped into several categories. First, high-parameter confound re-
gression strategies use expansions of realignment parameters or tissue-
compartment signals, often including derivative and quadratic regres-
sors (Friston et al., 1996; Satterthwaite et al., 2013; Yan et al., 2013a).
Second, principal component analysis (PCA) based methods
(CompCor; Behzadi et al., 2007; Muschelli et al., 2014) find the
primary directions of variation within high-noise areas defined by
anatomy (e.g., aCompCor) or temporal variance (tCompCor). Third,
whole-brain independent component analysis (ICA; Beckmann et al.,
2005) of single-subject time series has increasingly been used for de-
noising, with noise components selected either by a trained classifier
(ICA-FIX; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) or using
a priori heuristics (ICA-AROMA; Pruim et al., 2015a, 2015b). Fourth,
temporal censoring techniques identify and remove (or de-weight)
specific volumes contaminated by motion artifact, often followed by
interpolation. These techniques include scrubbing (Power et al., 2012,
2014a, 2015), spike regression (Satterthwaite et al., 2013), and de-
spiking (Jo et al., 2013; Patel et al., 2014). Censoring techniques have
been reported to attenuate motion artifact, but at the cost of a shorter
time series and variably reduced degrees of freedom. Fifth, one recent
report emphasized the relative merits of spatially-tailored confound
regression using local white matter signals (wmLocal; Jo et al., 2013).
Finally, the inclusion of global signal regression (GSR) (Macey et al.,
2004) in confound regression models remains a source of controversy
(Fox et al., 2009; Murphy et al., 2009; Chai et al., 2012; Saad et al.,
2012; Yan et al., 2013b; Murphy, in press). While several studies have
suggested its utility in de-noising (Fox et al., 2009; Power et al., 2015;
Satterthwaite et al., 2013; Yan et al., 2013a), other studies have
emphasized the risk of removing a valuable signal (Yang et al., 2014;
Hahamy et al., 2014), potentially biasing group differences (Gotts et al.,
2013; Saad et al., 2012), or exacerbating distance-dependent motion
artifact. Distance-dependent artifact (Power et al., 2012; Satterthwaite
et al., 2012) manifests as increased connectivity in short-range con-
nections, and reduced connectivity in long-range connections, which
has the potential to impact measures of network topology (Yan et al.,
2013b).

Substantial additional work has moved beyond use of realignment
parameters and timeseries signal as regressors. Specifically, recent
work has suggested that techniques such as MotSim may potentially
track more signal variance related to motion (Patriat et al., 2017).
Furthermore, while initial work suggested that voxel-wise motion
regressors were not advantageous, work by Spisák et al. (2014)
suggests that such information can be successfully utilized.
Additionally, one paper evaluated the impact of motion on timeseries
smoothness (Scheinost et al., 2014), and suggested that uniform
smoothing may ameliorate artifact. Finally, recent work has proposed
geometric techniques for correcting motion artifact (e.g., median angle
correction) (He and Liu, 2012) and investigated prospective correction
techniques (Faraji-Dana et al., 2016).

This recent proliferation of de-noising techniques has prompted
excitement but also sowed confusion. Unsurprisingly, new de-noising
pipelines have often tended to emphasize outcome measures that
suggest their relative superiority. As a result, investigators often
anecdotally report substantial uncertainty regarding which pipeline
should be used. Such uncertainty has been exacerbated by the lack of
common outcome measures used across studies, which has hampered
direct comparison among pipelines. While one review paper has
summarized recent developments in this rapidly-evolving sub-field
(Power et al., 2015), systematic evaluation of de-noising pipelines
according to a range of benchmarks remains lacking.

Several prior papers have compared some of these confound
regression strategies on selected benchmark measures. For example,

Yan and colleagues evaluated a range of de-noising strategies based on
realignment parameters (e.g., 6P, 12P, 24P), scrubbing, and GSR (Yan
et al., 2013c). Subsequently, Pruim et al. (2015a) compared ICA-
AROMA to the 24-parameter model, scrubbing, and aCompCor, among
other techniques. Building on such work, Burgess et al. (2016)
examined the relative added value of mean grayordinate time series
regression, which is similar to GSR, as an addition to ICA-based de-
noising (ICA-FIX). However, prior work has not directly evaluated
several of the most commonly implemented de-noising methods, which
combine high-parameter confound regression, GSR, and censoring.

Accordingly, in this report we compare 14 of the most commonly
used confound regression strategies in a large (N=393) dataset of
adolescents and young adults. Pipelines evaluated include standard
techniques, high-parameter confound regression, PCA-based techni-
ques such as aCompCor and tCompcor, ICA-based approaches such as
ICA-AROMA, spatially-tailored local white matter regression, and
three different censoring techniques (spike regression, de-spiking,
and scrubbing); GSR is included in many pipelines as well. It should
be emphasized that this is not a comprehensive evaluation of all
artifact-control strategies in use, and that models evaluated were
limited to a subset of those commonly used at present. Critically, we
compare these pipelines according to four intuitive benchmarks,
including the residual relationship between functional connectivity
and subject motion, the degree of distance-dependent artifact, the
identifiability of network structure after de-noising, and the loss of
temporal degrees of freedom. As described below, results underscore
the relative strengths and weaknesses among these methods, and
reveal clear trade-offs among commonly used confound regression
approaches.

Materials and methods

Participants and data acquisition

The task-free BOLD data used in this study (N=393) were drawn
from the Philadelphia Neurodevelopmental Cohort (PNC)
(Satterthwaite et al., 2014, 2016) on the basis of age, health, and data
quality. All participants selected for evaluation were ages 8-22, were
free from medical conditions that could impact brain function
(Merikangas et al., 2010), lacked gross structural brain abnormalities
(Gur et al., 2013), were not taking psychotropic medication at the time
of the scan, and had high quality imaging data free of gross motion. In
total, N=84 (44 females) participants were not included in this sample
due to gross motion, defined as a mean relative RMS (root mean
squared) displacement >0.2 mm, or >20 volumes with framewise
relative RMS displacement >0.25 mm. The exclusion of participants
with gross in-scanner motion allowed us to evaluate the utility of
confound regression strategies for the mitigation of artifact due to
micro-movements.

Structural and functional subject data were acquired on a 3 T
Siemens Tim Trio scanner with a 32-channel head coil (Erlangen,
Germany), as previously described (Satterthwaite et al., 2014, 2016).
High-resolution structural images were acquired in order to facilitate
alignment of individual subject images into a common space.
Structural images were acquired using a magnetization-prepared,
rapid-acquisition gradient-echo (MPRAGE) T1-weighted sequence
(T = 1810 msR ; T = 3.51 msE ; FoV = 180 × 240 mm; resolution 1 mm
isotropic). Approximately 6 minutes of task-free functional data were
acquired for each subject using a blood oxygen level-dependent
(BOLD-weighted) sequence (T = 3000 msR ; T = 32 msE ;
FoV = 192 × 192 mm; resolution 3 mm isotropic; 124 spatial volumes).
Prior to scanning, in order to acclimate subjects to the MRI environ-
ment and to help subjects learn to remain still during the actual
scanning session, a mock scanning session was conducted using a
decommissioned MRI scanner and head coil. Mock scanning was
accompanied by acoustic recordings of the noise produced by gradient
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coils for each scanning pulse sequence. During these sessions, feedback
regarding head movement was provided using the MoTrack motion
tracking system (Psychology Software Tools, Inc, Sharpsburg, PA).
Motion feedback was only given during the mock scanning session. In
order to further minimize motion, prior to data acquisition subjects'
heads were stabilized in the head coil using one foam pad over each ear
and a third over the top of the head. During the resting-state scan, a
fixation cross was displayed as images were acquired. Subjects were
instructed to stay awake, keep their eyes open, fixate on the displayed
crosshair, and remain still.

Structural image processing

A study-specific template was generated from a sample of 120 PNC
subjects balanced across sex, race, and age bins using the
buildTemplateParallel procedure in ANTs (Avants et al., 2011a).
Study-specific tissue priors were created using a multi-atlas segmenta-
tion procedure (Wang et al., 2014). Next, each subject's high-resolution
structural image was processed using the ANTs Cortical Thickness
Pipeline (Tustison et al., 2014). Following bias field correction
(Tustison et al., 2010), each structural image was diffeomorphically
registered to the study-specific PNC template using the top-performing
SyN deformation (Klein et al., 2009). Study-specific tissue priors were
used to guide brain extraction and segmentation of the subject's
structural image (Avants et al., 2011b).

BOLD time series processing

Task-free functional images were processed using the XCP Engine
(Ciric et al., In Preparation), which was configured to support the 14
pipelines evaluated in this study (see Fig. 1). Each pipeline was based
on de-noising strategies previously described in the neuroimaging
literature. A number of preprocessing procedures were included across
all de-noising pipelines. Common elements of preprocessing included
(1) correction for distortions induced by magnetic field inhomogene-
ities using FSL's FUGUE utility, (2) removal of the 4 initial volumes of
each acquisition, (3) realignment of all volumes to a selected reference
volume using MCFLIRT (Jenkinson et al., 2002), (4) demeaning and
removal of any linear or quadratic trends, (5) co-registration of
functional data to the high-resolution structural image using bound-
ary-based registration (Greve and Fischl, 2009), and (6) temporal
filtering using a first-order Butterworth filter with a passband between
0.01 and 0.08 Hz. We did not apply slice timing correction during
preprocessing, as recent data suggest that the interpolation that occurs
may artificially reduce motion estimates (Power et al., under review).
These preliminary processing stages were then followed by the
confound regression procedures described below. In order to prevent
frequency-dependent mismatch during confound regression (Hallquist
et al., 2013), all regressors were band-pass filtered to retain the same
frequency range as the data. As in our prior work (Satterthwaite et al.,
2012, 2013), the primary summary metric of subject motion used was
the mean relative RMS (root-mean-squared) displacement calculated
during time series realignment using MCFLIRT.

Overview of confound regression strategies

The primary objective of the current study was to evaluate the
performance of common de-noising strategies. We selected 14 de-
noising models, labelled 1–14 below, for evaluation (Fig. 1). Models
1–5 used nuisance parameters derived from 6 movement estimates
and 3 physiological time series, as well as their temporal derivatives
and quadratic expansions.

• Model 1. (2P) Used only the 2 physiological time series: mean
signal in WM and mean signal in CSF, and functioned as a base
model for comparison to other more complex confound regression

models.

• Model 2. (6P) Used only the 6 motion estimates derived from
MCFLIRT realignment as explanatory variables.

• Model 3. (9P) Combined the 6 motion estimates and 2 physiolo-
gical time series with global signal regression. This model has been
widely applied to functional connectivity studies (Fox et al., 2005,
2009).

• Model 4. (24P) Expansion of model 2 that includes 6 motion
parameters, 6 temporal derivatives, 6 quadratic terms, and 6
quadratic expansions of the derivatives of motion estimates for a
total 24 regressors (Friston et al., 1996).

• Model 5. (36P) Similar expansion of model 3: 9 regressors, their
derivatives, quadratic terms, and squares of derivatives
(Satterthwaite et al., 2013).

Models 6–8 further expanded upon this 36P strategy by incorpor-
ating censoring approaches.

• Model 6. (36P+despike) Included 36 regressors as well as despik-
ing (Cox, 1996).

• Model 7. (36P+spkreg) Included 36 regressors as well as spike
regression, as in Satterthwaite et al. (2013).

• Model 8. (36P+scrub) Included 36 regressors as well as motion
scrubbing, as in Power et al. (2014a).

Models 9 and 10 adapted variants of the PCA-based CompCor
approach.

• Model 9. (aCompCor) Used 5 principal components each from the
WM and CSF, in addition to motion estimates and their temporal
derivatives (Muschelli et al., 2014).

• Model 10. (tCompCor) Used 6 principal components from high-
variance voxels (Behzadi et al., 2007).

Models 11 and 12 comparatively evaluated the efficacy of local and
global-mean tissue-class regressors.

• Model 11. (wmLocal) Used a voxelwise, localised WM regressor in
addition to motion estimates and their temporal derivatives and
despiking (Jo et al., 2013).

• Model 12. (wmMean) Identical to model 11 except that it used the
mean signal across the WM instead of a voxelwise, localised WM
regressor (Jo et al., 2013).

Models 13 and 14 evaluated subhect-specific ICA de-noising.

• Model 13. (ICA-AROMA) Used a recently developed ICA-based
procedure for removal of motion-related variance from BOLD data,
together with mean WM and CSF regressors (Pruim et al., 2015a,
2015b).

• Model 14. (AROMA+GSR) Combined ICA-AROMA as implemen-
ted in model 13 with global signal regression, in a procedure
somewhat analogous to Burgess et al. (2016).

We explicitly limited our scope to models that did not require
training a classifier, and did not evaluate confound regression strate-
gies that require extensive parameter optimization (Salimi-Khorshidi
et al., 2014, Griffanti et al., 2014; Patel et al., 2014). Furthermore, in
order to constrain the parameter space, we did not examine unpub-
lished combinations of de-noising approaches.

Confound regression using realignment parameters
Time series of six realignment parameters (three translational and

three rotational) for each subject were returned by MCFLIRT as part of
time series realignment (motion correction). Additionally, the temporal
derivative, quadratic terms, and quadratic of the temporal derivative of
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each of the realignment parameters were calculated, yielding 24
realignment regressors in total. The original six realignment para-
meters were included in confound regression models 2 and 3. Models
9 and 11 included 12 realignment regressors – the 6 realignment
parameters and their temporal derivatives – while the full set of 24
expanded realignment regressors were included as part of confound
regression models 4–8.

Global signal regression
The mean global signal was computed by averaging across all

voxelwise time series located within a subject-specific mask covering
the entire brain. The global signal was included in model 3, while the
expanded models 5–8 included 4 global signal regressors: the global
signal, its derivative, its square, and the derivative of its square.

Tissue class regressors
Mean white matter (WM) and cerebrospinal fluid (CSF) signals

were computed by averaging within masks derived from the segmenta-
tion of each subject's structural image; these masks were eroded using
AFNI's 3dmask_tool (Cox, 1996) to prevent inclusion of gray matter
signal via partial-volume effects. The WM mask was eroded at the 2-
voxel level, while the CSF mask was eroded at the 1-voxel level. More
liberal erosion often resulted in empty masks. Temporal derivatives,
quadratic terms, and squares of the derivative were computed as above.
Two tissue class regressors (WM and CSF) were included in models 3
and 12, whereas their expansions (8 regressors) were included in
models 4–8.

Local white matter regression
Model 11 used a local WM regressor (Jo et al., 2013). This was

computed in AFNI using 3dLocalstat (Cox, 1996). Unlike the regres-
sors described above, which were voxel-invariant, the value of the local
WM regressor was computed separately at each voxel. For each voxel, a
sphere of radius 45 mm was first centered on that voxel; this sphere
defined that voxel's local neighborhood. Next, this spherical neighbor-
hood was intersected with an eroded WM mask to produce a local WM
mask, which included only the fraction of the WM that was also in the
voxel's neighborhood. The mean signal within this new local WM mask
was then used to model the local WM signal at the voxel (Jo et al.,
2013). This process was repeated at every voxel in order to generate the
local WM regressor. This local WM regressor was included in model 11
along with realignment parameters and their derivatives (12 total); this

model also included voxelwise de-spiking. In order to evaluate the
efficacy of this local regressor in comparison with a more typical mean
tissue regressor, model 12 was identical to model 11 with a mean WM
regressor substituting for the local WM regressor.

CompCor
Principal component analysis (PCA) can be used to model noise in

BOLD time series (Behzadi et al., 2007; Muschelli et al., 2014).
Broadly, the use of PCA-derived regressors to model noise is called
component-based correction (CompCor). Numerous variants of
CompCor have been developed; here, our focus will be on anatomical
CompCor (aCompCor, model 9) and temporal CompCor (tCompCor,
model 10). In aCompCor, a PCA is performed within an anatomically
defined tissue class of interest. We extracted 5 components for WM and
CSF each, yielding 10 compcor components (Muschelli et al., 2014). As
part of model 9, as in Muschelli et al. (2014), these 10 aCompCor
components were combined with 12 re-alignment parameters (raw and
temporal derivative). In tCompCor, the temporal variance of the BOLD
signal is first computed at each voxel. Subsequently, a mask is
generated from high-variance voxels, and principal components are
extracted from the time series at these voxels. In confound regression
model 10, tCompcor was implemented using ANTs, with 6 tCompCor
components used as confound regressors for each participant.

ICA-AROMA
ICA-AROMA (automatic removal of motion artifact) is a recently-

introduced, widely-used method for de-noising using single-subject
ICA (Pruim et al., 2015a, 2015b); we evaluated ICA-AROMA in
confound regression models 13 and 14. In contrast to other ICA
based methods (e.g., ICA-FIX: Salimi-Khorshidi et al. (2014)), it does
not require dataset-specific training data. The input to ICA-AROMA is
a voxelwise time series that has been smoothed at 6 mm FWHM using
a Gaussian kernel. After decomposing this time series using FSL's
MELODIC (with model order estimated using the Laplace approximation)
(Beckmann et al., 2005), ICA-AROMA uses four features to determine
whether each component corresponds to signal or noise. The first 2
features are spatial characteristics of the signal source: (1) the fraction
of the source that falls within a CSF compartment and (2) the fraction
of the source that falls along the edge or periphery of the brain. The
remaining features are derived from the time series of the source: (3)
its maximal robust correlation with time series derived from realign-
ment parameters and (4) its high-frequency spectral content. ICA-

Fig. 1. Schematic of the 14 de-noising models evaluated in the present study. For each of the 14 models indexed at left, the table details what processing procedures and confound
regressors were included in the model. De-noising models were selected from the functional connectivity literature and represented a range of strategies.
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AROMA includes two de-noising steps. The first de-noising step occurs
immediately after classification. All component time series (signal and
noise) are included as predictors in the linear model, and the residual
BOLD time series is obtained via partial regression of only the noise
time series. A second confound regression step occurs after temporal
filtering, wherein mean signals from WM and CSF (models 13 and 14)
and the global signal (model 14 only) were regressed from the data.

Temporal censoring: de-spiking, spike regression, and scrubbing
In addition to regression of nuisance time series, a number of

‘temporal censoring’ approaches were used to identify motion-con-
taminated volumes in the BOLD time series and reduce their impact on
further analysis. These approaches included despiking, spike regres-
sion, and scrubbing. Despiking is a procedure that identifies outliers in
the intensity of each voxel's detrended BOLD time series and then
interpolates over these outliers. Despiking was implemented in AFNI
using the 3dDespike utility (Cox, 1996) as part of confound regression
model 6.

Unlike despiking, which identifies outliers on a voxelwise basis,
spike regression and scrubbing censor complete volumes based on
metrics of subject movement defined a priori. For spike regression, as
in Satterthwaite et al. (2013), volumes were flagged for spike regression
if their volume-to-volume RMS displacement exceeded 0.25 mm. Next,
as part of confound regression model 7, k ‘spike’ regressors were
included as predictor variables in the de-noising model, where k
equalled the number of volumes flagged (Satterthwaite et al., 2013).
For each flagged time point, a unit impulse function that had a value of
1 at that time point and 0 elsewhere was included as a spike regressor.

For scrubbing, the framewise displacement (FD) (Power et al.,
2012) was computed at each time point as the sum of the absolute
values of the derivatives of translational and rotational motion
estimates. If framewise displacement (FD) at any point in time
exceeded 0.2 mm, then that time point was flagged for scrubbing. It
should be noted that the conversion of FD to RMS displacement is
approximately 2:1, and thus the published criterion for scrubbing has a
lower threshold for flagging high-motion volumes than does spike
regression. Scrubbing of BOLD data was performed iteratively (Power
et al., 2014a) as part of confound regression model 8. At any stage
where a linear model was applied to the data (for instance, during
detrending procedures), high-motion epochs were temporally masked
out of the model so as not to influence fit. During temporal filtering, a
frequency transform was used to generate surrogate data with the same
phase and spectral characteristics as the unflagged data. This surrogate
data was used to interpolate over flagged epochs prior to application of
the filter. During confound regression, flagged timepoints were excised
from the time series so as not to contribute to the model fit. For
scrubbing (but not spike regression) if fewer than five contiguous
volumes had unscrubbed data, these volumes were scrubbed and
interpolated as well.

Overview of outcome measures

We evaluated each de-noising pipeline according to four bench-
marks. Residual QC-FC correlations and distance-dependence pro-
vided a metric of each pipeline's efficacy, while loss of temporal DOF
provided an estimate of each pipeline's efficiency. Finally, the mod-
ularity quality provided an estimate of network identifiability after de-
noising.

Relationship between mean relative RMS displacement and functional
connectivity (QC-FC correlations)

In order to estimate the residual relationship between subject
movement and connectivity after de-noising, we computed QC-FC
correlations (quality control / functional connectivity) (Power et al.,
2015; Satterthwaite et al., 2012, 2013; Power et al., 2012). While other
metrics have been used in prior reports, including FD-DVARS correla-

tions, we favor QC-FC as the most useful metric of interest as it directly
quantifies the relationship between motion and the primary outcome of
interest (rather than two quality metrics, as in FD-DVARS). For an
extended discussion of the rationale for this measure, see Power et al.
(2015).

We evaluated QC-FC relationships within two commonly-used
whole-brain networks, the first consisting of spherical nodes distrib-
uted across the brain (Power et al., 2011) and the second comprising an
areal parcellation of the cerebral cortex (Gordon et al., 2016). For each
network, the mean time series for each node was calculated from the
denoised residual data, and the pairwise Pearson correlation coefficient
between node time series was used as the network edge weight (Biswal
et al., 1995). For each edge, we then computed the correlation between
the weight of that edge and the mean relative RMS motion. To
eliminate the potential influence of demographic factors, QC-FC
relationships were calculated as partial correlations that accounted
for participant age and sex. We thus obtained, for each de-noising
pipeline, a distribution of QC-FC correlations. This distribution was
used to obtain two measures of the pipeline's ability to mitigate motion
artifact, including: 1) the number of edges significantly related to
motion, which was computed after using the false discovery rate (FDR;
Benjamini and Hochberg, 1995) to account for multiple comparisons;
and 2) the median absolute value of all QC-FC correlations. All graphs
were generated using ggplot2 in R version 3.2.3 (Wickham, 2009);
brain renderings were prepared in BrainNet Viewer (Xia et al., 2013).

Distance-dependent effects of motion
Early work on motion artifact demonstrated that in-scanner motion

can bias connectivity estimates between two nodes in a manner that is
related to the distance between those nodes (Satterthwaite et al., 2012;
Power et al., 2012). Under certain processing conditions, subject
movement enhances short-distance connections while reducing long-
distance connections. To determine the residual distance-dependence
of subject movement, we first used the center of mass of each node to
obtain a distance matrix D where entry Dij indicates the Euclidean
distance between the centers of mass of nodes i and j. We then obtained
the correlation between the distance separating each pair of nodes and
the QC-FC correlation of the edge connecting those nodes; this
correlation served as an estimate of the distance-dependence of motion
artifact.

Network modularity
Including additional regressors in a confound model has the

potential to remove real signal in addition to motion-related noise. In
order to evaluate this possibility, we computed modularity quality (Q),
an explicit quantification of the degree to which there are structured
sub-networks in a given network, in this case the de-noised connec-
tome. Prior work has demonstrated a relationship between Q and
subject motion (Satterthwaite et al., 2012) that is mitigated by
participant-level de-noising approaches (Satterthwaite et al., 2013). If
confound regression and censoring were removing real signal in
addition to motion-related noise, we expect that Q would decline. To
determine Q, community detection was performed on each subject's
de-noised network using the Louvain heuristic (Blondel et al., 2008),
which partitions the connectome into sub-networks in a manner that
maximizes the value of Q. As functional connectomes included positive
and negative weights, we used a version of the Louvain algorithm that
accommodates signed data (Rubinov and Sporns, 2010), and did not
threshold connectivity matrices. Because this approach to community
detection is degenerate, a consensus partition was obtained over 100
Louvain optimizations (Lancichinetti and Fortunato, 2012). Finally,
the modularity quality of the resultant consensus partition was
estimated according to an established null model (Girvan and
Newman, 2002); the mean of Q values across subjects provided an
estimate of the sub-network definition still present in the connectome
after de-noising. Furthermore, we also assessed whether (and to what
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extent) Q was correlated with motion; to do this, we computed the
Pearson correlation coefficient between subjects' Q values and their
motion estimates. These relationships were computed as partial
correlations that accounted for participant age and sex.

Additional degrees of freedom lost in confound regression
Confound regressors and censoring both reduce the temporal

degrees of freedom (DOF) in data. This loss in temporal DOF may
introduce bias if it is variable across subjects. While removal of
temporal DOF reduces the number of observations that sample the
connectome, the current analysis is not biased by the concatenation of
temporally discontinuous time series (i.e., after censoring) because the
current analysis (1) uses a time-invariant measure of connectivity that
is not dependent on any temporal autocorrelation structure (i.e.,
Pearson correlation) and (2) applies any procedures that are dependent
upon temporal autocorrelation structure (e.g., temporal filtering) prior
to concatenation. De-noising strategies ideally limit the loss of tempor-
al DOF, for instance by including fewer, more efficacious regressors. In
the present study, we assessed the number of temporal DOF lost in
each confound regression approach.

As in previous work (Pruim et al., 2015a), we assumed that each
time series regressed out and each volume excised from the data
constituted a single temporal DOF. Consequently, the loss of temporal
DOF was estimated as the sum of the number of regressors in each
confound model and the number of volumes flagged for excision under
that model. It should be emphasized that the values thus obtained are
imperfect estimates. First, because functional MR time series typically
exhibit temporal autocorrelation, the actual loss in DOF will be less
than the estimated loss in DOF. Accordingly, censoring adjacent
volumes does not remove the same number of DOF as does censoring
volumes separated in time. Furthermore, a temporal bandpass filter
was uniformly applied to all data prior to confound regression; this
filtering procedure would itself have removed additional temporal DOF
and elevated the autocorrelation of the data. Because this filter was
uniform across all de-noising strategies, it was not considered when
estimating the loss of additional temporal DOF in each model.

Results

Heterogeneity in confound regression performance

Confound regression strategies typically remove some, but not all,
of the artifactual variance that head motion introduces into the BOLD
signal. The motion-related artifact that survives de-noising can be
quantified to provide a metric of pipeline performance. Here, our
primary benchmark of confound regression efficacy was the residual
relationship between brain connectivity and subject motion, or the QC-
FC correlation. We measured QC-FC correlations using two metrics:
the percentage of network connections where a significant relationship
with motion was present (Fig. 2), and the absolute median correlation
(AMC) between connection strength and head movement across all
connections (Fig. 3).

No preprocessing strategy was completely effective in abolishing the
relationship between head movement and connectivity. However,
different approaches exhibited widely varying degrees of efficacy. The
top four confound regression strategies included 36 parameters,
comprising an expansion of GSR, tissue-specific regressors (WM,
CSF), and realignment parameters. Beyond this base 36-parameter
model, all censoring techniques provided some additional benefit,
reducing the number of edges that were significantly related to motion
to less than 7%. Convergent results were present across both QC-FC
measures (% edges, AMC) and networks (Power, Gordon) that were
evaluated. The top-performing method, GSR+spike regression, yielded
<1% of edges that were significantly related to motion.

In contrast, many pipelines performed relatively poorly, leaving a
majority of network edges with a residual relationship with motion.

Specifically, 89% of edges were impacted by motion when the least
effective method was used (6 realignment parameters). The commonly
used 24-parameter expansion of realignment parameters originally
suggested by Friston et al. (1996) did not provide much of an
improvement (88% edges). Similarly, the local WM regressor model
(77% edges) and tCompCor 70% edges) also resulted in substantial
residual QC-FC correlations. In fact, these methods performed worse
than a basic 2-parameter model composed of mean WM and CSF
signals (44% edges). Notably, a local WM signal (77% edges) did not
provide any benefit over the mean WM signal (39% edges) according to
QC-FC metrics, and in fact performed considerably worse. Finally,
several methods demonstrated intermediate performance, with 1-20%
of edges impacted by motion. This middle group included methods as
disparate as aCompCor (13% edges), ICA-AROMA (28% edges), ICA-
AROMA with GSR (10% edges), and the classic 9-parameter confound
regression model which included GSR (13% edges).

Variability in distance-dependent motion artifact after confound
regression

Our second benchmark quantified the distance-dependent motion
artifact that was present in data processed by each pipeline (Fig. 4). We
observed that distance-dependence was present even under conditions
where artifact magnitude was attenuated. For example, though the 36-
parameter model was among the most effective in attenuating QC-FC
relationships, its application revealed strongly distance-dependent
artifact. Examination of graphs that plot QC-FC by Euclidean distance
(see Fig. 4C) revealed that this is due to effective mitigation of motion
artifact for long-range but not short-range connections.

Distance-dependence was highly prominent in models that in-
cluded GSR, but did not include censoring (e.g., 9-parameter and 36-
parameter models). However, despite the lack of global signal in the
aCompCor and tCompcor models, data returned from both of these
component-based approaches revealed substantial distance-dependent
artifact. Notably, inclusion of censoring consistently reduced distance-
dependence, although scrubbing was more effective than spike regres-
sion or voxelwise despiking.

The top performing method according to this benchmark was ICA-
AROMA, which completely abolished any distance-dependence of
residual motion artifact. In other words, the motion artifact that was
still present in the data after ICA-AROMA impacted all connections in a
manner that was not dependent on the spatial separation between
nodes. Augmenting ICA-AROMA with GSR decreased QC-FC correla-
tions but exposed distance-dependent artifact, suggesting that ICA-
AROMA did not completely remove long-distance motion artifact.

There was similar lack of distance-dependence in the wmLocal
model, although as noted above this model did not provide effective de-
noising according to QC-FC benchmarks. Use of a local tissue regressor
revealed less distance-dependent artifact than did the whole-tissue
regressor.

Confound regression strategies mitigate the impact of motion on
network modularity

We next evaluated the degree to which de-noising strategies
impacted sub-network identifiability, which was operationalized as
the network modularity quality (Q; Fig. 5). First and most notably, the
4 models that exhibited the poorest performance according to QC-FC
measures (6P, 24P, wmLocal, and tCompCor) also suffered from an
inability to identify structured functional sub-networks of the brain.
This suggests that motion artifact impedes network identifiability.
Second, the 36-parameter models did not uniformly out-perform lower
order models. However, addition of any of the three censoring
techniques evaluated (scrubbing, spike regression, or despiking) pro-
vided an improvement over and above the 36-parameter base model.
Third, both AROMA and aCompCor performed well, at levels similar to
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that observed for 36-parameter models with censoring. However,
addition of GSR to AROMA did not improve the observed Q value.
Fourth and finally, the top-performing model was in fact the 9P model,
which had a higher mean Q value than all 36-parameter models and
ICA-AROMA.

To ascertain whether network identifiability was systematically
impacted by motion, we also evaluated the correlation between
modularity quality and motion for each de-noising approach. In
general, 36-parameter models and ICA-based models most effectively
decoupled modular structure from subject motion, while models with
high residual QC-FC correlations likewise left high correlations be-
tween motion and modularity (Fig. 6). Notably, the 9P model that
displayed the highest mean Q value nonetheless retained a substantial
relationship with motion, as expected from the edgewise QC-FC
analyses. Furthermore, addition of GSR to AROMA successfully
reduced the relationship between motion and modularity.

Effective preprocessing strategies use many additional degrees of
freedom

Perhaps unsurprisingly, the preprocessing strategies that consis-
tently reduced both QC-FC correlations and distance-dependence were
also among the costliest in terms of loss of temporal degrees of freedom
(Fig. 7). By definition, the 36-parameter models included a high fixed
number of regressors. Furthermore, models that additionally included
censoring resulted in a substantial additional loss of data that varied
across subjects. (Because the 36P+despike model censors data in a
spatially adaptive manner, the DOF loss varied by voxel. Because of this
spatial variability, the DOF loss is not explicitly estimated for this
model.) ICA-AROMA also had a variable loss of DOF, but of a lower
magnitude than censoring or high-parameter confound regression.

Fig. 2. Number of edges significantly related to motion after de-noising. Successful de-noising strategies reduced the relationship between connectivity and motion. The number of
edges (network connections) for which this relationship persists provides evidence of a pipeline's efficacy. A, The percentage of edges significantly related to motion in a 264-node
network defined by Power et al. (2011). Fewer significant edges is indicative of better performance. B, The percentage of edges significantly related to motion in a second, 333-node
network defined by Gordon et al. (2016). C, Renderings of significant edges with QC-FC correlations of at least 0.2 for each de-noising strategy, ranked according to efficacy. Strategies
that include regression of the mean global signal are framed in blue and consistently ranked as the best performers.
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Discussion

In response to rapid evolution of confound regression strategies
available for the mitigation of motion artifact, in this report we
evaluated 14 commonly used pipelines. Results indicate that there is
substantial heterogeneity in the performance of these confound
regression techniques across all measures evaluated. The context,
implications, and limitations of these findings are discussed below.

Confound regression techniques have substantial performance
variability

We evaluated confound regression strategies according to four
intuitive benchmarks that were selected to capture different domains
of effectiveness. These included QC-FC associations, distance-depen-
dence of motion artifact, modularity quality and its association with
motion, and additional degrees of freedom lost in confound regression.
Across each benchmark, there was a striking heterogeneity in pipeline

performance. While no model completely abolished motion-related
variance, 36-parameter models with censoring (Satterthwaite et al.,
2013; Power et al., 2014a) performed well across a range of bench-
marks, as did ICA-AROMA with GSR.

Notably, in terms of limiting QC-FC relationships, the top six
confound regression approaches all included GSR. This effect was
consistent in both networks we evaluated. The effectiveness of GSR is
most likely due to the nature of motion artifact itself: in-scanner head
motion tends to induce widespread reductions in signal intensity across
the entire brain parenchyma (see Satterthwaite et al., 2013, Fig. 4). As
discussed in detail elsewhere (Power et al., 2016) this effect is highly
reproducible across datasets, and is effectively captured by time series
regression of the global signal.

For studies of individual difference where motion may be a
substantial confounding factor, our results clearly support the use of
models that utilize GSR. Across nearly every benchmark, models
without GSR underperformed relative to similar models that included
GSR. Whereas QC-FC correlations were relatively zero-centered for the

Fig. 3. Residual QC-FC correlations after de-noising. The absolute median QC-FC correlation is another measure of the relationship between connectivity and motion. A, The absolute
median correlation between functional connectivity and motion in a 264-node network defined by Power et al. (2011). A lower absolute median correlation indicates better performance.
B, The absolute median correlation between functional connectivity and motion in a second, 333-node network defined by Gordon et al. (2016). C, Distributions of all edgewise QC-FC
correlations after each de-noising strategy, ranked according to efficacy. Results largely recapitulated those reported in Fig. 2, with GSR-based approaches (blue frame) collectively
exhibiting the best performance. Whereas approaches that included more regressors generally yielded a narrower distribution, those approaches that included GSR tended to shift the
distribution's center toward 0.

R. Ciric et al. NeuroImage 154 (2017) 174–187

181



case of GSR-based models, most models that omitted GSR – but
particularly those that included realignment parameters alone –

exhibited distributions that were shifted strongly to the right.
Furthermore, augmentation of GSR-based models using either scrub-
bing or ICA-AROMA yielded better performance than RP-based models
across all benchmarks. Thus, while our results cannot advocate for any
single model in all scenarios, they suggest that (1) GSR is likely to be
the single most efficacious strategy for de-noising and (2) RP-based
models are comparably ineffective at de-noising. These results are
convergent with recent data regarding the role of motion and physio-
logical artifact in global signal (Power et al., 2016).

Beyond GSR, a second strategy that clearly minimizes QC-FC
relationships is temporal censoring. We evaluated three censoring
variants, including scrubbing, spike regression, and de-spiking.
Compared to spike regression and de-spiking, scrubbing appears to
be more effective in removing distance-dependent artifact in this

dataset. This is most likely due to the explicit tension between data
quality and data quantity: because of the lower threshold for scrubbing
than spike regression (due to differences in FD vs. RMS measures of
motion; see Fig. 9C in Yan et al. (2013a)), more low-quality data was
excised during scrubbing. Furthermore, scrubbing includes a criterion
to not leave isolated epochs (<5 volumes) of un-scrubbed data.
Consequently, this leads to clear differences in the additional degrees
of freedom lost by each method. In contrast to spike regression and
scrubbing, which eliminate high motion volumes completely, time
series de-spiking identifies and interpolates large changes in signal
intensity on a voxelwise basis (Cox, 1996). This allows for spatial
adaptivity (see Patel et al., 2014) but also renders quantification of data
loss and comparisons with volume-based censoring techniques more
difficult.

Loss of temporal degrees of freedom should be interpreted with
caution because temporal DOF may correspond in part or in whole to

Fig. 4. Distance-dependence of motion artifact after de-noising. The magnitude of motion artifact varies with the Euclidean distance separating a pair of nodes, with closer nodes
generally exhibiting greater impact of motion on connectivity. A, The residual distance-dependence of motion artifact in a 264-node network defined by Power et al. (2011) following
confound regression. B, The residual distance-dependence of motion artifact in a second, 333-node network defined by Gordon et al. (2016). C, Density plots indicating the relationship
between the Euclidean distance separating each pair of nodes (x-axis) and the QC-FC correlation of the edge connecting those nodes (y-axis). The overall trend lines for each de-noising
strategy, from which distance-dependence is computed, are indicated in red. For each plot, the ordinate is rescaled to the data; thus, the ordinate does not reflect the width of the
distribution of QC-FC correlations. (The same data is plotted to a common ordinate in Supplemental Fig. 1.) The best performing models either excised high-motion volumes (36-
parameter + scrubbing) or used more localized regressors (ICA-AROMA and wmLocal). In general, approaches that made use of GSR without censoring resulted in substantial distance-
dependence. This effect was driven by differential efficacy of de-noising, with effective de-noising for long range connections but not short-range connections.
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artifactual sources rather than signal of interest. For example, although
removal of volumes contaminated by motion via censoring results in
reduced temporal DOF, it improves network identification relative to
the same model without any censoring. This can be explained by
considering that the temporal DOF in each time series can be either
“primarily signal” or “primarily noise” DOF; the DOF that censoring
removes are primarily noise, and their removal thus increases the
overall signal-to-noise ratio of the time series.

Another DOF-related concern about motion censoring is the
potential for variable loss of temporal DOF to bias group-level analyses.
One proposed solution involves excising a uniform number of volumes
from all subject time series, regardless of the number of motion-
contaminated frames. However, if motion results in more “noise” DOF,
then the number of useful “signal” DOF is variable from the start. The
extent to which each de-noising strategy removes temporal DOF
(through either confound regression or volume excision) should thus
not be considered in isolation, but in concert with the ability of that
strategy to identify meaningful signal in the data, for instance as
evidenced by the network identifiability benchmark.

Critically, while both GSR and censoring appeared effective in
minimizing QC-FC relationships, they exhibited opposite effects on

distance-dependence. While censoring techniques appear to consis-
tently reduce the presence of distance-dependence, GSR is associated
with increased distance-dependence. Thus, commonly used models
that include GSR (9-parameter, 36-parameter) have among the great-
est distance-dependence of the models we evaluated. However, it
should be emphasized that the distance-dependence associated with
GSR is not the result of worsening associations with motion in certain
connections. Rather, the distance-dependence seen with GSR stems
from differential de-noising efficacy, whereby motion artifact is more
effectively minimized for long-distance connections than for short-
range connections. Certain models such as the local WM regression
approach (Jo et al., 2013) thus have minimal distance-dependence, but
this is a consequence of lack of efficacy across all distances. In contrast,
ICA-AROMA (Pruim et al. 2015a,b) reduced motion to a moderate
degree over all connection distances, resulting in almost no distance-
dependence. However, while clearly an improvement over some other
methods, data processed using ICA-AROMA was noisier than other
methods which included GSR or censoring, and resulting networks
contained a substantial number of edges impacted by motion. As
suggested by the work of Burgess et al. (2016), adding GSR to ICA-
AROMA mitigates QC-FC relationships, but as expected exacerbates

Fig. 5. Identifiability of network structure after de-noising. Although de-noising approaches remove motion artifact from BOLD time series, it is possible that they also remove signal of
interest. We quantified the retention of signal of interest as the modularity quality of the de-noised connectome. A, The modularity quality in a 264-node network defined by Power et al.
(2011) following confound regression. B, The modularity quality in a second, 333-node network defined by Gordon et al. (2016). ICA-, GSR-, and tissue class-based models performed
relatively well, while models that included realignment parameters alone did not remove enough noise to accurately identify network structure.

Fig. 6. Correlation between subject motion and modularity quality. Motion affects network modularity to varying degrees for different de-noising approaches. We quantified the
retention of signal of interest as the modularity quality of the de-noised connectome. A, The correlation between subject motion and modularity quality in a 264-node network defined by
Power et al. (2011) following confound regression. B, The correlation between subject motion and modularity quality in a second, 333-node network defined by Gordon et al. (2016). In
general, GSR- and ICA-based methods most effectively decoupled network structure from artifact.
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distance-dependence.
Somewhat to our surprise, benchmark results for aCompCor

(Behzadi et al., 2007; Muschelli et al., 2014) were most similar to
models that included GSR. Alone among models where GSR was not
included, aCompCor both was relatively effective in the mitigation of
residual motion (13% of edges impacted) and also exhibited substantial
distance-dependence (e.g., r = −0.26). This suggests that while
aCompCor does not explicitly include GSR, the practical results of its
application are in fact quite similar.

Generally, the models that performed poorly in terms of residual
QC-FC correlations also did not perform well in terms of ability to
identify structured subnetworks in the connectome. This suggests that
the removal of noise by more effective methods also unmasks structure.
Although censoring substantially reduced the temporal degrees of
freedom in the time series, it improved network identifiability in
relation to the 36-parameter model alone, suggesting the possibility
that the lost temporal degrees of freedom were largely contaminated
and did not contain useful information regarding network topology.

Somewhat to our surprise, the very simple two-parameter model
(WM, CSF) outperformed commonly used models based on re-align-
ment parameters alone (e.g., 6-parameter, 24-parameter), suggesting
that the relative values of tissue signal regressors and realignment
parameters are not equal. This is likely because the WM and CSF
regressors capture, to varying extents, the global signal changes that
are strongly associated with motion (Power et al., 2016).

Trade-offs of confound regression approaches: implications for
investigators

The current results emphasize two clear trade-offs in the choice of
confound regression strategy. First, pipelines that include global signal
regression tend to be more effective at minimizing QC-FC relation-
ships, but at the cost of some increase in distance-dependence. As
noted above, for minimizing QC-FC relationships, nearly all of the top
strategies (except aCompCor) included GSR. Conversely, the two
techniques that had the most substantial distance-dependence (the 9-
regressor and 36-regressor methods) both included GSR. Second,
censoring techniques provide a clear benefit in reducing QC-FC
relationships and additionally tend to attenuate distance-dependence.

However, by definition, removing contaminated volumes results in less
data and loss of degrees of freedom.

These trade-offs suggest that a single confound regression strategy
is unlikely to be optimal for every study. For example, in studies of
network organization, network identifiability may be of primary
interest. Somewhat to our surprise, the classic 9P model displayed
the highest network modularity, and thus remains a good choice for
many such studies. However, the presence of anti-correlations, altered
degree distribution (Yan et al., 2013b), and distance-dependent impact
of motion that occurs with GSR-based models (including 9P), models
without GSR may be more appealing for certain studies of network
organization. In these cases, ICA-AROMA appears to be an excellent
choice, as it has high network identifiability and low distance depen-
dence.

In contrast, for studies of group or individual differences, minimiz-
ing QC-FC relationships is likely to be of paramount importance so as
to limit the possibility that inference is driven by artifactual signals.
This concern is particularly relevant for studies of brain development
or clinical sub-groups where motion is systematically related to the
subject-level variable of interest (e.g., age, disease status). For such
studies, models that include GSR tend to perform best, including 36P
+censoring models and ICA-AROMA + GSR. Our results accord with
Burgess et al. (2016) and suggest that ICA-based de-noising alone
without GSR does not provide maximal control of motion artifact. Co-
varying for motion at the group level is unlikely to be a panacea for
such studies when inadequate subject-level time series de-noising is
employed, as prior work (Power et al., 2014a) has suggested that
motion effects at the group level may potentially both be nonlinear and
vary across sub-samples in a manner that is difficult to predict.
However, aggressive volume censoring may be problematic in datasets
with relatively brief acquisitions. In datasets where long time series are
acquired, such as multi-band acquisitions (Feinberg et al., 2010) and
intensive acquisitions of single subjects (Laumann et al., 2015), loss of
temporal degrees of freedom is less likely to be a major concern. The
36-parameter models without volume censoring offer uniformity, as
does randomly or systematically censoring additional volumes until all
subjects retain approximately the same degrees of freedom.

Limitations

Several limitations of the current approach should be noted. One of
the principal challenges in evaluating the performance of de-noising
approaches is the lack of a noise-free ground truth. Our primary
benchmark of confound regression performance assumes that mitiga-
tion of the relationship between QC (participant motion) and FC (i.e.,
the imaging measurement) is desirable. To the degree that in-scanner
motion itself represents a biologically informative phenotype, this
approach will mistake signal for noise. Indeed, prior data suggests
that this may sometimes be the case. For example, Zeng et al. (2014)
found specific changes in connectivity for participants who had
generally high levels of motion, even on scans where motion was low.
However, without multiple scans to allow such careful dissociation,
most studies are incapable of disambiguating the large confounding
effects of motion on connectivity. Second, in place of QC-FC relation-
ships, one could focus on alternative benchmarks such as test-retest
reliability (Zuo et al., 2014). Reliability is certainly of interest, but to
the degree that motion tends to be highly correlated within individuals
across scanning sessions, there is a substantial potential for the
presence of consistent motion artifact across sessions to artificially
inflate reliability, and diminish the biological relevance of observed
results. A third and related concern is that certain de-noising methods
could conceivably both minimize QC-FC relationships and even
enhance reliability by aggressively removing both signal and noise,
but in the process diminish sensitivity to meaningful individual
differences. Indeed, one prior study demonstrated the association
between canonical resting state networks and randomly generated

Fig. 7. Estimated loss of temporal degrees of freedom for each pipeline evaluated. Bars
indicate mean number of additional regressors per confound model; error bars indicate
standard deviation for models where the number of confound regressors varies by
subject. High-parameter models and framewise censoring performed well overall on
other benchmarks, but were also costliest in terms of temporal degrees of freedom.
Despite this cost, augmenting a high-parameter model with censoring improved signal
detection (see Fig. 5), suggesting that the lost degrees of freedom corresponded largely to
noise. Because the 36P+despike model censors data in a spatially adaptive manner, the
DOF loss in this case varied by voxel, and is not displayed.
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confound parameters (Bright and Murphy, 2015). This concern is
somewhat mitigated by prior work, which suggests that higher-order
confound regressors improve the confound regression model fit (Yan
et al., 2013a; Satterthwaite et al., 2013), while random regressors do
not (see Fig. 8 in Satterthwaite et al. (2013)). Furthermore, our current
results suggest that sub-network modularity is actually improved by
effective de-noising. Fourth, while our evaluation included many of the
most commonly used techniques, other approaches which require
substantial training or parameter selection (i.e., ICA-FIX (Salimi-
Khorshidi et al., 2014, Griffanti et al., 2014), wavelet de-spiking
(Patel et al., 2014)) may be valuable and merit further consideration.
Fifth, it is unknown whether the present results generalize to other
datasets, which may have different acquisition parameters including
much longer timeseries (Laumann et al., 2016) and multiband
acquisition (Feinberg et al., 2010). In particular, the relatively short
(6 min) scan time used in the current study is a potential limitation;
replication of results in longer acquisitions would enhance confidence
in the generalizability of the present results. However, the similar
findings reported by Burgess et al. (2016)), which used the longer,
multi-band time series data from the Human Connectome Project,
suggest convergence with the present results. Furthermore, it is
possible that the structure of motion artifact is population-dependent.
In the present study, we examined the efficacy of de-noising strategies
in a sample of youth. Consequently, the conclusions that we present
here may not necessarily generalize to other populations, underscoring
the importance of evaluating and reporting the residual confounding
effects of motion in all studies of functional connectivity. While the
current study was conducted in youth, it did not explore the extent to
which the efficacy of each denoising strategy was age- or population
dependent, which merits additional investigation in the future. Sixth
and finally, it should be noted that while improvements in image
acquisition (including multi-echo techniques) may not salvage existing
motion-contaminated data, it is likely that they will change the
methodological landscape of connectivity research moving forward
(Kundu et al., 2012, 2013; Bright and Murphy, 2013).

Conclusions

Taken together, the present results underline the performance
heterogeneity of commonly-used confound regression methods. In
selecting among these methods, investigators should be aware of the
relative strengths and weaknesses of each approach, and understand
how processing strategy may impact inference. Clearly, the relative
merit of each approach will vary by research question and study design.
Perhaps most importantly, as has been emphasized in nearly every
other study of motion artifact, the choice of confound regression
strategy is often dwarfed in importance by the need to transparently
report and evaluate the impact of motion in each dataset. At a
minimum, this includes reporting the relationship between motion
artifact and not only subject phenotypes (e.g., group, age, symptom or
cognitive score) but also the functional connectivity measures being
considered. In the context of such data, the distinction between
observed results and the impact of motion artifact can be understood.
Such transparency bolsters confidence in reported findings, but also
will likely tend to emphasize the remaining challenges for de-noising
going forward. Especially when considered in the context of the rapid
evolution of available techniques since 2012, there is no doubt that
innovations in post-processing strategies will continue.
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