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Adolescence is characterized by rapid development of executive function. Working memory (WM) is a key element of executive function,
but it is not known what brain changes during adolescence allow improved WM performance. Using a fractal n-back fMRI paradigm, we
investigated brain responses to WM load in 951 human youths aged 8 –22 years. Compared with more limited associations with age, WM
performance was robustly associated with both executive network activation and deactivation of the default mode network. Multivariate
patterns of brain activation predicted task performance with a high degree of accuracy, and also mediated the observed age-related
improvements in WM performance. These results delineate a process of functional maturation of the executive system, and suggest that
this process allows for the improvement of cognitive capability seen during adolescence.

Introduction
Adolescence is a dynamic period of rapid behavioral transitions
observed across species (Brenhouse and Andersen, 2011). The
adolescent period is also notable for substantial morbidity due to
failures of executive function (Ernst et al., 2006; Somerville and
Casey, 2010), and is often when neuropsychiatric disorders asso-
ciated with deficits of executive function first manifest (Paus et
al., 2008). Therefore, establishing how brain function impacts
behavior as it unfolds during adolescence is necessary for under-
standing both the normal development of executive function and
its aberrations (Rapoport et al., 1999; Insel, 2009).

A central component of the architecture of executive function
is working memory (WM), defined as the ability to keep infor-
mation in a buffer where further processing may occur (Botvin-
ick et al., 2001). WM improves during adolescence: we recently
showed in a sample of 3500 youths that WM has a protracted

course of development over the entire adolescent period (Gur et
al., 2012). However, the functional brain changes that allow im-
provement in WM during this period remain insufficiently char-
acterized. Prior work has mainly examined how activation of the
executive network changes with age (Casey et al., 2005; Luna et
al., 2010a), with sparse attention to the relationship with WM
performance. However, individual differences in both cognitive
performance and brain maturation (Giedd and Rapoport, 2010)
at any given age are substantial. Chronological age may thus pro-
vide a limited index of relevant developmental changes in brain
function, impairing the sensitivity of studies seeking to identify
the key elements of executive system development.

In contrast, WM performance may provide a more robust
correlate of the development of the capabilities of executive brain
circuitry. Studies in adults have shown that WM performance is
associated with both greater activation of the executive network
(Callicott et al., 1999; Shamosh et al., 2008) as well as deactivation
of nonexecutive regions, including hubs of the default mode net-
work (DMN; Persson et al., 2007; Anticevic et al., 2010). Simi-
larly, diminished connectivity between the executive network
and DMN is also one of the hallmarks of adolescent brain
development (Power et al., 2010), with greater within-
network connectivity and diminished between-network con-
nectivity (Fair et al., 2007a,b; Supekar et al., 2009; Anderson et
al., 2011; Satterthwaite et al., 2013b). Such evidence raises the
possibility that the evolving functional architecture of the ad-
olescent brain may allow for the reciprocal activation of the
executive system and deactivation of the DMN, which is asso-
ciated with better performance.

In this study, we tested the hypothesis that improvements in
WM performance observed during adolescence are the result of
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increased executive system recruitment
and concomitant suppression of the
DMN. We were able to dissociate rela-
tionships between age and performance
by virtue of a large sample studied as part
of the Philadelphia Neurodevelopmental
Cohort (PNC; Satterthwaite et al., 2013c).
As described below, our data provide
novel evidence for a process of functional
maturation of the executive system, which
allows for enhanced performance during
the critical period of adolescence.

Materials and Methods
Participants. The PNC is a collaboration between the Center for Applied
Genomics at Children’s Hospital of Philadelphia (CHOP) and the Brain
Behavior Laboratory at the University of Pennsylvania (Penn). Study
procedures were reviewed and approved by the Institutional Review
Board of Penn and CHOP. The target population-based sample is 10,000
youths who presented to the CHOP network for a pediatric visit and
volunteered to participate in genomic studies of complex pediatric dis-
orders (Gur et al., 2012). A subsample of 1445 subjects, stratified by age
and gender, were randomly selected for neuroimaging. The target sub-
jects from this sample consisted of children, adolescents, and young
adults aged 8 –21 years at the time of study enrollment; this age range was
chosen so as to sample the entire adolescent epoch, as well as the late-
childhood and young-adulthood years that bound this critical period.
For further details regarding the design and data acquisition strategy of
the PNC, see Satterthwaite et al. (2013c). Of the 1445 subjects imaged,
1316 completed the n-back task discussed here. In total, 494 subjects were
excluded for poor data quality or a history that suggested potential ab-
normalities of brain development, yielding a final sample of 951 subjects
aged 8 –22 years (age calculated at the date of the scan; mean age � 15.2
years; SD � 3.5 years; 419 males). Specific reasons for exclusion included
the following: a history of inpatient psychiatric hospitalization (n � 51);
a history of a medical condition that might potentially affect brain func-
tion (n � 77); use of psychotropic medications or drugs (n � 168); an
incidentally encountered abnormality of brain structure (n � 18); failure
to perform the task at a minimal level (�2 SDs, �8 nonresponses on the
0-back condition; n � 95); high in-scanner motion (mean relative dis-
placement �0.5 mm or maximum relative displacement �6 mm; n �
216); or poor image coverage (n � 23). Several subjects met the exclusion
criteria for several reasons.

Task paradigm. As previously described (Satterthwaite et al., 2012), we
used the fractal n-back task (Ragland et al., 2002) to measure working-
memory function (Fig. 1A). The task was chosen because it is a reliable
probe of the executive system and is not contaminated by lexical process-
ing abilities that also evolve during adolescence (Schlaggar et al., 2002;
Brown et al., 2005). The task involved presentation of complex geometric
figures (fractals) for 500 ms, followed by a fixed interstimulus interval of
2500 ms. This occurred under the following three conditions: 0-back,
1-back, and 2-back, producing different levels of WM load. In the 0-back
condition, participants responded with a button press to a specified tar-
get fractal. For the 1-back condition, participants responded if the cur-
rent fractal was identical to the previous one; in the 2-back condition,
participants responded if the current fractal was identical to the item
presented two trials previously. Each condition consisted of a 20-trial
block (60 s); each level was repeated over three blocks. The target/foil
ratio was 1:3 in all blocks, with 45 targets and 135 foils overall. Visual
instructions (9 s) preceded each block, informing the participant of the
upcoming condition. The task included a total of 72 s of rest, while a
fixation crosshair was displayed, which was distributed equally in three
blocks of 24 s at the beginning, middle, and end of the task. Total task
duration was 693 s.

Image acquisition. All subject data were acquired on the same scanner
(3 tesla, 32 channel head coil; Tim Trio Siemens) using the same imaging
sequences. Blood oxygen level-dependent fMRI was acquired using a
whole-brain, single-shot, multislice, gradient-echo echoplanar sequence

with the following parameters: 231 volumes; TR, 3000; TE, 32 ms; flip
angle, 90°; FOV, 192 � 192 mm; matrix 64 � 64; 46 slices; slice thickness/
gap 3/0 mm; effective voxel resolution, 3.0 � 3.0 � 3.0 mm. Before
functional time series acquisition, a magnetization-prepared rapid ac-
quisition gradient echo T1-weighted image was acquired to aid spatial
normalization to standard atlas space, using the following parameters:
TR, 1810 ms; TE, 3.51 ms; TI, 1100 ms; FOV, 180 � 240 mm; matrix,
192 � 256; 160 slices; slice thickness/gap, 1/0 mm; flip angle, 9°; effective
voxel resolution, 0.9 � 0.9 � 1 mm. Additionally, a B0 field map was
acquired for application of distortion correction procedures, using the
following double-echo gradient recall echo sequence: TR, 1000 ms; TE1,
2.69 ms; TE2, 5.27 ms; 44 slices; slice thickness/gap, 4/0 mm; FOV, 240
mm; effective voxel resolution, 3.8 � 3.8 � 4 mm. Before scanning, to
acclimate subjects to the MRI environment, a mock scanning session
where subjects practiced the task was conducted using a decommissioned
MRI scanner and head coil. Mock scanning was accompanied by acoustic
recordings of the noise produced by gradient coils for each scanning
pulse sequence. During these sessions, feedback regarding head move-
ment was provided using the MoTrack motion tracking system (Psychol-
ogy Software Tools). Motion feedback was given only during the mock
scanning session. To further minimize motion, before data acquisition
subjects’ heads were stabilized in the head coil using one foam pad over
each ear and a third over the top of the head.

Behavioral data analysis. Correct responses, false positives, and median
response time to correct responses were calculated at each level of WM
load (0-back, 1-back, 2-back) for each subject. The effect of WM load on
each measure of performance was evaluated using a repeated-measures
ANOVA. As previously (Shamosh et al., 2008), to relate task performance
to the neuroimaging data, task performance was summarized using the
signal detection measure d� (Snodgrass and Corwin, 1988). This measure
considers both correct responses and false positives to limit the influence
of response bias. Subject age was related to d�, with sex as a covariate
using a partial Pearson’s correlation.

Image preprocessing. All imaging data were loaded into an XNAT da-
tabase (Marcus et al., 2007) that included a custom front-end (QLUX;
Satterthwaite et al., 2013c), which provided quality assurance by check-
ing that acquisition parameters matched a study-defined template. Basic
preprocessing of the n-back task images was completed using tools that
are part of FSL (Smith et al., 2004) within the XNAT framework using
NiPype (Gorgolewski et al., 2011) and PyXNAT (Schwartz et al., 2012).
Images were slice time corrected, skull stripped using BET (Smith, 2002),
motion-corrected using MCFLIRT (Jenkinson et al., 2002), spatially
smoothed (6 mm FWHM), and grand mean scaled using mean-based
intensity normalization.

Subject-level statistical analyses were performed using FILM with local
autocorrelation correction as implemented in FEAT (Jenkinson et al.,
2012). Three condition blocks (0-back, 1-back, and 2-back) were mod-
eled using a canonical hemodynamic response function. Six motion
parameters and the instruction period were included as nuisance covari-
ates; the baseline rest condition (fixation point) was treated as the un-
modeled baseline. It should be noted that while we have recently
demonstrated the effectiveness of a combination of higher-order motion
parameters (Friston et al., 1996) and spike regression (Lemieux et al.,
2007) for control of motion artifact in the preprocessing of resting-state
functional connectivity data (Satterthwaite et al., 2013a,b), we have not

Figure 1. Experimental paradigm and behavioral results. Fractal n-back task. Fractals were displayed under three conditions:
0-back, 1-back, and 2-back. Each condition consisted of a 20-trial block (60 s); each level was repeated over three blocks.
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yet tested this method for block-design fMRI task data and thus did not
apply it here. However, as described below, we did control for the effect of
motion at the group level.

The contrast of interest in this design was the parametric increase in
WM load (2-back � 0-back), which has been shown to specifically isolate
the executive network (Ragland et al., 2002). The contrasts of each level
of WM load versus baseline were also evaluated. For each subject, statis-
tical maps for each contrast were generated and entered into second-level
group analyses after image registration to template space.

Image registration. Subject-level statistical maps were coregistered to
the T1 image using boundary-based registration (Greve and Fischl, 2009)
with integrated distortion correction as implemented using tools that are
part of FSL (Jenkinson et al., 2012). Whole-head T1 images were regis-
tered to the Montreal Neurologic Institute 152 1 mm template using the
diffeomorphic SyN registration of ANTS (Avants et al., 2008, 2011; Klein
et al., 2009). Images were downsampled to 2 mm resolution before
group-level analysis. All registrations were inspected manually and also
evaluated for accuracy using spatial correlations. Subject-space statistical
maps were registered to the template by concatenating coregistration,
distortion correction, normalization, and downsampling transforma-
tions, so that only one interpolation was performed in the entire process.

Main group-level analyses. To investigate the effects of age and perfor-
mance on brain activation to WM load, three voxelwise linear mixed-
effects analysis using the FSL FLAME1 procedure (Woolrich et al., 2009)
were performed on the contrast of 2-back � 0-back. In the first model,
we examined the effect of age without controlling for collinearity with
performance. Second, we analogously examined the effect of perfor-
mance without controlling for age. Third and finally, age and perfor-
mance were included in the same model together to account for
collinearity and reveal independent effects. In all three models, sex and
subject motion (summarized as the mean relative displacement esti-
mated by MCFLIRT) were included as covariates; the impact of including
motion as a covariate was evaluated in subsequent analyses (see below).
For these and all other voxelwise group-level analyses described below,
type I error was controlled using cluster correction using a voxel height of
z � 3.09 ( p � 0.01), calculated using Monte-Carlo simulations in AFNI
AlphaSim (Cox, 1996).

Age and performance effects at each level of WM load within the executive
network and DMN. While our main contrast of interest was 2-back versus
0-back, we additionally examined the effects of age and performance at
each individual level of WM load (0-back, 1-back, and 2-back). Specifi-
cally, we examined the effects of age and performance on a voxelwise level
at each level of WM load when the two variables were modeled jointly (as
before, sex and motion were included as covariates). Furthermore, to
examine age and performance effects at each level of WM load within
specific nodes of the executive and default networks, the percentage sig-
nal change versus baseline was extracted for each level of WM load within
a set of functional regions of interest (ROIs).

Functional ROIs were delineated from the 2-back versus 0-back map.
Specifically, to isolate core regions of the executive network with a high
degree of anatomic specificity, the 2-back � 0-back map from the com-
plete sample (n � 951) was thresholded at z � 20; clusters of �100 voxels
were discarded. This high threshold was selected because at lower thresh-
olds substantial areas of white matter were included due to spatial
smoothing, the very high statistical power of the large sample, and the
robust nature of the contrast. Next, a watershed algorithm implemented
in MATLAB was applied to parse confluent regions of interest. The wa-
tershed procedure separates contiguous regions of voxels into subregions
by first identifying local maxima, each of which becomes a peak within a
subregion. Subregion boundaries are defined by the watershed algo-
rithm, which computes how water would drain into the inverted topol-
ogy of the activation map. Last, a second extent threshold (k � 50 voxels)
was used to remove undesirably small subregions by absorbing them into
the nearest neighboring suprathreshold subregion.

When this procedure was applied to the activated contrast of 2-back �
0-back, a set of 21 functional ROIs was produced within the executive
network (see Results) that corresponded to a high degree with previously
published meta-analyses of WM (Owen et al., 2005; Rottschy et al.,
2012). The watershed procedure was not applied to the 0-back � 2-back

map as the regions of interest were already separated by the high initial
(z � 20) threshold. Well known hubs of the DMN were selected from this
map according to the literature (Raichle et al., 2001; Buckner et al., 2008),
including ventromedial prefrontal cortex (vmPFC), posterior parietal
cortex, right/left hippocampus, and right/left lateral temporal cortex. (A
task-deactivated cluster in the right lateral temporal cortex was discon-
tinuous at this z � 20 threshold but was considered as one region to
maintain anatomic correspondence with contralateral left lateral tempo-
ral cortex.) Finally, signal change at each level of WM load for every ROI
was related to age and performance jointly using partial correlations (sex
and motion were also included as covariates). Partial correlations were
considered significant below a false discovery rate (Q � 0.05) corrected
threshold.

Overview of supplementary analyses conducted. As described below,
results of the main group-level analyses revealed that activation of the
executive system and deactivation of the DMN to parametric variation of
WM load was robustly related to WM performance, but was only weakly
related to age. To understand these results in more detail and also to
evaluate potential confounds, we conducted a set of five supplementary
group-level analyses. First, as age effects may not be linear, we modeled
nonlinear effects of age using a quadratic regression. Second, to further
examine age and performance effects, we examined subsamples of sub-
jects that were categorically defined. Third, to ascertain whether the re-
lationship between activation and cognitive capability was generalizable
beyond the in-scanner measure of performance initially used, we corre-
lated activation during the WM task to an out-of-scanner test of execu-
tive function. Fourth, as several studies have previously demonstrated
that brain maturation in certain cases may be more tightly linked to
pubertal development rather than raw chronologic age, we examined the
effect of puberty on executive network activation in a subsample of pre-
pubertal and postpubertal subjects. Fifth and finally, to understand the
impact of the inclusion of motion as a covariate in the main group-level
model, we reran the group-level model both without a motion covariate
and in select subsamples where performance or age was not correlated
with motion. As for the main group-level analyses, type I error was con-
trolled with cluster correction using a voxel height of z � 3.09 ( p � 0.01).

Examination of nonlinear effects of age. Prior studies of structural brain
development have demonstrated that trajectories of brain maturation are
often nonlinear (Giedd et al., 1999; Sowell et al., 2003; Lenroot et al.,
2007). As a standard general linear model may be insensitive to such
effects, we searched for nonlinear age effects using a quadratic regression.
Here, age was modeled using both linear and nonlinear (quadratic)
terms; performance, sex, and motion were included as covariates.

Analysis of categorically defined age and performance. The main group-level
analysis controlled for collinearity between age and performance using a
standard multiple regression. To further illustrate the specific effects of either
age or performance, we constructed subsamples that were stratified on age
but matched on performance, or alternately stratified on performance but
matched on age. This was accomplished using a greedy matching algorithm
(Carpenter, 1977) written in-house and implemented in MATLAB. To strat-
ify subjects by age and match on performance, samples were split by median
age, creating old and young subsamples. At each loop of the algorithm, a
subject was removed from the larger of the two subsamples; the subject was
chosen so that the t statistic of a two-sample t test comparing the perfor-
mance scores of the two groups was minimized. The algorithm stopped
when the p value of the two-sample t test was�0.9. This procedure produced
an age-matched, performance-stratified subsample that included n � 402
younger adolescents (mean age � 13.4 years, SD � 2.0 years; mean d� � 2.9,
SD � 0.5; 182 male) and n � 402 older adolescents (mean age � 18.1 years,
SD�1.7 years; mean d��2.9, SD�0.5; 173 male). The same procedure was
used to produce a performance-stratified, age-matched subsample including
406 high-performing subjects (mean age � 15.3 years, SD � 2.9 years; mean
d�� 3.4, SD � 0.4; 185 male) and 405 low-performing subjects (mean age �
15.3 years, SD � 3.0 years; mean d� � 2.4, SD � 0.4; 163 male). Group
differences were evaluated with a voxelwise regression where the stratified
variable (i.e., age or performance) was coded categorically; sex, motion, and
the matched variable were included as covariates.

Relationship to an out-of-scanner measure of executive function. As de-
scribed below (see Results), both the dimensional and categorical analy-

Satterthwaite et al. • Functional Maturation of the Executive System J. Neurosci., October 9, 2013 • 33(41):16249 –16261 • 16251



ses of performance demonstrated a robust relationship between task
performance and executive network activation. However, for all of the
above analyses, the performance measure used was drawn from in-
scanner behavioral responses. Next, we examined whether executive net-
work activation and DMN deactivation were related to an out-of-scanner
measure of executive function. Executive function was measured using a 1 h
version of the Penn Computerized Neurocognitive Battery (CNB; Gur et al.,
2010, 2012). As part of the PNC, the Penn CNB included 14 tests that eval-
uated a broad range of cognitive functions. The executive function summary
score includes performance on abstraction/flexibility (Penn conditional ex-
clusion test), attention (Penn continuous performance test), and working
memory (letter n-back).

For this adolescent sample, instructions and vocabulary for stimuli
were simplified from the adult CNB (Gur et al., 2012). Cognitive assess-
ment was completed during a separate session from neuroimaging [av-
erage, 3.4 months (SD, 5.4 months) between sessions]. As detailed in Gur
et al. (2012), the assessment session was scheduled at home (68.8% of
participants) or in the laboratory (31.2%), according to family and sub-
ject preference. During task administration, potential interference was
minimized, standard instructions were read aloud in addition to appear-
ing on the screen, and a professional testing environment was main-
tained. Tests were administered in a fixed order; breaks were offered
approximately every 15 min.

Raw accuracy scores were normalized by the entire cohort of the PNC
study (n � 9138 at time of analysis). As in Gur et al. (2012), normalized
test scores were then averaged across the three tasks to calculate the
executive function summary score. The voxelwise group-level regression
was conducted as described above, except that the out-of-scanner CNB
executive function summary score was substituted for in-scanner perfor-
mance (d�) in the design matrix. Age, sex, and motion were included as
covariates. As four subjects did not complete the CNB, this analysis was
completed in a sample of 947 subjects.

Relationship to pubertal stage. Multiple prior studies have demonstrated
that brain maturation may in certain cases be more strongly related to pu-
berty and sexual development than chronologic age (Giedd et al., 2006;
Blakemore et al., 2010; Bramen et al., 2011; Peper et al., 2011; Blanton et al.,
2012; Hu et al., 2013). Indeed, we have recently described sexually dimorphic
effects of puberty on the hippocampus in this sample (Satterthwaite et al.,
unpublished data). Accordingly, we examined the relationship between pu-
bertal development and WM responses in this task.

For the present large-scale community-based study, we used an abbre-
viated version of a self-report measure of pubertal status (Morris and
Udry, 1980), which was computerized and self-administered. Following
general instructions, each participant age �10 years privately viewed
pictorial schematic representations, accompanied by text descriptions, of
the five Tanner stages of pubic hair growth appropriate for his/her sex,
and rated his/her own development on the scale from 1 to 5 (Tanner,
1971). Prior validation studies have compared such self-report with Tan-
ner staging conducted by a physician, and found that correlations be-
tween physician ratings and self-reported pubic hair ratings were 0.81 for
girls and 0.63 for boys (Morris and Udry, 1980). As in our work exam-
ining the impact of puberty on the hippocampus (Satterthwaite et al.,
unpublished data), to focus on subjects where pubertal effects were likely
to be most pronounced, we specifically examined a subsample of subjects
who were classified as prepubertal or postpubertal. Mid-pubertal sub-
jects were not included in this analysis. As in prior work, ratings of 1 or 2
were considered prepubertal (Neufang et al., 2009; Bramen et al., 2011);
a rating of 5 was considered postpubertal. This subsample included 89
prepubertal subjects (mean age � 12.2 years; SD � 2.1 years; 45 male)
and 425 postpubertal subjects (mean age � 17.5 years; SD � 2.3 years;
138 male). In the group-level regression, puberty was modeled jointly
with age, performance, sex, and in-scanner motion.

Examination of the impact of modeling motion at the group level. In all
mass-univariate results described above, motion was modeled as a con-
founding variable at the group level. To evaluate the impact of this ap-
proach, we repeated the main group-level analysis without the motion
regressor and also in motion-matched samples. In the first case, motion
was left unmodeled, and we repeated the group-level analysis in the full
sample using a design matrix that included age, performance, and sex,

but not motion. Next, to compare group-level modeling of motion with
motion-matching procedures, we examined age and performance effects
in selected subsamples where motion was uncorrelated with a particular
variable of interest (i.e., performance or age). These subsamples were
constructed using a modified version of the greedy matching algorithm
described above. In each loop of the algorithm, the correlation between
motion and the variable of interest (performance and age) was calculated
without each individual subject that still remained in the sample. This
produced a distribution of correlation coefficients; the subject whose
exclusion resulted in the lowest correlation between the variable of inter-
est and motion was removed from the sample. The algorithm stopped
and samples were considered matched when the absolute r value was
�0.01. This procedure produced a subsample of subjects where motion
was uncorrelated with performance or age (Fig. 2). The motion–perfor-
mance uncorrelated subsample included n � 841 subjects (mean age �
15.5 years; SD � 3.3 years; 369 male; performance–motion correlation
r � �0.0028), whereas the age–motion uncorrelated subsample included
818 subjects (mean age � 15.8 years; SD � 3.1 years; 353 male; age–
motion correlation r � �0.0031).

Multivariate pattern analysis. The mass-univariate analyses described
above revealed that in general WM performance had a much stronger
relationship than age to brain response than WM load. To test how well
the entire complex pattern of brain activation predicted WM perfor-
mance, we conducted a multivariate pattern analysis using a previously
validated method called PREDICT (Wang et al., 2010) that is specifically
adapted to very high-dimensional imaging data. Notably, whereas the
goal of a traditional mass univariate analysis is to describe the relation-
ship of a given set of brain regions to an outcome measure of interest on
an individual basis (e.g., region by region), the goal of the multivariate
analysis is to predict the outcome using the information contained in all
regions jointly. At present, multivariate models do not allow modeling of
confounds such as motion in a fashion analogous to multiple regression.
Therefore, in order to limit any confounding influence of motion on
results, predictive analyses were conducted in the performance–motion
uncorrelated subsample described above.

Figure 2. Relationship between motion and variables of interest in the full study sample and
selected subsamples. A, In the full (n � 931) sample, both age and task performance (d�) were
strongly negatively correlated with in-scanner motion: both older children and those who have
better WM performance tend to move less during the scanning session. B, Following the appli-
cation of the greedy matching algorithm to each variable, this relationship was no longer
present in the matched subsamples.
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PREDICT uses voxelwise activation maps as input data; here, the con-
trast map of 2-back versus 0-back was used to predict WM performance
(d�). In our analysis, predictions were generated using a 10-fold cross-
validation procedure where the multivariate model was trained on 90%
of the data and then tested on 10% of the data, producing an unbiased
estimate of model predictive accuracy. As a first step, to reduce image
dimensionality, images were adaptively parcellated by calculating a vox-
elwise map of correlations between the activation maps and the target
variable (WM performance), and then applying a watershed segmenta-
tion on the correlation map to cluster voxels having similar correlation
values. Activation values from the resultant clusters were vectorized and
then subjected to a recursive backward/forward feature selection algo-
rithm. It should be noted that both adaptive parcellation and feature
selection were completed within each training fold (apart from the left-
out testing set), so that the features were not selected on the basis of their
predictive capacity in the testing set.

While the above analysis provides an estimate of how well the overall
pattern of brain activation predicts WM performance, it does not provide
specific information regarding the predictive ability of specific brain net-
works. Accordingly, we separately tested the predictive capacity of load-
activated and load-deactivated voxels. Load-activated voxels (i.e.,
2-back � 0-back at a threshold of z � 3.09) included the executive
network; load-deactivated voxels (i.e., 0-back � 2-back at a threshold of
z � 3.09) included DMN hubs.

Mediation analysis. The multivariate analyses revealed that the com-
plex pattern of activation during the WM task accurately predicts WM
performance. We next investigated whether such a performance-related
pattern of activation explained the observed relationship between age
and WM performance using a mediation analysis (Baron and Kenny,
1986). In this case, age was the independent variable, performance was

the dependent variable, and the multivariate
pattern of activation was the mediating vari-
able. The mediation analysis was executed us-
ing the SGmediation procedure in STATA. The
significance of the mediation result was evalu-
ated with a Sobel’s test (Sobel, 1982), which
evaluates the significance of how much of the
direct effect between the independent and de-
pendent variable is explained by the mediator
through the indirect pathway.

Results
Working memory performance
improves with adolescent development
As expected, higher levels of WM load in
the fractal n-back task resulted in poorer
performance, evinced by fewer correct re-
sponses (Fig. 3A; F(2,1900) � 1183.53; p �
0.0001), more false positives (Fig. 3B;
F(2,1900) � 995.22; p � 0.0001), and slower
response times (F(2,1900) � 372.71; p �
0.0001). As expected, overall task perfor-
mance as summarized by d� improved
with age (r � 0.30; b � 0.55; t(948) � 6.88;
p � 0.0001; Fig. 3C); no sex effects or
age � sex interactions were present.

Working memory task robustly recruits
an anatomically specific brain network
Increased working memory load robustly
recruited the executive network (2-
back � 0-back; Fig. 4). Notably, this con-
trast activated every major region of the
executive system identified by prior stud-
ies of WM in both adolescents (Durston et
al., 2006; Olesen et al., 2007; O’Hare et al.,
2008; Geier et al., 2009; Thomason et al.,

2009) and meta-analyses of WM studies conducted in adults
(Owen et al., 2005; Rottschy et al., 2012). Regions included bilat-
eral dorsolateral prefrontal cortex, paracingulate cortex, frontal
pole, anterior insula, superior parietal cortex, precuneus, ante-
rior thalamus, cerebellar crus I, and cerebellar crus II. These re-
sults highlight the degree to which WM is subserved by an
anatomically specific network of brain regions that is robustly
activated by the task.

Working memory network activation relates to performance
more than age
Next, we investigated relationships between executive network
activation and both age and WM performance. Initially, we mod-
eled age and performance separately. As seen in Figure 5A, when
task performance was not accounted for, subject age was associ-
ated with greater activation of multiple parts of the executive
network, as well as increased deactivation of DMN regions. The
relationship of WM performance (summarized as d�) to activa-
tion was qualitatively similar but substantially stronger (Fig. 5B):
better performance was associated with greater activation
throughout the entire executive network, as well as increased
deactivation of DMN hubs such as the vmPFC, posterior cingu-
late, hippocampus, and lateral temporal cortex. When age and
performance were modeled together, the less prominent age ef-
fects were diminished (but remained significant in right anterior
insula, paracingulate cortex, and several other regions; Fig. 5C).
In contrast, the relationship with WM performance remained

Figure 3. Behavioral results. A, B, As expected, at higher levels of working memory load, subjects responded less accurately,
with fewer correct responses (A), more false positives (B), and slower response times. Each plot displays the mean percentage of
correct responses and false positives for each level of load; error bars indicate SEM. C, Overall task performance was summarized
using d�, which improved with age; blue data points indicate male subjects; red data points indicate female subjects. Correct
responses, false positives, and response times similarly improved with age.

Figure 4. WM load in the fractal n-back task robustly recruits the executive network. The parametric contrast evaluating the
effect of working memory load (2-back � 0-back) robustly recruited the entire executive network; image was thresholded at z �
3.09; cluster corrected, p � 0.01.
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robust throughout the executive network and DMN (Fig. 5D).
Thus, while age does have some independent relationship with
brain responses to WM load, the relationship to task perfor-
mance is much stronger.

Increased reciprocal activation and deactivation at higher
levels of memory load is associated with WM performance
The above results demonstrate that WM performance is asso-
ciated with a modulation of a fronto-parieto-cerebellar net-
work, as well as enhanced deactivation of several hubs of the
DMN. However, they do not describe whether these results are
driven by diminished activation at low levels of WM load
(0-back), increased activation at high levels of WM load (2-
back), or a combination of these effects. Accordingly, we ex-
amined whether age and performance were associated with
brain activation at each level of WM load. Notably, when ac-
counting for age, the relationship between performance and
activation within the executive network (as well deactivation
of DMN regions) was present almost exclusively at the highest
(2-back) level of WM load (Fig. 6). In contrast, when control-
ling for performance, relationships between activation and age
within the executive network were far more modest. However,
load-independent age effects were seen in higher-order visual
regions at each level of WM load.

We further explored these relationships at each level of WM
load in a set of functional ROIs within the executive network and
DMN (Fig. 7A). Notably, when accounting for age, the partial
correlation between performance and activation within the exec-
utive network (as well deactivation of DMN regions) was present
almost exclusively at the highest (2-back) level of WM load (Fig.
7B). In contrast, when similarly controlling for performance, re-

lationships between activation and age were modest and did not
survive correction for multiple comparisons.

Supplementary analyses provide convergent results
To further understand the observed effects and evaluate the im-
pact of potential confounds, we conducted several supplemen-
tary group-level analyses.

First, we searched for the presence of nonlinear age effects
that may have been missed by a standard linear model. Nota-
bly, quadratic regression did not reveal any significant rela-
tionship between age and activation on the 2-back versus
0-back contrast while controlling for performance. Second,
results from the categorically defined, performance-matched
samples of old and young subjects demonstrated similarly lim-
ited differences in activation (Fig. 8A). In contrast, the com-
parison of categorically defined high- and low-performing
age-matched subjects demonstrated robust differences (Fig.
8B). Third, the strong relationship between executive perfor-
mance and parametric response to WM load remained present
when an out-of-scanner measure of executive performance
from the Penn CNB was used in place of in-scanner WM
performance. As displayed in Figure 9, out-of-scanner execu-
tive function was robustly related to both activation of the
executive network as well as deactivation of the DMN. Fourth,
examination of a subsample of prepubertal and postpubertal
subjects did not reveal any significant effects of puberty. Fur-
thermore, when controlling for puberty, age effects were di-
minished, whereas performance effects remained robust.
Fifth, additional analyses revealed that modeling motion as a
confounding variable in the group-level regression only had a
minimal impact on results (Fig. 10). Including motion in the

Figure 5. Brain response to WM load is more significantly related to WM performance than subject age. A, When the effect of age is investigated without including WM performance in the model,
older age is associated with greater activation of the executive system, as well as increased deactivation of DMN regions. B, When WM performance (summarized as d�) is analogously modeled
without age, substantially more significant effects are seen. C, D, However, when age and WM performance are both included in the model, while some age effects remain significant, they are
diminished (C), whereas the relationship between WM performance and both executive network activation and DMN deactivation remains quite robust (D). All models include subject sex and motion
as covariates; images were thresholded at z � 3.09; corrected, p � 0.01.
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group-level design matrix or using motion uncorrelated sam-
ples (Fig. 2) produced nearly identical results. Age-related ef-
fects were only minimally stronger when motion was not
accounted for at the group level. Regardless of the strategy
used, brain activation was more strongly related to WM per-
formance than chronologic age.

Brain response to WM load is highly predictive of
task performance
While standard mass-univariate analyses are useful for de-
scribing how performance and activation in specific regions
are related, they do not provide a measure of how well the
complete pattern of brain activation predicts performance.
We therefore conducted multivariate pattern analyses to eval-
uate the degree to which task activation could predict WM
performance. This approach identifies complex patterns of
activation that predict performance, and concisely summa-
rizes the degree to which such a pattern is present in a given

individual. The cross-validated model was able to predict task
performance with a high degree of accuracy (Fig. 11A; r �
0.48). In line with the univariate analysis, the model selected
both executive and DMN regions as performance-predictive
features (Fig. 11B). However, it should be noted that while
these features were heavily weighted in the multivariate
model, direct visualization of their action within this model is
not possible given the extremely high-dimensional nature of
the parameter space. To further understand the relative con-
tribution of executive and default mode regions, we evaluated
these networks individually by rerunning the classifier sepa-
rately on WM load-activated (i.e., executive network) and
load-deactivated voxels (i.e., DMN). Critically, WM load-
deactivated voxels were just as accurate at predicting WM
performance as WM-activated voxels (Fig. 11C). However,
prediction using either network individually was not as accu-
rate as using both jointly. These results demonstrate that WM
performance can be accurately predicted from patterns of

Figure 6. Relationship between WM performance and activation is driven by effects at high levels of WM load. At each level of WM load (0-back, 1-back, 2-back � baseline) a voxelwise
group-level model investigated age and performance effects. Each model included both age and performance; sex and motion were included as covariates. Image was thresholded using cluster
correction as elsewhere (z � 3.09, p � 0.01). Results revealed load-dependent, performance-related activation of the executive network and deactivation of DMN regions. Additionally, load-
independent age effects were seen in higher-order visual regions; load-independent performance effects were also seen in medial visual cortex.
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brain activation, and that for maximal
accuracy the entire complex pattern of
both brain activation and deactivation
must be considered.

Patterns of brain activation mediates
the age–performance relationship
The multivariate pattern analyses demon-
strated that reciprocal executive network
activation and DMN deactivation is predic-
tive of WM performance. To test whether
this performance-related pattern explained
the observed relationship between age and
performance during adolescent develop-
ment, we conducted a mediation analysis in
the motion-matched sample using the mul-
tivariate summary scores as the mediating
variable. This analysis established that
performance-related brain activation signif-
icantly mediated the relationship between
age and performance (Fig. 12; Sobel’s test:
z � 4.15; p � 3.4 � 10�5); brain activation
explained 38% of the shared variance be-
tween age and performance. These results
suggest that improved WM performance
with age during adolescence results from a
process of functional maturation marked by
a greater ability to recruit the executive net-
work and suppress nonexecutive regions in
response to task demands.

Discussion
This study delineates a process of functional
maturation of the executive system during
adolescence. Results revealed that activation
of the executive network and deactivation of
the DMN are more strongly associated with
cognitive performance than chronological
age. Specifically, high-performing adolescents demonstrate
increased activation of the executive network and reciprocal de-
activation of DMN regions during WM task performance. Mul-
tivariate pattern analyses demonstrated that such patterns of
activation could accurately predict WM performance and also
mediate the observed improvement of WM performance with
age. Data suggest that this characteristic process of functional
maturation allows for improved cognitive performance, which
may or may not be directly related an individual’s chronologic
age. Indeed, an individual’s “functional age” based on the matu-
ration of specific brain networks may constitute an important
endophenotype for investigating how cognitive capabilities de-
velop normally during adolescence and how they are compro-
mised in neuropsychiatric conditions.

This is the largest neuroimaging study to date of executive
function in adolescence, with a sample size that permitted a reli-
able dissociation of the relationships between brain activation
and both subject age and WM performance. Although linking
development of specific functional brain systems to performance
capabilities rather than chronological age is intuitive, this has not
been the experimental approach traditionally followed in studies
of adolescent neurodevelopment. Understanding executive sys-
tem development as a process of functional maturation allows
insights into individual differences in cognitive performance cross-
sectionally (Gur et al., 2012), as well as intraindividual variability in

performance over time. Our results suggest that a child who per-
forms better on a WM task than similarly aged counterparts has a
more mature pattern of brain activation, with greater activation of
the executive network and more deactivation of the DMN. Likewise,
an individual’s gain in executive function throughout adolescence
should reflect progress along this same maturational process. Exper-
imental approaches that rely only on associations with chronological
age are likely to be less sensitive to important individual differences
in functional brain maturity.

The present results thus provide the foundation for a novel
and useful conceptualization of how the executive system devel-
ops during adolescence. Our findings also help clarify the mixed
results of prior research. In previous research on WM develop-
ment, a wide variety of findings and interpretations have been
described, including the following: more focal and less diffuse
executive network activation with age (Durston et al., 2006); in-
creased executive network activation with age in response to WM
load (Olesen et al., 2007; O’Hare et al., 2008; Thomason et al.,
2009); diminished activation of some parts of the executive net-
work with age but continued activation of frontoparietal regions
(Geier et al., 2009); a shift from visuospatial or motor activation
to executive network activation with age (Klingberg et al., 2002;
Ciesielski et al., 2006); enhanced sustained activation but dimin-
ished trial-related responses with age (Velanova et al., 2009); or

Figure 7. Relationship between performance and activation in functional ROIs within the executive network and DMN. A,
Regions of interest: the executive network (warm colors) was parsed into 21 functional regions of interest by applying a watershed
algorithm to the map of the 2-back � 0-back contrast using an initial threshold of z � 20. Six regions of interest in the default
mode network were similarly constructed from the contrast of 0-back � 2-back. B, Activation in each of these regions within the
executive network (and deactivation of certain default mode regions) was significantly associated with better performance mainly
at the highest (2-back) levels of WM load. In contrast, associations with age in these regions did not survive multiple comparison
correction at any level of WM load. The y-axis depicts partial correlation at each level of WM load (0-back, 1-back, 2-back) from each
of the 21 executive network regions (red) and 6 default mode regions (blue), displayed in A. Partial correlations were calculated
between region percentage signal change and performance while accounting for age, sex, and in-scanner motion.
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alternately the opposite pattern (Burgund et al., 2006; Brahmb-
hatt et al., 2010).

Heterogeneity of prior results may be due to several method-
ological factors. First, fMRI studies of WM development have
been relatively small, with sample sizes ranging from 12 to 60
subjects. In studies of this size, investigators have sought greater
sensitivity by using ROI-based analyses or a less stringent thresh-
old for significance in voxelwise analysis. Such an approach in-
creases the risk of both type I and type II errors. The large sample
size of the present study allowed for sensitivity to relatively subtle
effects while still maintaining appropriate type I error control.
Second, several studies that have reported significant age effects
have used tasks where accuracy was near the ceiling for all age
groups, limiting the ability to detect significant performance ef-
fects. As in Shamosh et al. (2008), we used the signal detection
measure d�, which provides an overall measure of task perfor-
mance and in a difficult task has a more normal distribution,
allowing greater ability to detect brain– behavior relationships.
Third, and perhaps most importantly, despite the growing recog-
nition that failure to account for collinearity between age and
performance confounds analysis and limits interpretability
(Casey et al., 2005; Church et al., 2010; Luna et al., 2010b), prior
studies have often not done so, producing the likelihood that

some findings related to chronological age are more closely re-
lated to the uncontrolled impact of performance.

The regression-based approach pursued here has been pro-
posed as a strategy to address this confound (Church et al., 2010).
However, regression-based analysis is less sensitive to nonlinear
effects of development (Fair et al., 2006). In our data, quadratic
regression did not reveal any occult nonlinear effects of age. Fur-
thermore, as in prior studies of lexical processing (Schlaggar et al.,
2002; Brown et al., 2006), additional analyses using categorically
defined, matched groups were performed, producing nearly
identical results. In all analyses, when the relationship between
age and performance was accounted for, while some significant
age effects remained, the relationship between activation and
WM performance was far more robust. It consisted of both
increased activation of executive network regions and deacti-
vation of DMN regions at high levels of working memory load.
This canonical pattern of reciprocal activation of task-positive
executive regions and deactivation of the DMN during tasks
(Raichle et al., 2001) has previously been linked to individual
differences in cognitive performance in adult samples
(Persson et al., 2007; Anticevic et al., 2010). Here, we extend
this literature by showing that this relationship is present dur-
ing adolescence, and additionally that the complex multivari-
ate pattern of both activations and deactivations can predict
WM performance. Moreover, using a mediation analysis, we
establish that much of the age-related improvement in WM
performance can be attributed to an increasing ability to re-
cruit this specific pattern of brain activity.

It should be noted that while there were significant (but in
comparison, weak) age-related effects within the executive net-
work, there were also significant age-related effects seen in visual
cortex and dorsal parietal cortex at every level of WM load. These
effects do not appear to be directly related to the maturation of
executive function, as they do not lie within known executive
regions, were not modulated by level of WM load, and were not
related to WM performance. While speculative, these effects may
relate to development of visual processing systems with age (Go-
larai et al., 2007); further research will be necessary to understand
these findings.

This study has several methodological strengths, including
a large sample size, robust effects, and use of advanced analytic
techniques. However, several limitations should be acknowl-

Figure 8. Analysis of categorically defined samples. A, B, To further illustrate the differential effects of age and performance, we constructed tightly matched, categorically defined samples of old
and young subjects (A), as well as high and low performers (B). Groups were stratified by subject age and matched on performance, or alternately stratified by performance and matched on age. All
images cluster corrected at z � 3.09 ( p � 0.01), as elsewhere.

Figure 9. Out-of-scanner executive functioning relates to executive network activation and
DMN deactivation. Here, instead of in-scanner n-back performance, we assessed the relation-
ship between out-of-scanner executive function on the Penn CNB and brain activation to the
parametric (2-back � 0-back) contrast of WM load. As prior, the model included age, sex, and
motion as covariates; image thresholded using cluster correction (z � 3.09, p � 0.01).
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edged. First, the statistical mediation analysis used here does
not provide proof of causal relationships, which requires ex-
perimental manipulation. Second, this study described devel-
opmental effects through a cross-sectional analysis, which
may be less sensitive than longitudinal measures (Durston et
al., 2006; Lenroot et al., 2007). Members of this cohort will be
examined longitudinally, resulting in a rich public domain
resource for the study of brain development. Third, the block
design of the n-back task did not allow dissociation of sus-
tained and transient effects (Visscher et al., 2003; Burgund et
al., 2006; Velanova et al., 2009; Brahmbhatt et al., 2010; Pe-
tersen and Dubis, 2012). A block design aliases activation from
both correct and incorrect trials into the same modeled re-

sponse, giving rise to the possibility that the mix of correct and
incorrect trials might systematically bias results (Murphy and
Garavan, 2004). However, as error trials are known to strongly
activate components of the executive system (Carter et al.,
1998), such an effect would most likely produce results oppo-
site from those observed here (i.e., greater activation with
poorer performance, instead of greater activation with better
performance). Furthermore, additional analysis of the current
data that examined correct trials only produced nearly identi-
cal results (data not shown), suggesting that such a confound
is unlikely to have influenced the reported results. Finally, the
extent to which the present results using a specific WM task
can be generalized to other WM tasks or domains of executive
function needs further investigation.

These limitations notwithstanding, the present results pro-
vide novel evidence that activation of the executive network
and deactivation of the DMN are in part responsible for the
improvement in WM seen during adolescence. They demon-
strate that this process is more strongly related to cognitive
performance than to chronologic age. The processes that con-
tribute to the observed maturational effects are as yet unclear
and require future research. As has been previously described,
during adolescent development gray matter volume declines
while white matter volume increases (Lenroot et al., 2007).
Such changes may result in less tissue with more focused patterns
of connectivity, permitting more refined coactivation and deactiva-
tion of regionally distributed networks. Indeed, we and others have
recently confirmed prior reports of functional network segregation

Figure 10. Group-level motion control strategies have a minimal impact on results. Including motion in the group-level design matrix (middle column) or using motion-matched samples (right
column; see Fig. 2) produced nearly identical results. Age-related effects were only minimally stronger when motion was not accounted for at the group level (left column). In all cases, brain
activation to WM load was much more strongly related to performance than age. The right lateral cortical surface is displayed; similar effects were seen elsewhere.

Figure 11. Activation in 2-back � 0-back contrast predicts WM performance. A, A cross-validated multivariate relevance vector regression model predicted task performance (as summarized by
d�) from WM activation map with a high degree of accuracy (r � 0.48) in a sample of 841 subjects where performance and motion were uncorrelated (Fig. 2). B, Significantly weighted features in
this model included regions in the executive network as well as task-deactivated default-mode regions. C, Notably, when examined separately, load-deactivated voxels (i.e., 0-back � 2-back; blue
bar), including the DMN, predicted task performance with equivalent accuracy as the load-activated voxels (2-back�0-back; red bar) of the executive network. However, maximal accuracy was only
achieved when both activated and deactivated regions were considered together.

Figure 12. Activation in the WM task mediates the observed age–performance relationship.
In a sample where motion and performance were uncorrelated (n � 841), the performance-
related multivariate pattern of activation to WM load (2-back � 0-back) significantly mediated
the observed relationship between age and WM performance.
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with age (Fair et al., 2007a, 2013; Satterthwaite et al., 2013b). Further
research can establish links among structural brain development,
evolution of functional networks, and enhanced ability to recruit the
executive system in response to task demands.

These findings have particular relevance for studies of neu-
ropsychiatric illness, which are increasingly conceptualized as
neurodevelopmental disorders. As deficits in WM have been
linked to virtually all major mental illnesses, dysfunction of
the brain networks described here could serve as an informa-
tive endophenotype that can be evaluated dimensionally
across traditional diagnostic categories (Insel et al., 2010).
Charting developmental trajectories of brain development
(Dosenbach et al., 2010; Brown et al., 2012; Franke et al., 2012)
is a necessary step for determining whether individuals display
either precocity or delay in brain maturation relative to their
chronological age. Such knowledge is a prerequisite for devel-
oping individualized interventions to alter disease trajectories
and improve patient outcomes.
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