
NeuroImage 263 (2022) 119609

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage

Curation of BIDS (CuBIDS): A workflow and software package for

streamlining reproducible curation of large BIDS datasets

Sydney Covitz a , b , c , Tinashe M. Tapera

a , b , c , Azeez Adebimpe

a , b , c , Aaron F. Alexander-Bloch

b , c , d ,

Maxwell A. Bertolero

a , b , c , Eric Feczko

h , Alexandre R. Franco

e , f , g , Raquel E. Gur b , c ,

Ruben C. Gur b , c , Timothy Hendrickson

h , i , Audrey Houghton

h , Kahini Mehta

a , b , c ,

Kristin Murtha

a , b , c , Anders J. Perrone

h , Tim Robert-Fitzgerald

j , k , Jenna M. Schabdach

b , c , d ,

Russell T Shinohara

j , k , Jacob W. Vogel a , b , c , Chenying Zhao

a , b , l , Damien A. Fair h ,

Michael P. Milham

e , Matthew Cieslak

a , b , c , 1 , Theodore D. Satterthwaite

a , b , c , j , 1 , ∗

a Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA

19104, USA
b Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
c Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
d Children’s Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States
e Child Mind Institute, 101 E 56th St, New York, NY 10022,
f Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
g Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
h Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
i University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, United States
j Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
k Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104,

USA
l Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA

a r t i c l e i n f o

Keywords:

BIDS

MRI

Brain

Neuroimaging

Software

Curation

Validation

Metadata

Version control

Heterogeneity

a b s t r a c t

The Brain Imaging Data Structure (BIDS) is a specification accompanied by a software ecosystem that was de-

signed to create reproducible and automated workflows for processing neuroimaging data. BIDS Apps flexibly

build workflows based on the metadata detected in a dataset. However, even BIDS valid metadata can include

incorrect values or omissions that result in inconsistent processing across sessions. Additionally, in large-scale,

heterogeneous neuroimaging datasets, hidden variability in metadata is difficult to detect and classify. To address

these challenges, we created a Python-based software package titled “Curation of BIDS ” (CuBIDS), which provides

an intuitive workflow that helps users validate and manage the curation of their neuroimaging datasets. CuBIDS

includes a robust implementation of BIDS validation that scales to large samples and incorporates DataLad––a

version control software package for data––as an optional dependency to ensure reproducibility and provenance

tracking throughout the entire curation process. CuBIDS provides tools to help users perform quality control on

their images’ metadata and identify unique combinations of imaging parameters. Users can then execute BIDS

Apps on a subset of participants that represent the full range of acquisition parameters that are present, acceler-

ating pipeline testing on large datasets.

1

s

(

t

(

c

d

p

h

R

A

1

(

. Introduction

The Brain Imaging Data Structure (BIDS) specification provides a

tandardized format for organizing and describing neuroimaging data

 Gorgolewski et al., 2016). BIDS relies on specific nested directory struc-
∗ Corresponding author at: Richards Medical Labs, A504, 3700 Hamilton Walk, Ph

E-mail address: sattertt@pennmedicine.upenn.edu (T.D. Satterthwaite) .
1 Contributed equally as senior authors

ttps://doi.org/10.1016/j.neuroimage.2022.119609 .

eceived 3 May 2022; Received in revised form 19 August 2022; Accepted 2 Septem

vailable online 3 September 2022.

053-8119/© 2022 The Authors. Published by Elsevier Inc. This is an open access ar

 http://creativecommons.org/licenses/by-nc-nd/4.0/)
iladelphia, PA 19104.

ures and filename conventions and requires that each MR image file

e.g. Neuroimaging Informatics Technology Initiative or NIfTI) be ac-

ompanied by a JavaScript Object Notation (JSON) sidecar––a data

ictionary detailing its corresponding image’s metadata. BIDS is es-

ecially helpful when dealing with large, multimodal studies; as the
ber 2022

ticle under the CC BY-NC-ND license

https://doi.org/10.1016/j.neuroimage.2022.119609
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2022.119609&domain=pdf
mailto:sattertt@pennmedicine.upenn.edu
https://doi.org/10.1016/j.neuroimage.2022.119609
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Covitz, T.M. Tapera, A. Adebimpe et al. NeuroImage 263 (2022) 119609

n

s

g

t

Q

w

C

t

B

t

w

c

fi

p

e

t

p

m

g

B

o

I

r

a

t

t

a

c

d

t

t

b

f

B

p

s

e

(

h

t

a

c

c

D

a

n

A

t

u

a

f

a

p

2

t

i

B

fl

r

c

d

s

2

t

m

t

c

a

s

a

s

o

(

2

p

a

p

f

f

2

e

a

n

B

)

d

a

u

c

s

2

t

t

i

r

fi

p

i

a

i

s

m

t

2

P

c

b

p

t

D

i
umber of subjects and runs increases, generalizable structures and

tandards become not only beneficial but essential. Pipelines that in-

est BIDS datasets––commonly referred to in the BIDS software ecosys-

em as “BIDS Apps ” (Gorgolewski et al., 2017)––such as fMRIPrep and

SIPrep––rely heavily on correct specification of BIDS, as they build

orkflows based on the metadata encountered (Esteban et al., 2019 ;

ieslak et al., 2021). While generally an important and useful feature,

his workflow construction structure can also be a vulnerability: if the

IDS metadata is inaccurate, a BIDS app may build an inappropriate (but

echnically “correct ”) preprocessing pipeline. For example, a fieldmap

ith no IntendedFor field specified in its JSON sidecar is not techni-

ally incorrect but rather incomplete. When a participant containing a

eldmap missing an IntendedFor field is run through a MRI image type

rocessing pipeline such as fMRIPrep and QSIPrep, the pipeline will ex-

cute with neither errors nor warnings but will skip distortion correc-

ion. Curating the dataset with CuBIDS before running it through such

ipelines will allow users to easily identify all instances of fieldmaps

issing IntendedFor references––CuBIDS places those scans in separate

roups. Users must understand and verify that the metadata present in

IDS is correct. This usually requires meticulous curation––the process

f checking and fixing filename or metadata issues present in a dataset.

n the context of the lifecycle of a neuroimaging dataset, the CuBIDS cu-

ation workflow begins directly after the data has been organized into

 BIDS directory structure with BIDS-like filenames.

While large, multi-modal neuroimaging datasets constitute ex-

remely valuable data resources, they also frequently possess substan-

ial heterogeneity in their image acquisition parameters. BIDS provides

n ideal structure for organizing neuroimaging data, but the size and

omplexity of large-scale datasets can render curation both tedious and

ifficult. Data curation can be an ad-hoc process that involves substan-

ial manual intervention; such manual curation is usually neither well

racked nor reproducible. Thus, curation constitutes a major vulnera-

ility in the field-wide effort to create reproducible, analytic workflows

or neuroimaging data. Finally, many current BIDS tools, including the

IDS Validator, MatlabBIDS, and PyBIDS (Yarkoni et al., 2019), that

arse and interact with BIDS datasets were optimized for small fMRI

tudies and may behave erratically when given large quantities of het-

rogeneous data.

With these challenges in mind, we developed “Curation of BIDS ”

CuBIDS): a software package that provides easy-to-use workflows that

elp users curate large BIDS datasets. CuBIDS provides users with cus-

omizable features to visualize heterogeneity in complex BIDS datasets

nd includes a robust, scalable implementation of BIDS validation that

an be applied to arbitrarily-sized datasets. Critically, CuBIDS renders

uration reproducible via an easy-to-use, wrapped implementation of

ataLad (Halchenko et al., 2021) as an optional feature the user can

ccess at will. Finally, CuBIDS provides tools to identify unique combi-

ations of imaging parameters in a dataset so that users can test BIDS

pps on a subset of participants that represents the parameter space of

he entire dataset. This option dramatically speeds up pipeline testing, as

sers can be assured that they have tested a BIDS App on the full range of

cquisition parameters present in a dataset. As described below, CuBIDS

acilitates an understanding of what is present in an MRI BIDS dataset,

llows for reproducible BIDS curation, and accelerates successful data

rocessing at scale.

. Materials and methods

The standard lifecycle of a neuroimaging study begins with acquisi-

ion and ends with image analysis and hypothesis testing. CuBIDS’ role

n this process begins directly after the data has been organized into a

IDS directory structure with BIDS-like filenames. The CuBIDS work-

ow ends with curated data in a repository, allowing for further explo-

ation, pooling, meta-analysis, and runs of preprocessing pipelines. As

uration occurs quite early in this timeline of preparing neuroimaging
2
ata for analysis, decisions made during curation will affect every sub-

equent stage.

.1. Data and code availability statement

A copy of the small, example dataset whose curation we walk

hrough in the Results section is compressed into a ZipFile and sub-

itted with this paper under “Supplementary Material. ” Additionally,

he Philadelphia Neurodevelopmental Cohort (PNC), the dataset whose

uration we summarize in the second portion of the Results, is publicly

vailable in the Database of Genotypes and Phenotypes (dbGaP acces-

ion phs000607.v3.p2). The source code for CuBIDS is publicly available

t https://github.com/PennLINC/CuBIDS , the documentation for our

oftware is available at https://cubids.readthedocs.io/en/latest/ , and

ur package is available for download on the Python Package Manager

pypi) https://pypi.org/project/cubids/ .

.2. Ethics statement

No new data was collected specifically for this paper. The Philadel-

hia Neurodevelopmental Cohort (PNC) (Satterthwaite et al., 2014) was

pproved by IRBs of The University of Pennsylvania and Children’s Hos-

ital of Philadelphia. All adult participants in the PNC provided in-

ormed consent to participate; minors provided assent alongside the in-

ormed consent of their parents or guardian.

.3. Overview

CuBIDS provides a workflow that aids users in curating large, het-

rogeneous BIDS datasets. CuBIDS summarizes a dataset’s metadata, en-

bling users to visualize and understand the variability in critical scan-

ing parameters and fix errors when they are present. To do this, Cu-

IDS features several command line interface (CLI) programs (Table 1

. Notably, all CuBIDS CLI programs wrap DataLad as an optional

ependency so that the user can implement reproducible tracking at

ny stage of curation or revert to a prior state of their data. If the

ser wants to apply DataLad version control while using CuBIDS, they

an run the CLI programs with the ---use-datalad optional flag

et.

.4. Software development practices

We applied test-driven development while building CuBIDS, priori-

izing writing tests for each new feature concurrent with its construc-

ion. We integrated CircleCI––a web-based continuous integration test-

ng platform––into our GitHub repository so that each new commit is

un through the full suite of tests. We apply a standardized approach to

xing bugs and adding features: first creating an issue on our GitHub

age and then creating a new branch of our code base named specif-

cally for fixing that issue. Once the issue is fixed on the new branch,

 pull request merges the new branch into the main branch with the

ssue tagged. If all continuous integration tests pass and the merge is

uccessful, the issue gets automatically closed. Centering our develop-

ent process around both tests and issues has ensured the integrity of

he code and facilitated both organization and documentation.

.5. Installation, setup, and version control

We recommend users install CuBIDS inside an Anaconda-based

ython environment. Users can install Anaconda/Miniconda/Miniforge,

reate and activate an environment, and then obtain CuBIDS locally

y either installing from the Python Package Manager (Pypi) using

ip or cloning directly from the CuBIDS GitHub repository. Documen-

ation regarding use of CuBIDS is publicly available on our Read the

ocs page. Notably, CuBIDS commands incorporate version control us-

ng DataLad as an optional dependency. Checking their BIDS dataset

https://github.com/PennLINC/CuBIDS
https://cubids.readthedocs.io/en/latest/
https://pypi.org/project/cubids/

S. Covitz, T.M. Tapera, A. Adebimpe et al. NeuroImage 263 (2022) 119609

Table 1

CuBIDS command line interface programs. CuBIDS features several command line interface (CLI) programs that help users curate and process BIDS

datasets. We use the color-coded backgrounds to map each program to a stage in the curation workflow seen in Fig. 1 . These programs were built for

the steps of a study’s curation process. Some programs––such as print-metadata-fields , group , validate , and copy-exemplars –
–require only “read ” access to the data and aid the user in visualizing a dataset’s heterogeneity. Others––such as apply , purge , undo , and

remove-metadata-fields ––require "write" access, as they involve modifying metadata, changing filenames, or removing entire subjects alto-

gether.

(continued on next page)

3

S. Covitz, T.M. Tapera, A. Adebimpe et al. NeuroImage 263 (2022) 119609

Table 1 (continued)

i

-

c

t

t

m

s

L

t

d

2

l

r

i

a

s

s

B
nto DataLad and operationalizing command line programs with the

--use-datalad flag set allows users to access several extra version-

ontrol based functionalities. These include tracking changes they make

o their dataset, reverting their dataset back to earlier versions, and au-

omatically saving changes CuBIDS makes to the data with detailed com-

it messages. If users would like to access this functionality, they must

eparately install both DataLad and Git Annex (a dependency of Data-

ad). Although users can run CuBIDS programs without DataLad, opting

o leverage the version control capabilities is recommended, as it ren-

ers the CuBIDS workflow portion of curation fully reproducible.
4
.6. Definitions

The CuBIDS workflow relies upon five main concepts, all de-

ineating different ways to categorize and catalog data: Key, Pa-

ameter, Acquisition, Dominant, and Variant Groups. The first

s a “Key Group ” –– the set of runs whose filenames share

ll BIDS filename key-value pairs, except for subject and ses-

ion. For example, CuBIDS would place a T1w NIfTI file named

ub-X_ses-A_acq-refaced_T1w.nii.gz , which contains the

IDS key-value pair “acq-refaced ”––in the following Key Group:

S. Covitz, T.M. Tapera, A. Adebimpe et al. NeuroImage 263 (2022) 119609

Fig. 1. CuBIDS workflow . The CuBIDS workflow begins af-

ter the generation of NIfTI files and JSON sidecars and ends

directly before the execution of pre-processing pipelines. We

start with a BIDS dataset, which can be validated using Cu-

BIDS’ robust version of the BIDS-validator. After purging the

dataset of any sensitive fields, users can move to the next work-

flow stage: detecting Parameter Groups. Users can then rename

or delete Parameter Groups. At any point in the workflow,

users can implement version control to track changes made

to the data using an easy-to-use, wrapped version of DataLad.

Finally, users test one Exemplar Subject from each Acquisition

Group on BIDS Apps to ensure each set of scanning param-

eters can run through pipelines error-free. CuBIDS includes

command line programs for each step of the workflow (see

Table 1) .

a

t

a

J

G

i

d

w

i

a
P

G

w

f

c

a

i

n

a

e

t

s

C

s

a

i

p

g

a

s

b

i

g

2

v

t

c

h

b

a

u

i

e

2

p

B

t

b

t

c

s

p

t

a

t

w

c

d

m

f

a

o

e

i

j

s

p

c

-

t

w

f

i

n

e

i

-

o
cquisition-refaced_datatype-anat_suffix-T1w . No-

ably, Key Groups only consider the scan’s BIDS filename; they do not

ccount for the variance in metadata fields that might be present in the

SON sidecars.

For this reason, within each Key Group, we define a “Parameter

roup ” as the set of runs with identical metadata parameters contained

n their sidecars. Parameter Groups exist within Key Groups and are

enoted numerically––each Key Group will have n Parameter Groups,

here n is the number of unique sets of scanning parameters present

n that Key Group. For example, a T1w can belong to Key Group

cquisition-refaced_datatype-anat_suffix-T1w and

arameter Group 1. CuBIDS defines Parameter Groups within Key

roups because differences in parameters can affect how BIDS Apps

ill configure their pipelines (e.g. Fieldmap availability, multiband

actor, etc.).

Next, we define a “Dominant Group ” as the Parameter Group that

ontains the most runs in its Key Group. Analogously, we define a “Vari-

nt Group ” as any Parameter Group that is non-dominant. This is an

mportant term because (as described below) CuBIDS can optionally re-

ame all Variant Groups in an automated and reproducible fashion.

Finally, we define an “Acquisition Group ” as a collection of sessions

cross participants that contain the exact same set of Key and Param-

ter Groups. Since Key Groups are based on the BIDS filenames —and

herefore both MRI image type and acquisition specific —each BIDS ses-

ion directory contains images that belong to a set of Parameter Groups.

uBIDS assigns each session––or set of Parameter Groups––to an Acqui-

ition Group such that all sessions in an Acquisition Group possesses

n identical set of acquisitions and metadata parameters across all MRI

mage types present in the dataset. We find Acquisition Groups to be a

articularly useful categorization of BIDS data, as they identify homo-

eneous sets of sessions (not individual scans) in a large dataset. They

re also useful for expediting the testing of pipelines; if a BIDS App runs

uccessfully on a single subject from each Acquisition Group, one can

e confident that it will handle all combinations of scanning parameters

n the entire dataset. These various sets of methods by which one can

roup a BIDS dataset are critical to the CuBIDS workflow (see Fig. 1).

.7. Accounting for NIfTI header information

Information from NIfTI headers —including number of volumes,

oxel size, image dimensions, and image obliquity —is often impor-

ant but is usually absent from JSON sidecars. We created a program,

ubids-add-nifti-info , that reads information from the NIfTI

eader and adds it to the JSON sidecar. For example, knowing the num-
5
er of volumes in a run may be particularly useful when performing

n initial quality assessment —i.e., identifying and removing runs with

nexpectedly short durations (i.e., 20 vol in an fMRI timeseries). Sim-

larly, runs with vastly different voxel sizes or fields of view may be

asily identified and removed if desired.

.8. BIDS validation

An essential first stage of curation is validation: finding the errors

resent in a BIDS dataset. This step is usually accomplished using the

IDS Validator. However, while BIDS validation is essential to the cura-

ion process, the standalone BIDS Validator can exhibit unstable file I/O

ehavior when validating large datasets (n > 100). As a result, it some-

imes fails unpredictably. To combat this issue, cubids-validate
hecks the BIDS layout using a wrapped, stable, scalable version of the

tandard BIDS Validator. To ensure scalability, cubids-validate
arallelizes validation across participants, validating each subject direc-

ory on its own and deferring the detection of parameters that may vary

cross subjects. Thereafter, cubids-validate aggregates all valida-

ion errors found across participants in an easy-to-read TSV (see Fig. 2) ,

hich is accompanied by a data dictionary JSON sidecar. This table in-

ludes one row for each file that contains a BIDS validation error and

isplays that filename along with a description of the error (see Fig. 2)).

In designing cubids-validate , we also intended to separate

etadata heterogeneity detection from BIDS error detection. By de-

ault, the validator does both —providing large amounts of unaction-

ble information concerning the metadata variance in the terminal

utput. For example, if a sample includes participants with differ-

nt sets of scans, the standalone BIDS Validator will print warn-

ngs alerting the user to the presence of incongruencies across sub-

ects, often producing copious output that can obscure critical is-

ues. If there are errors or forms of inconsistency users would

refer excluded from the CuBIDS validation TSV, they can run

ubids-validate with optional BIDS Validator flags such as

--ignore_nifti_headers , which disregards NIfTI header con-

ent during validation and --ignore_subject_consistency ,
hich we set as the default and skips checking that any given file

or one subject is present for all other subjects. Furthermore, we

mplemented --sequential , which parallelizes validation by run-

ing the BIDS Validator sequentially on each subject (i.e. treating

ach participant as a standalone BIDS dataset and performing val-

dation inside a temporary filesystem directory) (see Fig. 2B) , and

--sequential-subjects , which filters the sequential run to

nly include the listed subjects, e.g. --sequential-subjects

S. Covitz, T.M. Tapera, A. Adebimpe et al. NeuroImage 263 (2022) 119609

Fig 2. Stable, scalable BIDS validation . Cu-

BIDS wraps a stable version of the BIDS Val-

idator and adds a few additional features in-

cluding the ability to reorganize the validator

output into an easy to read, tabular structure

and save it as a TSV. A) The standard BIDS

Validator’s default option (Gorgolewski et al.,

2016) validates an entire BIDS dataset and out-

puts a summary of the errors and warnings it

discovers to the terminal screen. B) In addi-

tion to visualizing the output in a scalable and

easy-to-read format, cubids-validate
includes the standard BIDS Validator’s ability

to ignore cross-session comparisons or meta-

data from NIfTI headers while also adding an

option for sequential participant-by-participant

validation. This feature, which we recommend

users leverage, parallelizes validation and val-

idates each subject directory as its own BIDS

dataset.

s

d

e

d

2

e

t

c

p

i

t

p

t

w

m

p

s

t

a

t

o

fi

t

t

d

b

a

p

i

a

w

F

q

d

p

u

n

t

e

l

f

2

m

fi

w

u

d

a

V

t

a

a

T

a

o

r

∗

F

e
ub-01 sub-05 sub-09 . These flags allow users to focus the vali-

ation process exclusively on the issues and subjects they would like to

valuate, and the sequential option, which parallelizes validation, ad-

resses the standalone BIDS Validator’s scalability issue.

.9. Grouping: heterogeneity detection and classification

While cubids-validate will find and display BIDS validation

rrors present in a dataset, it does not identify metadata parameters

hat might be inconsistent or omitted. For this reason, we developed

ubids-group : a grouping function that classifies the heterogeneity

resent in a BIDS dataset and displays it in readable TSVs. Each group-

ng output is accompanied by a data dictionary JSON sidecar. The input

o cubids-group is the path to the root of a BIDS Dataset, and the

rogram produces four outputs, each of which gives a different view of

he underlying data. The first (and most important) is summary.tsv,
hich contains one row per Parameter Group, and one column per

etadata parameter present in the dataset. To understand the relative

revalence of each group, the program also counts, and includes in

ummary.tsv , the number of files in each Key and Parameter Group;

his documentation is very useful for visualizing metadata heterogeneity

cross the entire dataset.

The next output of cubids-group is files.tsv , which con-

ains one row per NIfTI file in the BIDS directory. This table keeps track

f every scan’s assignment to Key and Parameter Groups and includes a

eld that allows users to easily identify the Key and Parameter Groups

o which each image belongs. The next two grouping outputs organize

he dataset by Acquisition Group. AcqGrouping.tsv organizes the

ataset by session and tags each one with its Acquisition Group num-

er. Finally, AcqGroupInfo.txt lists all Key Groups that belong to

 given Acquisition Group along with the number of sessions each group

ossesses.

When applied to large datasets, cubids-group will often reveal

ssues within a BIDS dataset, some of which validation alone does not
6
lways catch. Such issues include missing metadata parameters and runs

ith low numbers of volumes or unusual image and voxel dimensions.

or this reason, cubids-group can aid users in performing first pass

uality assurance on their BIDS dataset. Since summary.tsv breaks

own the dataset by Parameter Group with one column per scanning

arameter, users can then search that TSV by desired parameters. Next,

sers can set a threshold or requirement for a certain parameter (e.g.

umber of volumes or dimension/voxel size) and use cubids-purge
o remove runs that do not possess the desired values for those param-

ters. For example, a user may want to remove all fMRI runs with a

ow number of volumes before data processing with a BIDS App such as

MRIPrep.

.10. Applying changes

The cubids-apply program provides an easy way for users to

anipulate their datasets. Specifically, cubids-apply can rename

les according to the users’ specification in a tracked and organized

ay. Here, the summary.tsv functions as an interface modifications;

sers can mark Parameter Groups they want to rename (or delete) in a

edicated column of the summary.tsv and pass that edited TSV as

n argument to cubids-apply.
Additionally, cubids-apply can automatically rename files in

ariant Groups based on their scanning parameters that vary from

hose in their Key Groups’ Dominant Parameter Groups. Renaming is

utomatically suggested when the summary.tsv is generated from

 cubids-group run, with the suggested new name listed in the

SV’s “Rename Key Group ” column. CuBIDS populates this column for

ll Variant Groups —e.g., every Parameter Group except the Dominant

ne. Specifically, CuBIDS will suggest renaming all Non-Dominant Pa-

ameter Groups to include VARIANT

∗ in their acquisition field where
 is the reason the Parameter Group varies from the Dominant Group.

or example, when CuBIDS encounters a Parameter Group with a rep-

tition time that varies from the one present in the Dominant Group,

S. Covitz, T.M. Tapera, A. Adebimpe et al. NeuroImage 263 (2022) 119609

Fig. 3. Parsing the dataset by Parame-

ter Group. The summary.tsv file is a

cubids-group output that contains one

row per Parameter Group and one column per

scanning parameter. Thus, this TSV summa-

rizes all metadata present within a dataset. A)

Before cubids-apply is run, a given Key

Group may have multiple Parameter Groups,

each containing a different set of scanning pa-

rameters. This summary table includes a “Re-

name Key Group ” column that auto-configures

when cubids-apply is run and labels

each non-dominant Parameter Group as a Vari-

ant Group based on the scanning parameters

that differentiate that group from the Dom-

inant Group. Specifically, CuBIDS represents

this variance by adding “VARIANT ∗ ”––where ∗

indicates the metadata parameters that cause

those files to vary from the Dominant Group––to the “acq ” field of those files in non-dominant Parameter Groups. For example, in A) , the metadata in the Param

Group 2 image differs from that of the Dominant Group (Param Group 1) image because that run is missing a fieldmap. The result of running cubids-apply
can be seen in B) where the Param Group 2 image ends up in a new Key group because CuBIDS added “VARIANTNoFmap ” to the acquisition field of its filename

when cubids-apply was run.

i

t

n

n

G

2

s

c

a

p

i

a

b

p

f

t

G

f

a

v

fi

l

V

2

d

p

t

d

c

t

S

e

d

I

p

D

w

p

f

r

a

p

i

p

t

t

3

a

t

U

d

d

s

a

m

3

u

d

a

w

a

M

e

f

t

r

t will automatically suggest renaming all runs in that Variant Group

o include acquisition-VARIANTRepetitionTime in their file-

ames. When the user runs cubids-apply , filenames will get re-

amed according to the auto-generated names in the “Rename Key

roup ” column in the summary.tsv (see Fig. 3)).

.11. Customizable configuration

CuBIDS also features an optional, customizable, MRI image type-

pecific configuration file. This file can be passed as an argument to

ubids-group and cubids-apply using the ---config flag

nd allows users to customize grouping settings based on image type and

arameter. Each Key Group is associated with one (and only one) MRI

mage type, as BIDS filenames include MRI image type-specific values

s their suffixes. This easy-to-modify configuration file provides several

enefits to curation. First, it allows users to add and remove metadata

arameters from the set that determines groupings. This can be very use-

ul if a user deems a specific metadata parameter irrelevant and wishes

o collapse variation based on that parameter into a single Parameter

roup. Second, the configuration file allows users to apply tolerances

or parameters with numerical values. This functionality allows users to

void very small differences in scanning parameters (i.e., a TR of 3.0 s

s 3.0001 s) being split into different Parameter Groups. Third, the con-

guration file allows users to determine which scanning parameters are

isted in the acquisition field when auto-renaming is applied to

ariant Groups.

.12. Exemplar testing

In addition to facilitating curation of large, heterogeneous BIDS

atasets, CuBIDS also prepares datasets for testing BIDS Apps. This

ortion of the CuBIDS workflow relies on the concept of the Acquisi-

ion Group: a set of sessions that have identical scan types and meta-

ata across all MRI image types present in the session set. Specifically,

ubids-copy-exemplars copies one subject from each Acquisi-

ion Group into a separate directory, which we call an Exemplar Dataset.

ince the Exemplar Dataset contains one randomly selected subject from

ach unique Acquisition Group in the dataset, it will be a valid BIDS

ataset that spans the entire metadata parameter space of the full study.

f users run copy-exemplars with the ---use-datalad flag, the

rogram will ensure that the Exemplar Dataset is tracked and saved in

ataLad. If the user chooses to forgo this flag, the Exemplar Dataset

ill be a standard directory located on the filesystem. Once the Exem-

lar Dataset has been created, a user can test it with a BIDS App (e.g.,
7
MRIPrep or QSIPrep) to ensure that each unique set of scanning pa-

ameters will pass through the pipelines successfully. Because BIDS Apps

uto-configure workflows based on the metadata encountered, they will

rocess all runs in each Acquisition Group in the same way. By first ver-

fying that BIDS Apps perform as intended on the small sub-sample of

articipants present in the Exemplar Dataset (that spans the full varia-

ion of the metadata), users can confidently move forward processing

he data of the complete BIDS dataset.

. Results

The CuBIDS workflow is currently being used in neuroimaging labs

t a number of institutions including the University of Pennsylvania,

he Children’s Hospital of Philadelphia, the Child Mind Institute, and the

niversity of Minnesota’s Masonic Institute for the Developing Brain. To

emonstrate the utility of CuBIDS, here we apply the software to two

atasets. First, we curate a small example dataset that is included in the

oftware’s GitHub repository and can be downloaded here. Second, we

pply CuBIDS to the large-scale data of the Philadelphia Neurodevelop-

ental Cohort.

.1. The CuBIDS workflow for curating a BIDS dataset (example dataset)

The following walkthrough displays the process of curating a dataset

sing CuBIDS on a Linux machine. This example walkthrough is also

ocumented on the CuBIDS Read the Docs page. To do so, we use an ex-

mple dataset that is bundled with the software. For this demonstration,

e install CuBIDS inside a conda environment. Note that if you are using

n Apple M1 chip machine, you will need to install Miniforge instead of

iniconda. Once we have conda installed we create and activate a new

nvironment using the following commands:

conda create -n test-env python = 3.8
conda activate test-env
To obtain CuBIDS locally, we can use pip to download our software

rom the Python Package Manager (Pypi) using the following command:

pip install CuBIDS
Alternatively, we can clone from the CuBIDS GitHub repository using

he following command:

git clone https://github.com/PennLINC/CuBIDS.git

Now that we have a copy of the source code, we can install it by

unning

cd CuBIDS
pip install -e .

https://github.com/PennLINC/CuBIDS.git

S. Covitz, T.M. Tapera, A. Adebimpe et al. NeuroImage 263 (2022) 119609

w

c

u

v

p

o

L

a

h

h

w

c

a

C

(

c

i

r

c

t

t

w

t

-

m

d

r

c

d

i

F

o

a

a

(

s

m

a

B

n

m

"

d

f

t

d

B

a

i

o

-

J

t

c

v

c

t

c

D

w

t

o

t

t

i

w

T

w

a

a

r

v

a

d

g

c

i

f

-

e

v

(

s

t

m

b

T

-

t

v
We will now need to install some dependencies of CuBIDS. To do this,

e first must install nodejs. We can accomplish this using the following

ommand:

conda install nodejs
Now that we have npm installed, we can install the bids-validator

sing the following command:

npm install -g bids-validator@1.7.2

In this example, we use the bids-validator v1.7.2. using a different

ersion of the validator may result in slightly different validation TSV

rintouts, but CuBIDS is compatible with all versions of the validator at

r above v1.6.2. Throughout this example walkthrough, we use Data-

ad for version control, so we will also need to install both DataLad

nd git-annex, the large file storage software DataLad runs under the

ood. Installation instructions for DataLad and git-annex can be found

ere.

Now that we have installed CuBIDS and all necessary dependencies,

e are ready to begin the curation process on our example dataset. We

reate a CuBIDS_Test directory to function as the working directory

nd navigate to it as follows:

mkdir $PWD/CuBIDS_Test
cd CuBIDS_Test
Throughout this walkthrough, we will run all commands from the

uBIDS_Test directory. Next, we download BIDS_Dataset.zip
a ZipFile containing the example dataset) and unzip as follows:

curl -sSLO https://github.com/PennLINC/CuBIDS/raw/main/

ubids/testdata/BIDS _ Dataset.zip

unzip BIDS_Dataset.zip
rm BIDS_Dataset.zip
As a first step, we use CuBIDS to identify the metadata fields present

n the dataset. This is accomplished with the following command:

cubids-print-metadata-fields BIDS_Dataset
This command returns a total of 66 fields, including acquisition pa-

ameters and other metadata fields present in the dataset’s JSON side-

ars. Some of these fields contain simulated protected health informa-

ion (PHI) such as PatientName that we wish to remove. Completing

his step prior to checking the BIDS dataset into DataLad is critical, as

e must ensure PHI is not tracked as part of version control. To remove

he PatientName field from the sidecars, we can use the command:

cubids-remove-metadata-fields BIDS_Dataset
-fields PatientName

If we were to run cubids-print-metadata-fields once

ore, we would see that PatientName is no longer present in the

ataset. Now that all PHI has been removed from the metadata, we are

eady to check our dataset into DataLad. To do this, we run the following

ommand:

datalad create -c text2git BIDS_Dataset_DataLa
The creation of our DataLad dataset will be accordingly reflected

n the dataset’s version control history, or “git log ” (see example in

ig. 4A) . At any point in the CuBIDS workflow, we can view a summary

f our dataset’s version history by running the following commands:

cd BIDS_Dataset_DataLad
git log --oneline
cd ..
Next, we copy the contents of our BIDS dataset into the newly created

nd currently empty DataLad dataset:

cp -r BIDS_Dataset/ ∗ BIDS_Dataset_DataLad
In addition to being able to access the version history of our data,

ny point in this workflow, we can also check the status of untracked

not yet saved) changes using the datalad status command, as

een below:

datalad status -d BIDS_Dataset_DataLad
This command produces a description of the changes we have

ade to the data since the last commit (see Fig. 4B) . The command

bove shows all files untracked, as we have copied the BIDS data into

IDS_Dataset_DataLad but have not yet saved those changes. Our
8
ext step is to run save. It is best practice to provide a detailed commit

essage, for example:

datalad save -d BIDS_Dataset_DataLad -m
checked dataset into datalad"

This commit is reflected in our git log (see Fig. 4C) . Now that the

ataset is checked into DataLad, at any point in the workflow going

orward, we can run the following command to revert the dataset back

o the previous commit:

cubids-undo BIDS_Datast_DataLad
At this stage, we also recommend removing the BIDS_Dataset

irectory — its contents are safely copied into and tracked in

IDS_Dataset_DataLad .
Next, we seek to add new fields regarding our image parameters that

re only reflected in the NIfTI header to our metadata; these include

mportant details such as image dimensions, number of volumes, image

bliquity, and voxel sizes. To do this, we run:

cubids-add-nifti-info BIDS_Dataset_DataLad
-use-datalad

This command adds the NIfTI header information to the

SON sidecars and saves those changes. In order to ensure

hat this command has been executed properly, we can run

ubids-print-metadata-fields once more, which re-

eals that NIfTI header information has been successfully in-

luded in the metadata. Since we ran add-nifti-info with

he --use-datalad flag set, CuBIDS will automatically save the

hanges made to the dataset to the git log (see Fig. 4D)).

The above panels display the version history of the small, example

ataLad dataset we curated to display the effectiveness of the CuBIDS

orkflow. These panels are screenshots of the git history of the dataset

aken after each change was made to the data. A shasum (yellow string

f letters and numbers to the left of each commit message) is assigned

o each commit, and each commit is recorded with a message (white

ext describing the changes made to the data). If users would like more

nformation about each commit, they can run the git log command

ithout the oneline flag to get a detailed summary of each commit.

his summary will include files that were changed, exact changes that

ere made to each file, date and time of the commit, and information

bout the git user who made the changes. At any point in the workflow

fter checking the dataset into DataLad, we can use cubids-undo to
evert the dataset back to the previous commit.

The next step in the CuBIDS workflow is to understand what BIDS

alidation errors may be present (using cubids-validate) as well

s the structure, heterogeneity, and metadata errors present in the

ataset (using cubids-group). Notably, neither of these two pro-

rams requires write access to the data, as each simply reads in the

ontents of the data and creates TSVs that parse the metadata and val-

dation errors present. Validation can be accomplished by running the

ollowing command:

cubids-validate BIDS_Dataset_DataLad v0
-sequential

The use of the sequential flag forces the validator to treat

ach participant as its own BIDS dataset. This command produces

0_validation.tsv (see Supplementary Data 1A).

This initial validation run reveals that Phase Encoding Direction

PED) is not specified for one of the BOLD task-rest scans. We can clearly

ee that we either need to find the PED for this run elsewhere and edit

hat sidecar to include it or remove that run from the dataset, as this

issing scanning parameter will render field map correction impossi-

le. For the purpose of this demonstration, we elect to remove the scan.

o do this, we run the following command:

cubids-purge BIDS_Dataset_DataLad no_ped.txt
-use-datalad

Here, no_ped.txt (see Supplementary Data 1B) is a

ext file containing the full path to the dwi run flagged in

0_validation.txt for missing PED. The user must create

https://github.com/PennLINC/CuBIDS/raw/main/cubids/testdata/BIDS_Dataset.zip

S. Covitz, T.M. Tapera, A. Adebimpe et al. NeuroImage 263 (2022) 119609

Fig. 4. Version history throughout the curation process.

t

$

s
n

r

s

d

t

e

o

p

f

t

o

his file before running cubids-purge (a command such as echo
PWD/BIDS_Dataset_DataLad/sub-02/ses-phdiff/func/
ub-02_ses-phdiff_task-rest_bold.nii.gz >

o_ped.txt will work).

We elect to use cubids-purge instead of simply removing the

un because cubids-purge will ensure all associated files, including

idecars and IntendedFor references in the sidecars of fieldmaps, are also

eleted. This change will be reflected in the git history (see Fig. 4E).
9
Returning again to v0_validation.tsv , we can also see that

here is one DWI run missing TotalReadoutTime, a metadata field nec-

ssary for certain pipelines. In this case, we determine that TotalRead-

utTime (TRT) was erroneously omitted from the DWI sidecars. For the

urpose of this example, we assume we are able to obtain the TRT value

or this run (perhaps by asking the scanner technician). Once we have

his value, we manually add it to the sidecar for which it is missing by

pening BIDS_Dataset_DataLad/sub-03/

S. Covitz, T.M. Tapera, A. Adebimpe et al. NeuroImage 263 (2022) 119609

d

w

t

l

-
s

v

-

“
v

f

p

d

d

r

c

w

t

r

t

u

t

b

t

t

t

v

a

d

S

t

S

s

D

G

v

s

p

v

i

i

s

w

D

a
–

(

t

D

t

a
d

r

f

c

i

w

e

a
r

4

e

a
d

t

t

r

w

C

(

v

w

s

i

t

a

c

G

w

s

v

i

D

m

r

t

t

v
-

b

i

t

r

a

p

o

v

e

G

a

s

r

w

i

(

E
-

a

F

E

a

d

ses-phdiff/dwi/sub-03_ses-phdiff_acq-HASC55AP_
wi.json in an editor and adding the following line:

"TotalReadoutTime": 0.0717598, on a new line any-

here inside the curly braces between lines containing parameters and

heir values, save the changes, and close the JSON file. We then save the

atest changes to the dataset with a detailed commit message as follows:

datalad save -d BIDS_Dataset_DataLad
m "Added TotalReadoutTime to
ub-03_ses-phdiff_acq-HASC55AP_dwi.nii.json"

This change will be reflected in the git history (see Fig. 4F).

To verify that there are no remaining validation errors, we rerun

alidation with the following command:

cubids-validate BIDS_Dataset_DataLad v1
-sequential

This command will produce no TSV output and instead print

No issues/warnings parsed, your dataset is BIDS
alid ” to the terminal, which indicates that the dataset is now free

rom BIDS validation errors and warnings.

Along with parsing the BIDS validation errors in our dataset, it is im-

ortant to understand the dataset’s structure, heterogeneity, and meta-

ata errors. To accomplish these tasks, we use cubids-group . Large

atasets almost inevitably contain multiple validation and metadata er-

ors. As such, it is typically useful to run both cubids-validate and

ubids-group in parallel, as validation errors are better understood

ithin the context of a dataset’s heterogeneity. Additionally, being able

o see both the metadata errors that grouping reveals alongside BIDS er-

ors that the validator catches gives users a more comprehensive view of

he issues they will need to fix during the curation process. Note that if

sers choose to provide just a pass in just a filename prefix (e.g. v0) for

he second argument, then CuBIDS will put the four grouping outputs in

ids_dir/code/CuBIDS . If users provide a path (e.g. $PWD/v0),
hen output files will go to the specified location. The command to run

he grouping function is as follows:

cubids-group BIDS_Dataset_DataLad v0
As noted in Table 1 , this command will produce four tables

hat display the dataset’s heterogeneity in different ways. First,

0_summary.tsv contains all detected Key and Parameter groups

nd provides a high-level overview of the heterogeneity in the entire

ataset (see Supplementary Data 1C). Second, v0_files.tsv (see

upplementary Data 1D) maps each imaging file in the BIDS directory

o a Key and Parameter group. Third, v0_AcqGrouping.tsv (see

upplementary Data 1E) maps each session in the dataset to an Acqui-

ition Group. Finally, v0_AcqGroupInfo.txt (see Supplementary

ata 1F) lists the set of scanning parameters present in each Acquisition

roup.

The next step in the CuBIDS curation process is to examine

0_summary.tsv , which allows for automated metadata quality as-

urance (QA)––the identification of incomplete, incorrect, or unusable

arameter groups based on acquisition fields such as dimension and

oxel sizes, number of volumes, etc. While v0_validation.tsv
dentified all BIDS validation errors present in the dataset, it will not

dentify several issues that might be present with the sidecars. Such is-

ues include instances of erroneous metadata and missing sidecar fields,

hich may impact successful execution of BIDS Apps.

Examining v0_summary.tsv (see Supplementary

ata 1C) we can see that one DWI Parameter Group––

cquisition-HASC55AP_datatype-dwi_suffix-dwi__2 –
contains only one image (see “Counts ” column) with only 10 vol

see “NumVolumes ” column). Since the majority of DWI runs in

his dataset have 61 vol, CuBIDS assigns this single run to a “Non-

ominant ”, or “Variant ” Parameter Group and populates that Parame-

er Group’s “RenameKeyGroup ” column in v0_summary.tsv with

cquisition-HASC55APVARIANTNumVolumes_datatype-
wi_suffix-dwi . For the purpose of this demonstration, we elect to

emove this run because it does not have enough volumes to be usable
10
or most analyses. To do this, we can either use cubids-purge , or we

an edit v0_summary.tsv by adding “0 ″ to the “MergeInto ” column

n the row (Parameter Group) we want to remove. For this walkthrough,

e chose the latter. To do this, we open v0_summary.tsv in an

ditor, navigate to row 4, which contains all information for Key Group

cquisition-HASC55AP_datatype-dwi_suffix-dwi Pa-

ameter Group 2. If we scroll to the NumVolumes column (row

, column S), we see this Parameter Group has only 10 vol, which

xplains why it received an auto-generated Rename Key Group value of

cquisition-HASC55APVARIANTNumVolumes_datatype-
wi_suffix-dwi . Remaining in this same row, we navigate back

o column C, which is labeled “MergeInto ” and manually a “0 ″ to

he cell in row 4 column C. This will ensure all runs in that Pa-

ameter Group (in this example, just one scan) are removed when

e run cubids-apply . We then export and save the TSV in our

uBIDS_Test working directory as v0_edited_summary.tsv
see Supplementary Data 1 G). We will then save this edited

ersion of v0_summary.tsv as v0_edited_summary.tsv ,
hich will be passed into cubids-apply in our next curation

tep.

Now that all metadata issues have been remedied––both the val-

dation and summary outputs appear problem-free––we are ready

o rename our files based on their Rename Key Group values and

pply the requested deletion in v0_edited_summary.tsv . The

ubids-apply function renames runs in each Variant Parameter

roup according to the metadata parameters with a flag “VARIANT ”,

hich is useful because the user will then be able to see, in each

can’s filename, which metadata parameters associated with that run

ary from those in the acquisition’s Dominant Group. Note that like

n cubids-group , cubids-apply requires full paths to the BIDS

ataset, summary and files TSVs, and output prefix. If the edited sum-

ary and files TSVs are located in the bids_dir/code/CuBIDS di-

ectory, the user may just pass in those filenames. Otherwise, specifying

he path to those files is necessary. We execute cubids-apply with

he following command:

cubids-apply BIDS_Dataset_DataLad
0_edited_summary.tsv v0_files.tsv v1
-use-datalad

Checking our git log, we can see that all changes from apply have

een saved (see Fig. 4G). As a final step, we can check the four group-

ng TSVs cubids-apply produces (see Supplementary Data 1H-K)

o ensure they look as expected––that all files with variant scanning pa-

ameters have been renamed to indicate the parameters that vary in the

cquisition fields of their filenames (and therefore Key Group names).

At this stage, the curation of the dataset is complete; next is pre-

rocessing. CuBIDS facilitates this subsequent step through the creation

f an Exemplar Dataset: a subset of the full dataset that spans the full

ariation of acquisitions and parameters by including one subject from

ach Acquisition Group. By testing only one subject per Acquisition

roup, users are able to pinpoint both the specific metadata values

nd runs that may be associated with pipeline failures; these acqui-

ition groups could then be evaluated in more detail and flagged for

emediation or exclusion. The Exemplar Dataset can easily be created

ith the cubids-copy-exemplars command, to which we pass

n v1_AcqGrouping.tsv ––the post-apply acquisition grouping TSV

see Supplementary Data 1 J).

cubids-copy-exemplars BIDS_Dataset_DataLad
xemplar_Dataset v1_AcqGrouping.tsv
-use-datalad

Since we used the use-datalad flag, Exemplar_Dataset is
 DataLad dataset with the version history tracked in its git log (see

ig. 4H). Once a preprocessing pipeline completes successfully on the

xemplar Dataset, the full dataset can be executed with confidence, as

 pipeline’s behavior on the full range of metadata heterogeneity in the

ataset will have already been discovered during exemplar testing.

S. Covitz, T.M. Tapera, A. Adebimpe et al. NeuroImage 263 (2022) 119609

3

w

m

T

o

C

t

I

R

p

i

i

h

w

t

b

1

f

j

D

t

d

n

t

r

t

o

c

D

w

f

c

t

r

T

s

d

D

c

m

t

s

d

t

i

t

p

F

t

m

d

s

c

r

t

t

s

fi

a

6

t

D

f

s

B

i

t

t

c

r

t

r

c

i

w

p

r

a

t

S

w

c

4

d

t

fl

r

a

w

t

m

r

w

e

2

c

u

f

p

c

i

4

B

d

d

t

a

i

w

c

t

s

t

l

4

s
.2. Application to a large-scale study of brain development

In addition to applying the CuBIDS workflow to a toy dataset, here

e describe the workflow applied to the Philadelphia Neurodevelop-

ental Cohort (PNC), a multimodal dataset of n = 1601 participants.

he PNC data is publicly available (Satterthwaite et al., 2014) and is

ne of many datasets encompassing the forthcoming Reproducible Brain

hart (RBC)––a large, developmental neuroimaging aggregation initia-

ive led jointly by the University of Pennsylvania and the Child Mind

nstitute. CuBIDS was developed, in part, to help manage the data for

BC. The curated version of the dataset will be publicly available as

art of the forthcoming RBC data release. The PNC curation workflow

nvolved iterative rounds of checking and fixing due to the heterogene-

ty and size of the dataset, so the following section will be a summary of

ow we used CuBIDS to curate this dataset (rather than a step-by-step

alkthrough).

One of our early curation actions was to take inventory regarding

he metadata heterogeneity of PNC by obtaining the initial summary ta-

le. To do this, we ran cubids-group , which requires approximately

5 min to finish on PNC. For smaller datasets including our toy dataset

rom the walkthrough described above, cubids-group completes in

ust seconds. Examining the initial summary table (see Supplementary

ata 2B), we find that PNC contains 144 Parameter Groups––runs con-

aining both identical BIDS filename key-value pairs and identical meta-

ata parameters present in their sidecars. The summary table is orga-

ized by MRI image type, so we can easily see that some MRI image

ypes and acquisitions in the dataset are much more heterogeneous with

espect to their metadata parameters than are others. For example, from

he table, we can see that PNC has only one Key Group for T1w runs and

nly three Parameter Groups. Furthermore, according to the “Counts ”

olumn of the tsv, the vast majority of T1w runs (n = 1597), are in the

ominant Parameter Group. By contrast, in this same summary table

e can see that there are 62 different Parameter Groups in the dataset

or task-frac2back BOLD fMRI scans. Examining the “RenameKeyGroup ”

olumn of those frac2back rows in the summary table, we can see that

he primary source of variance is the number of volumes acquired.

Our team relied upon the summary table to make a number of cu-

ation decisions–– especially inclusion/exclusion based on metadata.

he summary table provided a platform for collaboration and discus-

ion among the team that was curating, validating, and modifying the

ataset. Since PNC was curated with DataLad and is saved as a DataLad

ataset, a detailed history of the curation decisions can be found in the

ommit history. Each change to the dataset was saved with a commit

essage, so all modifications we made to the dataset are tracked and

agged with a shasum. If we want to restore PNC to a previous curation

tage, we can so using cubids-undo .
Modifications to PNC during the curation stage, documented in the

ataset’s git log, include creating and adding previously missing events

svs, adding NIfTI header information to all sidecars in the dataset (us-

ng the cubids-add-nifti-info command), removing DWI runs

hat do not have enough volumes to successfully run through diffusion

reprocessing pipelines (e.g. QSIPrep), and adding Parallel Reduction

actor in Plane to two sidecars that were initially missing this field. Once

he validation and grouping outputs revealed we had no more BIDS and

etadata issues to fix, we ran cubids-apply on the dataset to pro-

uce a new set of TSVs (see Supplementary Data 2G-J). As can be

een in the summary table (see Supplementary Data 2 G) generated by

ubids-apply , all runs in Variant (e.g., non-Dominant) Groups were

enamed based on the scanning parameters that are variant (see Fig. 3).

We then executed the final step of the CuBIDS workflow, which en-

ailed running cubids-copy-exemplars . This command creates

he Exemplar Dataset––a DataLad-tracked BIDS dataset containing one

ubject from each Acquisition Group (see Supplementary Data 2I). The

nal, curated version of PNC contains 1601 participants, 15,077 scans,

nd 65 Acquisition Groups. Thus, the Exemplar Dataset contains only

5 participants but spans the entire dataset’s parameter space, reducing
11
he scope of the pipeline testing by 96%. We then used this Exemplar

ataset to test MRI image type-specific preprocessing pipelines such as

MRIPrep and QSIPrep.

For large datasets especially, exemplar testing can be a necessary

tep; users will often need to go back and re-curate aspects of the

IDS data based on metadata errors that only become apparent dur-

ng pipeline runs on the Exemplar Dataset. For example, after we ran

he PNC Exemplar Dataset through QSIPrep, we noticed that one par-

icipant (whose Acquisition Group includes 34 participants), failed to

omplete the pipeline successfully. After examining the error log, we

ealized that for this participant, the number of bvals did not match

he number of volumes in the scan’s sidecar (which was pulled di-

ectly from the NIfTI header and added to the sidecar during the

ubids-add-nifti-info step of curation). Since all participants

n the same Acquisition Group possess identical scanning parameters,

hen a pipeline encounters a metadata error in an Exemplar Subject, all

articipants in that Acquisition Group will have that same error and thus

equire the same fix. Accordingly, we used cubids-purge to remove

ll DWI runs from that Exemplar Group and reran cubids-group
o obtain our final CuBIDS outputs (see Supplementary Data 2K-N).

ince all other Exemplar Subjects passed through QSIPrep successfully,

e were then able to run the pipeline through the entire dataset without

oncern that erroneous metadata would impact preprocessing.

. Discussion

Ample recent evidence has emphasized the challenges to repro-

ucibility in neuroimaging research (Kang et al., 2016). Although of-

en overlooked, curation can be a critical part of the scientific work-

ow. Because curation is often the first step after data acquisition, er-

ors in curation can ramify throughout each subsequent stage. BIDS

pps adapt to metadata encountered in an automatic and flexible way,

hich can be a vulnerability in ensuring datasets are processed iden-

ically. If BIDS data are improperly curated, pre-processing pipelines

ay mis-configure, with the potential to impact eventual results. Cu-

ation challenges are particularly acute in large-scale data resources,

hich continue to proliferate (e.g., UK Biobank, ABCD, PNC, HBN, HCP,

tc.) (Bycroft et al., 2018 ; Karcher and Barch, 2021 ; Satterthwaite et al.,

014 ; Alexander et al., 2017 ; Van Essen et al., 2013). In large datasets,

uration is often an iterative, manual process that is neither well doc-

mented nor reproducible. To address these challenges, CuBIDS allows

or reproducible data curation at scale. As discussed below, our software

rovides five main advantages: stability in validation, reproducibility in

uration, the ability to identify and manage heterogeneity, transparency

n naming, and accelerated pipeline testing.

.1. Stable BIDS validation at scale

The BIDS Validator is the current standard tool for validation of all

IDS datasets. It is widely used and plays an essential role in the stan-

ard BIDS workflow; it effectively identifies the ways in which a dataset

oes not comply with BIDS standards. However, it does not scale well, at

imes failing unpredictably on larger samples. Furthermore, when run in

 Linux shell, the validator prints (often a large volume) of text describ-

ng the errors and warnings to the terminal screen. For large datasets

ith many errors and warnings, such information is often quite diffi-

ult to visualize and comprehend. We wrapped the BIDS Validator in

he cubids-validate CLI to address these challenges, creating a

calable implementation that yields a readable TSV. This allows users

o easily identify the range of validation issues that may be present in a

arge-scale dataset.

.2. Reproducible data curation

Curation of large, heterogeneous BIDS datasets is an iterative, multi-

tep task. However, this process is often not reproducible, which, in turn,

S. Covitz, T.M. Tapera, A. Adebimpe et al. NeuroImage 263 (2022) 119609

m

v

i

F

n

I

t

r

w

c

4

d

a

e

e

t

w

b

q

d

o

a

H

p

g

p

b

u

e

p

c

4

g

a

t

i

a

t

t

m

s

r

s

4

a

p

o

t

w

v

d

p

s

o

w

r

t

4

F

r

s

d

t

p

e

t

d

e

t

s

i

o

h

d

u

(

N

a

S

2

a

5

fi

s

a

c

B

D

s

o

s

t

t

D

c

C

v

v

A

W

i

R

r

&

i
ay compromise the reproducibility of subsequent workflows. Without

ersion control, any decision made during the curation process––such as

nclusion/exclusion decisions or editing metadata––will go unrecorded.

urther, if the person curating the data makes a mistake, they will have

o clear way to undo that mistake and revert the data to a prior state.

n leveraging CuBIDS’ use of DataLad, users can save each change made

o a dataset with a detailed commit message (e.g. “Removed all DWI

uns with less than 30 vol ”). If a user erroneously changes the data and

ants to undo those changes, cubids-undo reverts the most recent

ommit.

.3. Parsing heterogeneity in large-scale data resources

While cubids-validate will catch instances where the data

oes not comply with BIDS format, it has important limitations. For ex-

mple, validation does not always account for missing JSON sidecars or

mpty NIfTI headers. In addition, it will neither identify runs that have

rrant metadata values nor those with parameters that might render

he runs unusable. This functionality is provided by cubids-group ,
hich produces parameter-based summary tables that parse the dataset

ased on metadata, allowing for users to visualize and assess metadata

uality in ways that validation cannot.

This functionality is especially critical in the curation of large

atasets. Scaling up both the number of participants and the number

f scanners within a single data resource has the potential to introduce

 massive amount of heterogeneity to that study’s eventual BIDS dataset.

eterogeneity in scanning parameters can result in heterogeneity in pre-

rocessing pipelines; if users are do not appreciate the metadata hetero-

eneity in their dataset, they may be surprised by inconsistencies in

reprocessing settings and outcomes. Further, parameter groups could

e explicitly modeled when accounting for batch effects rather than just

sing scanner or site. Thus, being able to identify and correct metadata

rrors in a heterogeneous dataset is a critical part of the data curation

rocess, as such decisions may impact the derived images from prepro-

essing pipelines.

.4. Enhancing transparency with dominant and variant groups

In order to provide transparent documentation of parameter hetero-

eneity, the cubids-apply function renames runs in each MRI im-

ge type according to their variant metadata parameters. For example, if

he majority of BOLD task-rest runs in a dataset are Oblique but sub-X’s

mage is not oblique, CuBIDS users can choose to accept and apply the

utomatically suggested renaming of “acq-VARIANTObliquity ” to

hat run’s filename. When performing sensitivity analyses on deriva-

ives from datasets that have been curated using CuBIDS, researchers

ay choose to exclude any runs in Non-Dominant Groups to ensure that

canning parameters variance does not affect their results. Alternatively,

esearchers could use image harmonization tools (e.g., ComBat) to en-

ure that such variation does not impact analyses (Fortin et al., 2018).

.5. Accelerating pipeline testing with exemplar datasets

Even after careful curation, the best way to verify successful im-

ge processing is empirical testing. In a highly heterogeneous dataset,

ipeline testing often reveals errors that were not immediately apparent

n initial curation, which usually require minor additional adjustments

o the metadata or exclusion of specific scans. Finding such edge cases

hile processing a large dataset can slow down the workflow, so it is ad-

antageous to conduct pipeline testing before full deployment on a large

ata set. CuBIDS facilitates this process through the creation of Exem-

lar Datasets that include data from each Acquisition Group and thus

pan the full variation of the metadata present. After successful testing

n the Exemplar Dataset, the likelihood that unexpected outcomes occur

hen the full dataset is processed is dramatically reduced. Furthermore,
12
esource usage can be monitored during the exemplar runs to estimate

he runtime and storage demands for processing the entire dataset.

.6. Limitations

CuBIDS possesses several limitations that should be acknowledged.

irst, at present, CuBIDS does not possess a GUI, so running the software

equires basic knowledge of the terminal and Linux machines. However,

uch skills are likely to be a prerequisite for curating large-scale imaging

atasets. Second, if users are curating BIDS Datasets with n > 2500 par-

icipants and using the DataLad-enabled version control option, CuBIDS

rograms that rely on saving changes made to the dataset might experi-

nce runtimes that extend to over an hour––due to the need for DataLad

o index such a large dataset. Third, our add-nifti-info program

oes pull Obliquity, Number of Volumes, Dimension Size, Image Ori-

ntation, and Voxel Sizes from the NIfTI header and adds those values

o the sidecars. However, we do not currently cross-reference existing

idecar metadata with NIFTI header values. This additional functional-

ty would be a good future direction for the software but is currently

utside the scope of this paper. Finally, CuBIDS is currently only able to

andle MRI BIDS, not other MRI image types, and can only be run on

isk––either a local machine or a high performance computing cluster;

sers cannot currently run CuBIDS using either cloud-based computing

e.g., Amazon’s S3) or neuroimaging databases such as the eXtensible

euroimaging Archive Toolkit (XNAT), Longitudinal Online Research

nd Imaging System (LORIS), Collaborative Informatics Neuroimaging

uite (COINS), and the commercial platform Flywheel (Herrick et al.,

016 ; Das et al., 2012 ; Landis et al., 2016). Such functionality may be

dded to the software in future releases.

. Conclusions

Curating large, heterogeneous neuroimaging datasets can be a dif-

cult and frustrating task. As the size and heterogeneity of data re-

ources continues to expand, tools that allow for reproducible curation

re not only helpful but necessary. CuBIDS facilitates efficient identifi-

ation and correction of issues present in the metadata of heterogeneous

IDS datasets in a reproducible manner. Furthermore, CuBIDS Exemplar

atasets allow users to verify that BIDS Apps perform as intended on a

mall sub-sample of participants that spans the entire parameter space

f the dataset, accelerating the processing of all data from the complete

tudy. Together, CuBIDS allows users to simultaneously streamline cura-

ion and ameliorate metadata issues while maximizing reproducibility.

APPENDIX A. SUPPLEMENTARY MATERIAL

Supplementary Data 1 (for toy dataset in Results)

Supplementary Data files 1A-O are zipped into Supplemen-

ary_Data_1.zip (submitted as supplementary material)

eclaration of Competing Interest

The authors of Curation of BIDS (CuBIDS) declare that they have no

ompeting or conflicting interests.

redit authorship contribution statement

Sydney Covitz: Software, Writing – original draft, Writing – re-

iew & editing, Conceptualization. Tinashe M. Tapera: Writing – re-

iew & editing. Azeez Adebimpe: Writing – review & editing. Aaron F.

lexander-Bloch: Writing – review & editing. Maxwell A. Bertolero:

riting – review & editing. Eric Feczko: Writing – review & edit-

ng. Alexandre R. Franco: Writing – review & editing, Data curation.

aquel E. Gur: Writing – review & editing. Ruben C. Gur: Writing –

eview & editing. Timothy Hendrickson: Software, Writing – review

 editing, Data curation. Audrey Houghton: Writing – review & edit-

ng. Kahini Mehta: Writing – review & editing, Data curation. Kristin

S. Covitz, T.M. Tapera, A. Adebimpe et al. NeuroImage 263 (2022) 119609

M

i

e

S

v

F

M

S

a

–

i

A

t

R

R

t

a

D

t

f

C

p

a

g

i

a

h

S

t

R

A

B

C

D

E

G

F

G

H

H

K

K

L

S

V

Y
urtha: Writing – review & editing. Anders J. Perrone: Software, Writ-

ng – review & editing. Tim Robert-Fitzgerald: Writing – review &

diting. Jenna M. Schabdach: Writing – review & editing. Russell T

hinohara: Writing – review & editing. Jacob W. Vogel: Writing – re-

iew & editing. Chenying Zhao: Writing – review & editing. Damien A.

air: Software, Writing – review & editing, Data curation. Michael P.

ilham: Writing – review & editing, Data curation. Matthew Cieslak:

oftware, Writing – original draft, Writing – review & editing, Conceptu-

lization, Supervision. Theodore D. Satterthwaite: Software, Writing

original draft, Writing – review & editing, Data curation, Conceptual-

zation, Supervision.

cknowledgements

This study was supported by grants from the National Insti-

utes of Health : R01MH120482 , R37MH125829 , R01MH113550 ,

01EB022573 , RF1MH116920 , R01MH112847 , R01MH123550 ,

01NS112274 , R01MH123563 . Additional support was provided by

he CHOP-Penn Lifespan Brain Institute, the Penn Brain Science Center,

nd the Center for Biomedical Image Computing and Analytics

ata and code availability statement

A copy of the small, example dataset whose curation we walk

hrough in the Results section is compressed into a ZipFile and available

or download here. Additionally, the Philadelphia Neurodevelopmental

ohort (PNC), the dataset whose curation we summarize in the second

ortion of the Results, is publicly available in the Database of Genotypes

nd Phenotypes (dbGaP accession phs000607.v3.p2).

The source code for CuBIDS is publicly available at https://

ithub.com/PennLINC/CuBIDS , the documentation for our software

s available at https://cubids.readthedocs.io/en/latest/ , and our pack-

ge is available for download on the Python Package Manager (pypi)

ttps://pypi.org/project/cubids/ .

upplementary materials

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.neuroimage.2022.119609 .
13
eferences

lexander, L., Escalera, J., Ai, L., et al., 2017. An open resource for transdiagnostic

research in pediatric mental health and learning disorders. Sci. Data 4, 170181.

doi: 10.1038/sdata.2017.181 .

ycroft, C., Freeman, C., Petkova, D., et al., 2018. The UK Biobank resource with deep phe-

notyping and genomic data. Nature 562, 203–209. doi: 10.1038/s41586-018-0579-z .

ieslak, M., Cook, P.A., He, X., et al., 2021. QSIPrep: an integrative platform for

preprocessing and reconstructing diffusion MRI data. Nat. Methods 18, 775–778.

doi: 10.1038/s41592-021-01185-5 .

as, S., Zijdenbos, A.P., Harlap, J., Vins, D., Evans, A.C., 2012. LORIS: a web-based

data management system for multi-center studies. Front. Neuroinformatics 5, 37.

doi: 10.3389/fninf.2011.00037 .

steban, O., Markiewicz, C.J., Blair, R.W., et al., 2019. fMRIPrep: a robust

preprocessing pipeline for functional MRI. Nat. Methods 16 (1), 111–116.

doi: 10.1038/s41592-018-0235-4 .

orgolewski, K., Auer, T., Calhoun, V., et al., 2016. The brain imaging data structure, a

format for organizing and describing outputs of neuroimaging experiments. Sci. Data

3, 160044. doi: 10.1038/sdata.2016.44 .

ortin, J.P., Cullen, N., Sheline, Y.I., Taylor, W.D., Aselcioglu, I., Cook, P.A.,

Adams, P., Cooper, C., Fava, M., McGrath, P.J., McInnis, M., Phillips, M.L.,

Trivedi, M.H., Weissman, M.M., Shinohara, R.T., 2018. Harmonization of corti-

cal thickness measurements across scanners and sites. Neuroimage 167, 104–120.

doi: 10.1016/j.neuroimage.2017.11.024 , 2018 Feb 15 .

orgolewski, K., et al., 2017. BIDS apps: improving ease of use, accessibility,

and reproducibility of neuroimaging data analysis methods. PLoS Comput. Biol.

doi: 10.1371/journal.pcbi.1005209 .

alchenko, et al., 2021. DataLad: distributed system for joint management of code, data,

and their relationship. J. Open Source Softw. 6 (63), 3262. doi: 10.21105/joss.03262 .

errick, R., Horton, W., Olsen, T., McKay, M., Archie, K.A., Marcus, D.S., 2016.

XNAT central: open sourcing imaging research data. Neuroimage 124, 1093–1096.

doi: 10.1016/j.neuroimage.2015.06.076 .

ang, J., et al., 2016. Editorial: recent advances and challenges on big data analysis in

neuroimaging. Front. Neurosci. doi: 10.3389/fnins.2016.00505 .

archer, N.R., Barch, D.M., 2021. The ABCD study: understanding the development of

risk for mental and physical health outcomes. Neuropsychopharmacology 46, 131–

142. doi: 10.1038/s41386-020-0736-6 .

andis, D., Courtney, W., Dieringer, C., Kelly, R., King, M., Miller, B., et al.,

2016. COINS data exchange: an open platform for compiling, curat-

ing, and disseminating neuroimaging data. Neuroimage 124, 1084–1088.

doi: 10.1016/j.neuroimage.2015.05.049 .

atterthwaite, T., Elliott, M., Ruparel, K., Prabhakaran, K., Calkins, M., Hop-

son, R., Jackson, C., Keefe, J., Riley, M., Mensh, Frank, Sleiman, Patrick,

Verma, Ragini, Davatzikos, Christos, Gur, Ruben, Gur, Raquel., 2014. Neu-

roimaging of the philadelphia neurodevelopmental cohort. Neuroimage 86.

doi: 10.1016/j.neuroimage.2013.07.064 .

an Essen, D.C., et al., 2013. The WU-Minn Human Connectome project: an overview.

Neuroimage 80, 62–79. doi: 10.1016/j.neuroimage.2013.05.041 , ISSN 1053-8119 .

arkoni, et al., 2019. PyBIDS: python tools for BIDS datasets. J. Open Source Softw. 4

(40), 1294. doi: 10.21105/Joss.01294 .

https://doi.org/10.13039/100000002
https://github.com/PennLINC/CuBIDS
https://cubids.readthedocs.io/en/latest/
https://pypi.org/project/cubids/
https://doi.org/10.1016/j.neuroimage.2022.119609
https://doi.org/10.1038/sdata.2017.181
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1038/s41592-021-01185-5
https://doi.org/10.3389/fninf.2011.00037
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1016/j.neuroimage.2017.11.024
https://doi.org/10.1371/journal.pcbi.1005209
https://doi.org/10.21105/joss.03262
https://doi.org/10.1016/j.neuroimage.2015.06.076
https://doi.org/10.3389/fnins.2016.00505
https://doi.org/10.1038/s41386-020-0736-6
https://doi.org/10.1016/j.neuroimage.2015.05.049
https://doi.org/10.1016/j.neuroimage.2013.07.064
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.21105/Joss.01294

	Curation of BIDS (CuBIDS): A workflow and software package for streamlining reproducible curation of large BIDS datasets
	1 Introduction
	2 Materials and methods
	2.1 Data and code availability statement
	2.2 Ethics statement
	2.3 Overview
	2.4 Software development practices
	2.5 Installation, setup, and version control
	2.6 Definitions
	2.7 Accounting for NIfTI header information
	2.8 BIDS validation
	2.9 Grouping: heterogeneity detection and classification
	2.10 Applying changes
	2.11 Customizable configuration
	2.12 Exemplar testing

	3 Results
	3.1 The CuBIDS workflow for curating a BIDS dataset (example dataset)
	3.2 Application to a large-scale study of brain development

	4 Discussion
	4.1 Stable BIDS validation at scale
	4.2 Reproducible data curation
	4.3 Parsing heterogeneity in large-scale data resources
	4.4 Enhancing transparency with dominant and variant groups
	4.5 Accelerating pipeline testing with exemplar datasets
	4.6 Limitations

	5 Conclusions
	Declaration of Competing Interest
	Credit authorship contribution statement
	Acknowledgements
	Data and code availability statement
	Supplementary materials
	References

