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ABSTRACT
BACKGROUND: The psychosis spectrum (PS) is associated with structural dysconnectivity concentrated in trans-
modal cortex. However, understanding of this pathophysiology has been limited by an overreliance on examining
direct interregional connectivity. Using network control theory, we measured variation in both direct and indirect
connectivity to a region to gain new insights into the pathophysiology of the PS.
METHODS: We used psychosis symptom data and structural connectivity in 1068 individuals from the Philadelphia
Neurodevelopmental Cohort. Applying a network control theory metric called average controllability, we estimated
each brain region’s capacity to leverage its direct and indirect structural connections to control linear brain dynamics.
Using nonlinear regression, we determined the accuracy with which average controllability could predict PS symp-
toms in out-of-sample testing. We also examined the predictive performance of regional strength, which indexes only
direct connections to a region, as well as several graph-theoretic measures of centrality that index indirect
connectivity. Finally, we assessed how the prediction performance for PS symptoms varied over the functional
hierarchy spanning unimodal to transmodal cortex.
RESULTS: Average controllability outperformed all other connectivity features at predicting positive PS symptoms
and was the only feature to yield above-chance predictive performance. Improved prediction for average
controllability was concentrated in transmodal cortex, whereas prediction performance for strength was uniform
across the cortex, suggesting that indexing indirect connections through average controllability is crucial in
association cortex.
CONCLUSIONS: Examining interindividual variation in direct and indirect structural connections to transmodal cortex
is crucial for accurate prediction of positive PS symptoms.

https://doi.org/10.1016/j.biopsych.2021.03.016
The psychosis spectrum (PS) is broadly characterized by
positive (e.g., hallucinations, delusions) and negative (e.g.,
avolition, social withdrawal) psychosis symptoms (1). The PS
follows a continuous distribution of severity, with absence of
these symptoms at one end and disorders such as schizo-
phrenia at the other (2,3). Transition along the PS toward
schizophrenia occurs predominantly during adolescence and
young adulthood (2,4) and is thought to be underpinned by
widespread structural dysconnectivity that emerges during
this time (5–7). In this context, regional (dys)connectivity is
typically characterized by examining the direct connections
between regions. However, mounting evidence demonstrates
that any region’s capacity to affect the activity of other brain
regions is also influenced by the presence of indirect con-
nections (8–15). How these indirect aspects of structural
connectivity—and their impact on the spread of activity and
control of brain states—relate to PS symptoms remains un-
clear, rendering our understanding of the neurobiology of the
PS incomplete.

The capacity for spatially distributed brain regions to
communicate and coordinate their activity is essential for
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normal cognitive and affective functions (11). Critical to this
communication is the brain’s underlying structural connectiv-
ity, which provides a scaffold along which activity in one region
can spread to, and influence, another. A brain region’s con-
nectivity profile is often summarized regionally using graph-
theoretic metrics such as degree and strength (16); the
former is calculated by counting the number of binary direct
connections to a region, and the latter by summing over the
weights of those connections. These metrics have aided our
understanding of the brain’s structural organization (7,17,18).
For example, adolescent development gives rise to regions
with disproportionately high degree and strength, known as
hubs (19–21). In cerebral cortex, hubs are commonly found in
transmodal association areas (20,22–24), where they are
thought to integrate across functionally specialized and
segregated subnetworks enabling complex higher-order
functions (22,25–27). In support of this integrative role, trans-
modal regions connect with far-reaching and cascading indi-
rect pathways that exert regulatory control over unimodal
regions (28–30). However, these indirect paths are not
captured by the analysis of regional strength. Given that these
f Biological Psychiatry. This is an open access article under the
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indirect pathways converge to a greater extent on transmodal
regions than unimodal regions (28,31), assessing variation in
indirect connection pathways is likely critical to understanding
the integrative role of association cortex.

The literature has also begun to reveal how structural
connectivity varies along the PS (32–37). Notably, dyscon-
nectivity in transmodal cortex is a prominent feature in in-
dividuals on the PS. Transmodal dysconnectivity is reported
in schizophrenia (35,37–40) as well as the early clinical stages
of psychosis (34) and is thought to reflect disrupted integra-
tion in the brain (22,41,42). In addition, white matter integrity
studies have shown that individuals at ultra-high risk for
psychosis as well as patients with first-episode psychosis
show abnormalities in the long association fibers that route
information between transmodal cortex and the rest of the
brain (32). However, these studies (34,35,37–40) have exam-
ined white matter connectivity in the absence of an explicit
model of how the brain’s complex topology facilitates the
spread of activity along indirect pathways. Without such a
model, studies may potentially miss important symptom-
related variation in regional connectivity profiles, which may
be particularly important in transmodal cortex (28,31). Thus,
examining dysconnectivity along the complex indirect path-
ways that stem from transmodal cortex may help elucidate
the pathophysiology of the PS.

Here, we use network control theory (NCT) (9) to examine
whether individuals on the PS display alterations in the ability
of indirect structural connections to influence the spread of
activity and control brain states. NCT is a branch of physical
and engineering sciences that treats a network as a
dynamical system (9,43). Broadly, NCT models signals that
originate at specific control points and that move through the
network to influence changes in system state. In the brain,
NCT models each region’s activity as a time-dependent in-
ternal state that is predicted from a combination of three
factors: 1) its previous state, 2) whole-brain structural con-
nectivity, and 3) external inputs. In its simplest form, NCT
assumes that brain dynamics are macroscopically linear.
While this assumption is false at the microscopic level (e.g.,
single neuron), recent work has shown that linear models of
dynamics outperform nonlinear models when predicting the
macroscopic brain activity measured by functional magnetic
resonance imaging (44). Thus, despite their simplicity, linear
models of dynamics provide a good proxy for the kinds of
brain activity often studied in psychiatry research. After
linearizing the system’s dynamics, average controllability
quantifies a region’s capacity to distribute activity throughout
the brain, beyond the bounds of its direct connections, to
guide changes in brain state (9,43). Average controllability
increases throughout development (45), supporting optimal
executive function (46,47), and is disrupted in bipolar disor-
der (48). Critically, while high strength is necessary for high
average controllability (9), analysis of interindividual differ-
ences has shown that strength and average controllability
have unique variance over subjects and thus do not repre-
sent redundant summaries of structural connectivity (46).
However, it remains unclear to what extent interindividual
variability in average controllability predicts interindividual
differences in PS symptoms.
2 Biological Psychiatry - -, 2021; -:-–- www.sobp.org/journal
Here, we sought to understand how variance in direct and
indirect connections to a region differentially contribute to the
prediction of PS symptoms. We operationalized this goal by
comparing the ability of strength and average controllability to
predict positive and negative PS symptoms in out-of-sample
testing (49). We tested three hypotheses. First, owing to its
capacity to use both direct and indirect structural connections
to control brain states, we hypothesized that average
controllability, not strength, would best predict PS symptoms.
Second, owing to their far-reaching indirect connectivity pro-
files (10,31), we hypothesized that regions in transmodal cortex
would be more sensitive to variations in indirect connectivity
compared with regions in unimodal sensorimotor cortex. Thus,
we predicted that regional cross-subject correlations between
strength and average controllability would be lower in trans-
modal cortex than in unimodal cortex. Reflecting this diver-
gence in transmodal cortex, we expected that better predictive
performance for average controllability, compared with
strength, would be driven predominantly by regions in trans-
modal cortex. Finally, we examined the extent to which our
results were specific to average controllability by comparing
against the following graph-theoretic measures of centrality
that also index indirect connections: betweenness centrality,
closeness centrality, and subgraph centrality (17).

METHODS AND MATERIALS

Participants

Participants included 1068 individuals from the Philadelphia
Neurodevelopmental Cohort (50), a community-based study of
brain development in youths aged 8 to 22 years with a broad
range of psychopathology (51,52). See Supplemental Methods
for details.

Dimensional Measures of the PS

To study interindividual variation in the PS, we used a model of
psychopathology based on the p-factor hypothesis (49,53)
(see Supplement for details). We quantified three orthogonal
dimensions of psychopathology: psychosis-positive, which
represented the positive domain of the PS; psychosis-
negative, which represented the negative domain of the PS;
and overall psychopathology, which represented individuals’
tendency to develop all forms of psychopathology. The joint
examination of these three dimensions allowed us to examine
the extent to which dysconnectivity reflected PS-specific or
disorder-general biomarkers.

Structural Network Estimation

For details on image acquisition, quality control, and pro-
cessing, see Supplemental Methods. For each participant,
deterministic fiber tracking was conducted, and the number of
streamlines intersecting region i and region j in a parcellation of
N = 200 regions (54) was used to weight the edges of an un-
directed adjacency matrix, A.

Strength

A simple summary of a region’s direct connections to the rest
of the brain is its weighted degree, or strength (16). Within each
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participant’s A matrix, we calculated strength s for region i as
the sum of edge weights over all regions in the network:

si ¼
XN

j¼1

Aij : ð1Þ

Network Controllability

NCT provides a means to study how the brain’s structural
network supports, constrains, and controls temporal dynamics
in brain activity. Details of the NCT tools and their application
have been extensively discussed in previous work
(9,10,43,46,47,55–57). The application of NCT in neuroscience
has been diverse. For example, NCT has been shown to assist in
detecting neurons critical to locomotion in Caenorhabditis ele-
gans (58). In addition, human work has shown that brain state
transitions induced via direct electrical stimulation, and
measured by electrocorticography data, correlate to state
transitions predicted from NCT (56). These works illustrate the
capacity of NCT to use a network’s underlying structural to-
pology to make meaningful predictions about its function. Here,
we draw on an NCT metric known as average controllability
(9,45). Below, we describe the derivation of average controlla-
bility and the model of population activity that underpins it.

We define the activity state of the brain using a simplified
noise-free linear discrete-time and time-invariant model of
regional dynamics:

xðt11Þ¼AxðtÞ1BkukðtÞ; ð2Þ

where xðtÞ is a N3 1 vector that represents the state of the
system at time t. Here, N is the number of brain regions; thus,
the state is the pattern of brain activity across these regions at
a single point in time. Over time, xðtÞ denotes the brain state
trajectory, a temporal sequence of the aforementioned pattern
of brain activity. The matrix A denotes the normalized N3 N
adjacency matrix. We normalized each participant’s Amatrix in
the following manner:

A¼ A
jlðAÞjmax1c

: ð3Þ

Here, jlðAÞjmax is the largest eigenvalue of A and c ¼ 1 to
ensure system stability (see Supplemental Methods).

The matrix Bk in equation 2 is of size N3N and describes
the brain regions k into which we inject activity before
assessing the impulse response of the system. We calculated
average controllability for each brain region separately; thus,
Bk simplifies to an N3 1 vector where the element corre-
sponding to the region being assessed is set to 1 and all other
elements are set to 0. Finally, ukðtÞ is an N31 vector that
encodes the magnitude of the activity that we inject into a
given brain region before observing the impulse response.
Here, this magnitude is set to 1. Note, this magnitude value is
arbitrary, and setting it to any other nonzero value would not
affect the variance in average controllability over participants.

Average Controllability

Average controllability describes the ability of a network to
spread the activity injected into a control node throughout the
B

system to affect changes in brain state (9). Regions with high
average controllability are thought to be capable of switching
the brain between easy-to-reach states using low amounts of
energy. As in previous work, we used TraceðWk;T Þ; where Wk;T

is the controllability Gramian,

Wk;T ¼
XT21

s¼0

AsBkBu
k ðAuÞs; ð4Þ

where u denotes the transpose operation, s indicates the time
step of the trajectory, and T denotes the time horizon, which is
set to infinity. Average controllability is computed for each
node in A separately.

Average controllability is not the only way to probe indirect
connections to a region. To examine the extent to which our
results were specific to average controllability, we included
three additional graph-theoretic measures of centrality that
also characterize indirect connections to a region (17), albeit in
the absence of a dynamical model. These metrics were 1)
betweenness centrality, 2) closeness centrality, and 3) sub-
graph centrality. For extended discussion and definition of
these metrics, see the Supplement and (17).

Machine Learning Prediction

The above procedures generated five 10683 200 matrices
(X) of regional structural connectivity features: strength (XsÞ
(Figure 1A), average controllability (Xa) (Figure 1A),
betweenness centrality (Xbc), closeness centrality (Xcc), and
subgraph centrality (Xsgc). To ensure normality, columns of
these matrices, as well as the PS symptom dimensions,
were normalized using an inverse normal transformation
(59,60). Then, connectivity features were each taken as
multivariate input features to a nonlinear kernel ridge
regression (61) to predict symptom dimensions (y) in a series
of prediction models. Prediction models were scored using
out-of-sample root-mean-squared error (RMSE) and the
correlation between true and predicted y (hereafter, accu-
racy) and are explained in full in the Supplemental Methods.
Briefly, our prediction models collectively examined 1) how
prediction performance for a given y varied over X
(Figure 1B, primary prediction model; Figure S1, secondary
prediction model), 2) whether prediction performance for a
specific ðX; yÞ combination exceeded chance levels
(Figure S2, null prediction model), and 3) how prediction
performance varied as a function of the principal cortical
gradient of functional connectivity that separates transmodal
cortex from unimodal cortex (25) (Figure 1C, binned-regions
prediction model).

Characterizing the Unique Interindividual Variation
Introduced to Regional Connectivity Profiles
Through the Examination of Indirect Connections

In addition to predicting symptom dimensions, we sought to
quantify the extent to which analyzing indirect structural con-
nections to a region revealed unique interindividual variation
compared with analyzing only the direct connections to a re-
gion. We calculated the regional cross-subject Pearson’s
iological Psychiatry - -, 2021; -:-–- www.sobp.org/journal 3
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Figure 1. Machine learning prediction models. (A)
We combined regional structural connectivity fea-
tures (e.g., strength, Xs; average controllability, Xa),
nuisance covariates (cov; age, sex, total brain
volume, and in-scanner motion), and symptom
dimensions (y; overall psychopathology, positive
psychosis spectrum symptoms, and negative
psychosis spectrum symptoms) into two main
prediction models. Note, we ran each combination
of X and y separately. (B) In our primary prediction
model, X was used to predict y, controlling for
age, sex, brain volume, and in-scanner motion, via
100 repeats of 10-fold cross-validation, each
repeat using a different random split of the data.
This model provided robust estimates of prediction
performance that could be compared across
combinations of X and y. This primary prediction
model was supplemented with a secondary
prediction model that incorporated hyperparameter
optimization (see Figure S1 and the Supplement
for details) and a null prediction model that
assessed whether specific combinations of X and
y yielded above-chance prediction performance
(see Figure S2 and the Supplement for details). (C)
In our binned-regions prediction model, X was
used to predict y, controlling for age, sex, brain
volume, and in-scanner motion, using
nonoverlapping subsets of five regions sampled
from the principal cortical gradient of functional
connectivity. The principal cortical gradient (left)
was generated in our data using resting-state
functional connectivity (see Supplement for
details). This model enabled examination of how
prediction performance varied over the putative
cortical hierarchy. RMSE, root-mean-squared error;
trans, transmodal; uni, unimodal.
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correlations between strength and average controllability in the
full sample. Lower correlations indicated greater unique vari-
ance across strength and average controllability, suggesting
greater influence of indirect connections to a region’s con-
nectivity profile. Then, we examined how these regional cor-
relation values varied over the principal cortical gradient (25).
We calculated the Pearson’s correlation between the cortical
gradient and the aforementioned cross-subject correlation
maps. We assigned p values with the spin test (62–64), using
10,000 spins.

RESULTS

Participants

Sample demographics, including counts of individuals who
endorsed presence of a broad array of clinical symptoms
(50,51), are shown in Table 1 (see Figure S4 for mean symptom
dimensions as a function of these groups).
4 Biological Psychiatry - -, 2021; -:-–- www.sobp.org/journal
Examining Indirect Regional Structural
Connectivity With Average Controllability Enables
Better Prediction of Positive PS Symptoms

First, we examined how indirect connections to a region
affected predictive performance for each symptom dimension
by 1) comparing RMSE and accuracy across connectivity
features and 2) examining each connectivity feature’s capacity
to predict symptom dimensions beyond chance levels. While
performance varied as a function of connectivity feature for
each symptom dimension (Figure 2), only average controlla-
bility was able to predict psychosis-positive scores beyond
chance levels (Figure 2A; p , .05 false discovery rate-cor-
rected; see Figure S8 for empirical nulls). Apart from this,
betweenness and closeness centrality were the best predictors
of psychosis-negative (Figure 2B), and subgraph centrality was
the best predictor of overall psychopathology (Figure 2C).
However, none of these predictive results were above chance.
In addition, we found that our scoring metrics—RMSE and
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Table 1. Summary of Demographic and Psychopathology
Data (N = 1068)

Characteristics Sample

Age, Years, Mean 6 SD 15.36 6 3.42

Sex, n (%)

Male 485 (45.51%)

Female 582 (54.49%)

Psychopathology Categories, n (%)

Psychosis spectrum 303 (28.37%)

Manic episode 11 (1.03%)

Major depressive episode 156 (14.01%)

Bulimia 4 (0.37%)

Anorexia 15 (1.40%)

Social anxiety disorder 261 (24.44%)

Panic 10 (0.94%)

Agoraphobia 61 (5.71%)

Obsessive compulsive 30 (2.81%)

Posttraumatic stress 136 (12.73%)

Attention-deficit/hyperactivity 168 (15.73%)

Oppositional defiant 353 (33.05%)

Conduct 85 (7.96%)

Owing to comorbidity, individual participants may be present in
more than one category of lifetime prevalence.
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accuracy—were highly correlated over 100 different cross-
validation splits of the data (r = 0.89 6 0.02; correlations
were averaged over connectivity features and symptom di-
mensions). Finally, the above effects were largely reproduced
under our secondary prediction model (Figure S9). Thus, in
partial support of hypothesis 1, our results demonstrate that
summarizing both the direct and indirect properties of regional
connectivity is critical for predicting positive PS symptoms.
A B C

B

Furthermore, this effect was selective for average controlla-
bility, suggesting that how indirect connections are summa-
rized regionally is also important.

Variance in Indirect Structural Connections Is
Increasingly Relevant in Transmodal Cortex

The above results underscored the importance of using
average controllability to incorporate indirect connections into
the prediction of positive PS symptoms. Next, we character-
ized where along the cortical gradient interindividual variation
in indirect connectivity was most pronounced by correlating
strength and average controllability (see Figure S10 for all
combinations of connectivity features). In support of hypoth-
esis 2, we found that regional correlations between strength
and average controllability decreased as a function of the
cortical gradient (Figure 3A). Specifically, regions in unimodal
cortex showed the strongest correlations (rw .7), while regions
in transmodal cortex showed weaker correlations (r w .5). This
result offers two insights. First, while strength and average
controllability are always positively correlated across the brain,
those correlations are not redundant, suggesting that variance
in the indirect connections captured by average controllability
are relevant at all levels of the cortex. Second, regions in
transmodal cortex have more complex profiles of indirect
connectivity that drive greater divergence between average
controllability and strength.

Indirect Connectivity From Transmodal Cortex
Underpins Better Prediction Performance of
Positive PS Symptoms

Having found that average controllability and strength
diverged most in transmodal cortex, we tested hypothesis 3:
that this divergence in transmodal cortex would drive improved
performance for predicting psychosis-positive scores using
Figure 2. Average controllability is the best pre-
dictor of positive psychosis spectrum symptoms and
is the only connectivity feature to predict beyond
chance levels. Each subplot shows distributions of
100 estimates of prediction performance under our
primary prediction model using a nonlinear kernel
ridge regression estimator. The top row indicates
prediction performance measured via root-mean-
squared error (RMSE; lower = better), and the bottom
row indicates prediction performance measured via
the correlation between true y and predicted y (higher
= better). Furthermore, to illustrate which (X,y) com-
binations yielded significant predictive performance,
point estimates of prediction performance that
exceeded chance levels under our null prediction
model are overlaid ( pFDR , .05; see Figure S8 for
empirical nulls and the Supplement for details). Point
estimates that did not exceed chance levels are not
shown. Significant predictive performance was only
found for average controllability predicting positive
psychosis spectrum symptoms, and this was
observed for both RMSE and the correlation between
true y and predicted y. *significant difference between
connectivity features at pFDR , .05. ac, average
controllability; bc, betweenness centrality; cc, close-
ness centrality; FDR, false discovery rate-corrected;
RMSE, root-mean-square error; sgc, subgraph cen-
trality; str, strength.

iological Psychiatry - -, 2021; -:-–- www.sobp.org/journal 5
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A B C Figure 3. Average controllability and strength are
less correlated in transmodal association cortex
compared with unimodal cortex, and prediction
performance for average controllability, not strength,
is better in transmodal cortex. (A) The cross-subject
Pearson’s correlation between strength (str) and
average controllability (ac) decreases as regions
traverse up the principal cortical gradient. Thus,
average controllability and strength show the
greatest amount of unique variance in transmodal
cortex. The p value of the spatial correlation be-
tween the principal gradient and the regional cross-
subject correlation map was assigned via the spin
test (62,64,66), using 10,000 spins. (B, C) Perfor-
mance from our binned-regions prediction model
(see Figure 1C and the Supplement for details) for

average controllability (B) and strength (C) predicting positive psychosis spectrum symptoms. Root-mean-squared error (RMSE) is presented as the mean over
10 stratified folds, and the vertical gray lines represent standard error over folds. Prediction performance for average controllability improved as a function of
the cortical gradient, whereas strength did not. Thus, the best predictive performance of positive psychosis spectrum symptoms was observed for average
controllability in association cortex. In addition, we tested the significance of predictive performance for each bin separately using our null prediction model.
We found five bins located in the transmodal cortex for which prediction performance for average controllability exceeded chance levels (punc. , .05; , Nulls
not shown). However, these effects were only observed at an uncorrected threshold of p , .05. This was likely due to the large number of multiple comparison
corrections required to achieve false discovery rate (FDR)-corrected significance (80 tests, 1 per bin for each of strength and average controllability). We also
note that the whole-brain model (see Figure 2 and Figure S8) was robustly significant and that there were fewer features used here for prediction by comparison
(5 vs. 200).
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average controllability (see Figure S11 for all ½X; y� combina-
tions). Owing to the redundancy we observed between RMSE
and accuracy in our whole-brain analyses, we focused on
RMSE here. Specifically, we examined the extent to which
RMSE varied as a function of the principal cortical gradient
[see Figure S12 for RMSE as a function of the Yeo systems
(65)]. As expected, for average controllability, we found pre-
diction was better in transmodal cortex than in unimodal cortex
(Figure 3B). We found no such relationship for strength
(Figure 3C). These results were robust to bin size (Table S3).
Thus, our results show a strong spatial component to the
prediction of positive PS symptoms, wherein prediction is
improved in transmodal cortex selectively for average
controllability (Figure S11).

As an additional test of hypothesis 3, we recalculated
average controllability, increasingly reducing its access to in-
direct connections by increasing the c parameter in equation 3
(see Supplement and Figure S3 for details). Figure 4A shows
that increasingly restricting average controllability to indexing
only direct connections resulted in stronger correlations with
strength (y-axes) and diminishment of the spatial effect of the
cortical gradient. Thus, not only do strength and average
controllability become increasingly redundant at greater c, but
their unique variance also becomes less differentiable as a
function of the cortical hierarchy. Finally, the correlation be-
tween performance for our binned-regions prediction model
and the cortical gradient also decreased at greater c
(Figure 4B). Thus, average controllability’s sensitivity to indirect
structural connectivity is crucial to its superior predictive per-
formance of positive PS symptoms.

DISCUSSION

A focus on examining interindividual variation in direct regional
structural connectivity has generated an incomplete picture of
the pathophysiology of the PS. Using NCT (9,43), we investi-
gated the differential contributions of direct and indirect
6 Biological Psychiatry - -, 2021; -:-–- www.sobp.org/journal
properties of regional connectivity profiles to predict positive
and negative PS symptoms. We found that average control-
lability better predicted positive PS symptoms compared with
strength, while strength and average controllability predicted
negative PS symptoms to a similar degree. Furthermore, while
we observed differential predictive performance across
betweenness, closeness, and subgraph centrality, only the
pairing between average controllability and positive PS
symptoms yielded above-chance predictive performance. This
suggests that robust prediction of positive PS symptoms
required characterization of both direct and indirect connec-
tivity through NCT. In addition, we found that strength and
average controllability exhibited the greatest amount of unique
interindividual variance in transmodal cortex, and that this
unique variance linked to improved predictive performance of
positive PS symptoms for average controllability. Finally, we
found that restricting average controllability’s access to indi-
rect connectivity reduced both the unique covariance with
strength and the predictive performance in transmodal cortex,
bringing both more in line with that observed in unimodal
cortex. Overall, our results demonstrate that NCT can quantify
and probe the complex indirect connectivity pathways that
stem from transmodal cortex and that capturing this
complexity can help understand positive PS symptoms.

Predicting Positive Psychosis Symptoms Using NCT

The structural connectivity correlates of the PS are increas-
ingly well studied (32–40,66,67). Compared with graph-
theoretic measures of connectivity, NCT has received
relatively little attention; to our knowledge, only one previous
study examined average controllability in bipolar disorder,
reporting reductions compared with healthy control subjects
(48). We found that indexing indirect connections through
average controllability was able to significantly predict positive
PS symptoms out-of-sample where strength and other graph-
theoretic measures of centrality could not. Furthermore,
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Figure 4. Restricting average controllability to
direct structural connections increases redundancy
with strength and reduces prediction performance in
transmodal cortex. Columns represent average
controllability recalculated using different values of
the c parameter from equation 3; greater values of c
correspond to greater restriction of average
controllability’s capacity to access indirect
connections (see Supplement and Figure S3 for
details). (A) The cross-subject correlation between
strength (str) and average controllability (ac) as a
function of the principal cortical gradient. Increases
in c resulted in increases to the cross-subject
correlations (y-axes) and a reduction in the
spatial correlations with the cortical gradient,
wherein correlations in transmodal cortex became
increasingly redundant. (B) Performance for the
binned-regions prediction model for average
controllability predicting positive psychosis
spectrum symptoms. The spatial correlation
between prediction performance and the

cortical gradient diminished with increasing c, yielding lower prediction performance in transmodal cortex. FDR, false discovery rate-corrected; RMSE,
root-mean-squared error.
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consistent with literature implicating hub dysconnectivity in
schizophrenia (35), we found that average controllability
showed better predictive performance of positive PS symp-
toms in transmodal association cortex compared with unim-
odal sensorimotor cortex. While simple structural connectivity
features such as strength are readily interpretable from a
network perspective, they lack an explicit model of macroscale
brain function (68). Furthermore, while other metrics apart from
average controllability exist that also capture indirect con-
nections (17), some of which were studied here, many of them
similarly lack an explicit model of brain dynamics. By contrast,
average controllability models a region’s capacity to distribute
input energy throughout the brain to drive changes in brain
state (9), facilitating the capacity to predict the brainwide
response to external stimulation (10,69). Hence, our results
demonstrate that the continued examination of NCT has po-
tential implications for clinical treatment. For instance, external
neurostimulation techniques, such as transcranial magnetic
stimulation, are increasingly being investigated as treatment
modalities for PS-related conditions, and candidate stimulation
sites typically occupy transmodal cortex (70,71). Indeed, the
analysis of neurostimulation data with NCT has begun to show
promise (56).

Predicting Negative PS Symptoms

In contrast to positive PS symptoms, we found that
betweenness and closeness centrality were the best predictors
of negative PS symptoms. This suggests that the way in which
we summarize indirect aspects of regional connectivity matters
for the prediction of different PS dimensions. However, our null
prediction model revealed no significant prediction effects for
psychosis-negative scores, suggesting that we were unable to
predict negative PS symptoms with any connectivity feature
beyond chance levels. This failure may be due to the fact that
in our model, the psychosis-negative factor explained less
variance in symptom data compared with the psychosis-
positive factor (Table S1). Hence, our estimate of negative
B

PS symptoms was perhaps noisier than our estimate of posi-
tive PS symptoms. Similar disparities in variance explained
between positive and negative psychosis dimensions have
also been reported in previous literature (72). Thus, future work
improving the modeling of variance in negative PS symptoms
is needed and may yield improved predictive performance in
brain-based association studies.

Analysis of Indirect Connectivity Is Crucial in
Transmodal Cortex

Analysis of the principal cortical gradient (25) revealed that the
cross-subject correlations between strength and average
controllability were lowest in transmodal cortex. While previous
research has demonstrated that high average controllability
depends on high strength (9), to our knowledge, our study is
the first to illustrate that interindividual covariance between
these features has a strong spatial component. This result is
consistent with the idea that brain regions’ structural proper-
ties, and potential strategies for affecting change in functional
activity and connectivity, vary markedly over the cortical hier-
archy (28,73–82). For instance, work in rodents illustrates that
transmodal cortex broadly occupies the topmost level of the
cortical hierarchy (30), wherein regions exert regulatory control
over the lower levels through cascading sets of feedback
projections. These differential roles across the mouse cortical
hierarchy are also reflected by distinct microstructural prop-
erties, including variations to gene expression and cytoarchi-
tecture (83). In human work, top-down connections from
association cortex enable more efficient distribution of activity
across the human brain relative to sensorimotor cortex (28).
Thus, our results suggest that compared with strength and the
other centrality measures studied herein, average controlla-
bility is more sensitive to these cascading circuits of connec-
tivity. Indeed, we found that reducing average controllability’s
access to indirect connections both increased the correlation
with strength and reduced the spatial dependence of these
correlations on the cortical gradient. Our results illustrate the
iological Psychiatry - -, 2021; -:-–- www.sobp.org/journal 7
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value of using NCT to supplement the analysis of interindi-
vidual differences in structural connectivity, particularly in
transmodal association cortex.

Limitations

A limitation of this study is the use of a linear model of neuronal
dynamics to estimate average controllability. While this
assumption is an oversimplification of brain dynamics, linear
models explain variance in the slow fluctuations in brain ac-
tivity recorded by functional magnetic resonance imaging
(44,84), suggesting that they approximate the kinds of data
commonly used to examine brain function in psychiatry. An
additional limitation was our measurement of negative PS
symptoms, which had limited construct coverage compared
with our measurement of positive PS symptoms (52), thus
potentially impeding our prediction efforts. Future work could
use dedicated instruments for assessing negative PS symp-
toms such as the Clinical Assessment Interview for Negative
Symptoms (85).

Conclusions

Our results suggest that the dysconnectivity in transmodal
cortex associated with positive PS symptoms reflects more
than just disruptions to the direct connections among regions,
and that understanding dysconnectivity along longer indirect
pathways, particularly via NCT, is critical to out-of-sample
prediction. More broadly, our results highlight the advantages
of using model-based approaches to networks such as NCT to
understand dimensions of psychopathology. Continued ex-
amination of NCT and related approaches may facilitate
improved predictive modeling in computational psychiatry, a
goal critical to driving the field toward personalized medicine.
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76. Demirtaş M, Burt JB, Helmer M, Ji JL, Adkinson BD, Glasser MF, et al.
(2019): Hierarchical heterogeneity across human cortex shapes large-
scale neural dynamics. Neuron 101:1181–1194.e13.

77. Baum GL, Cui Z, Roalf DR, Ciric R, Betzel RF, Larsen B, et al. (2020):
Development of structure-function coupling in human brain networks
during youth. Proc Natl Acad Sci U S A 117:771–778.

78. Fallon J, Ward PGD, Parkes L, Oldham S, Arnatkevi�ci�ut _e A, Fornito A,
Fulcher BD (2020): Timescales of spontaneous fMRI fluctuations relate
to structural connectivity in the brain. Network Neurosci 4:788–806.

79. Goñi J, van den Heuvel MP, Avena-Koenigsberger A, Velez de
Mendizabal N, Betzel RF, Griffa A, et al. (2014): Resting-brain func-
tional connectivity predicted by analytic measures of network
communication. Proc Natl Acad Sci U S A 111:833–838.

80. Seguin C, Razi A, Zalesky A (2019): Inferring neural signalling direc-
tionality from undirected structural connectomes. Nat Commun
10:4289.

81. Seguin C, Tian Y, Zalesky A (2020): Network communication models
improve the behavioral and functional predictive utility of the human
structural connectome. Netw Neurosci 4:980–1006.

82. Abdelnour F, Voss HU, Raj A (2014): Network diffusion accurately
models the relationship between structural and functional brain con-
nectivity networks. Neuroimage 90:335–347.

83. Fulcher BD, Murray JD, Zerbi V, Wang XJ (2019): Multimodal gradients
across mouse cortex. Proc Natl Acad Sci U S A 116:4689–4695.

84. Cornblath EJ, Ashourvan A, Kim JZ, Betzel RF, Ciric R, Adebimpe A,
et al. (2020): Temporal sequences of brain activity at rest are con-
strained by white matter structure and modulated by cognitive de-
mands. Commun Biol 3:261.

85. Kring AM, Gur RE, Blanchard JJ, Horan WP, Reise SP (2013): The
clinical assessment interview for negative symptoms (CAINS): Final
development and validation. Am J Psychiatry 170:165–172.

86. Mitchell SM, Lange S, Brus H (2013): Gendered citation patterns in
international relations journals. Int Stud Perspect 14:485–492.

87. Maliniak D, Powers R, Walter BF (2013): The gender citation gap in
international relations. Int Organ 67:889–922.

88. Caplar N, Tacchella S, Birrer S (2017): Quantitative evaluation of
gender bias in astronomical publications from citation counts. Nat
Astron 1:0141.

89. Dion ML, Sumner JL, Mitchell SM (2018): Gendered citation patterns
across political science and social science methodology fields. Polit
Anal 26:312–327.

90. Dworkin JD, Linn KA, Teich EG, Zurn P, Shinohara RT, Bassett DS
(2020): The extent and drivers of gender imbalance in neuroscience
reference lists. Nat Neurosci 23:918–926.

91. Zhou D, Cornblath EJ, Stiso J, Teich EG, Dworkin JD, Blevins AS,
Bassett DS: Gender Diversity Statement and Code Notebook v1.0.
Zenodo. Available at: https://doi.org/10.5281/zenodo.3672110.
Accessed September 29, 2020.

92. Ambekar A, Ward C, Mohammed J, Male S, Skiena S (2009): Name-
ethnicity classification from open sources; Proceedings of KDD’09:
The 15th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, June 28–July 1, Paris, France.

93. Sood G, Laohaprapanon S (2018): Predicting race and ethnicity From
the sequence of characters in a name. arXiv doi: http://arxiv.org/
abs/1805.02109.

http://refhub.elsevier.com/S0006-3223(21)01175-6/sref59
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref59
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref59
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref59
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref60
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref60
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref60
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref61
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref61
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref61
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref62
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref62
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref63
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref63
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref63
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref63
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref64
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref64
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref64
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref65
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref65
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref65
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref65
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref66
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref66
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref66
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref66
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref67
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref67
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref67
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref68
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref68
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref68
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref68
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref69
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref69
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref70
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref70
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref71
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref71
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref71
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref71
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref72
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref72
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref72
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref72
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref73
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref73
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref73
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref73
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref74
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref74
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref74
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref75
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref75
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref75
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref76
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref76
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref76
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref76
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref77
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref77
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref77
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref77
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref78
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref78
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref78
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref79
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref79
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref79
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref79
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref79
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref79
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref80
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref80
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref80
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref80
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref81
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref81
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref81
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref82
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref82
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref82
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref83
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref83
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref83
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref84
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref84
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref85
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref85
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref85
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref85
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref86
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref86
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref86
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref87
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref87
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref88
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref88
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref89
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref89
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref89
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref90
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref90
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref90
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref91
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref91
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref91
https://doi.org/10.5281/zenodo.3672110
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref93
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref93
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref93
http://refhub.elsevier.com/S0006-3223(21)01175-6/sref93
http://arxiv.org/abs/1805.02109
http://arxiv.org/abs/1805.02109
http://www.sobp.org/journal

	Network Controllability in Transmodal Cortex Predicts Positive Psychosis Spectrum Symptoms
	Methods and Materials
	Participants
	Dimensional Measures of the PS
	Structural Network Estimation
	Strength
	Network Controllability
	Average Controllability
	Machine Learning Prediction
	Characterizing the Unique Interindividual Variation Introduced to Regional Connectivity Profiles Through the Examination of ...

	Results
	Participants
	Examining Indirect Regional Structural Connectivity With Average Controllability Enables Better Prediction of Positive PS S ...
	Variance in Indirect Structural Connections Is Increasingly Relevant in Transmodal Cortex
	Indirect Connectivity From Transmodal Cortex Underpins Better Prediction Performance of Positive PS Symptoms

	Discussion
	Predicting Positive Psychosis Symptoms Using NCT
	Predicting Negative PS Symptoms
	Analysis of Indirect Connectivity Is Crucial in Transmodal Cortex
	Limitations
	Conclusions

	References


