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SUMMARY

Mental disorders are increasingly understood as disorders of brain development. Large and heterogeneous 
samples are required to define generalizable links between brain development and psychopathology. To this 
end, we introduce Reproducible Brain Charts (RBC), an open resource that integrates data from 5 large 
studies of brain development in youth from three continents (N = 6,346). Bifactor models were used to create 
harmonized psychiatric phenotypes, capturing major dimensions of psychopathology. Following rigorous 
quality assurance, neuroimaging data were carefully curated and processed using consistent pipelines in 
a reproducible manner. Initial analyses of RBC emphasize the benefit of careful quality assurance and 
data harmonization in delineating developmental effects and associations with psychopathology. Critically, 
all RBC data—including harmonized psychiatric phenotypes, unprocessed images, and fully processed im-

aging derivatives—are openly shared without a data use agreement via the International Neuroimaging Data-

sharing Initiative. Together, RBC facilitates large-scale, reproducible, and generalizable research in develop-

mental and psychiatric neuroscience.

INTRODUCTION

Mental disorders are increasingly understood as disorders of 

brain development. 1–3 Neuroimaging studies of brain develop-

ment have the potential to track healthy brain maturation and 

identify deviations linked to psychopathology. However, large 

and diverse samples are necessary to detect reliable patterns 

of neurodevelopment and identify generalizable links to
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psychopathology. 4–12 Multiple independent open science initia-

tives have facilitated this by sharing data publicly. 7,8,13–19 While 

it is possible to aggregate data across independent 

studies, 13,20–22 it is not necessarily a straightforward process 

due to variation in neuroimaging and psychiatric phenotyping 

protocols used. 23,24 Obstacles in combining disparate data 

lead most investigators to use only a fraction of the data avail-

able. 7,25,26 To address these challenges, we introduce the 

Reproducible Brain Charts (RBC) initiative: a large-scale, open 

data resource for the developing brain and psychiatry.

RBC addresses five major obstacles. First, there is abundant 

evidence that large, high-quality samples are essential for 

defining reliable brain-behavior associations. 5–9,27–29 This is 

particularly challenging for studies of brain development, where 

large samples are also necessary to define a normative growth 

curve. 3 To yield generalizable results, samples must not only 

be large but also diverse. 5,8,12,19,30,31 Basic dimensions of diver-

sity include age, sex, socioeconomic status, clinical diagnosis, 

race, and genetic ancestry. 5,8 Accordingly, large-scale samples 

must encompass such variability to identify generalizable pat-

terns of neurodevelopment and their links to mental health. In 

response, RBC has assembled a diverse dataset from five major 

developmental cohorts across three continents, spanning 

various recruitment strategies and thereby enriching both psy-

chopathology and demographic diversity. This model serves 

as a foundational starting point for future expansions and the in-

clusion of data from additional studies and cohorts.

Second, combining psychiatric phenotypic data across large-

scale studies presents multiple challenges. 32–36 An initial chal-

lenge is obvious: different studies often employ disparate 

assessment tools to measure the same construct. Moreover, 

even when the same assessment is used, important psychomet-

ric properties may vary across populations. Aggregated data 

thus require careful harmonization of both measures and 

response properties. RBC addresses this by mapping differing 

tools to a common framework using a bifactor model. 37–44 Bifac-

tor models provide a robust solution by extracting a general fac-

tor (the ‘‘p factor’’) that captures shared variance across symp-

toms and distinct domain-specific factors (e.g., internalizing or 

externalizing symptoms) that remain independent of the general 

factor. This approach effectively summarizes correlated psychi-

atric symptoms and diagnoses, aligning with dimensional

models like Hierarchical Taxonomy of Psychopathology 

(HiTOP) 40,41 and Research Domain Criteria (RDoC). 45

A third major challenge is that both image acquisition param-

eters and image processing procedures vary considerably 

across large-scale studies. Even within multi-site studies with 

harmonized protocols, variation in scanners and protocol adher-

ence introduces significant technical variability. 25,30 Further-

more, many large-scale studies do not publicly release fully pro-

cessed data. When they do, different studies utilize discrepant 

image processing pipelines, further complicating data aggrega-

tion and the reproducible integration of findings across 

studies. 46–51 To address this, we processed all RBC data with 

standard tools like FreeSurfer 52 and the Configurable Pipeline 

for Analysis of Connectomes (C-PAC 53 ). C-PAC’s highly config-

urable workflow allowed us to uniformly apply multiple versions 

of image processing across the entire data resource. Notably, 

all image processing steps were executed within the FAIRly-

big framework, 54 maintaining a detailed audit trail via DataLad. 55 

Fully documented and traceable data curation and processing 

enable researchers to rerun and adapt workflows for their ana-

lyses, facilitating harmonization and integration across data-

sets. 56 Following such reproducible image processing, we 

further reduced acquisition-related variation using statistical 

techniques adapted from computational genomics to harmonize 

imaging features. 57–63

Fourth, variation in data quality remains a very important 

confound in neuroimaging research, with in-scanner motion pro-

foundly impacting imaging features such as functional connec-

tivity. This challenge is particularly acute for studies of brain 

development and psychiatry, as younger children and individ-

uals with significant symptoms tend to move more during scan-

ning sessions. 20,64 Without meticulous quality control (QC), the 

substantial effects of data quality can easily overshadow the 

more subtle variations associated with brain development or 

psychopathology, leading to spurious associations that may be 

misinterpreted as biologically meaningful. 23,64–68 To address 

this, RBC provides an extensive array of QC metrics alongside 

specific suggestions for exclusion criteria, bolstering the validity 

of the integrated data.

Fifth and finally, the mechanics of data access remain a major 

obstacle for investigators who hope to exploit large-scale data 

resources. Administratively cumbersome data use agreements
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(DUAs) often delay researchers and diminish the returns on pub-

lic investments. 22,27,30,69–72 In contrast, the fully de-identified 

data in RBC is released as a completely open resource. This 

open-access approach allows all harmonized psychiatric phe-

notypes and imaging data to be freely shared via the Interna-

tional Neuroimaging Data-sharing Initiative (INDI 24 ) without the 

need for a DUA, thereby accelerating research and maximizing 

the impact of public investments.

RESULTS

RBC aggregates five diverse neurodevelopmental 

datasets

RBC integrates demographics, psychiatric phenotyping, and 

both T1-weighted structural and resting-state and task 

functional Magnetic Resonance Imaging (MRI) data from five 

diverse and prominent developmental cohorts (see Table S1; to-

tal N = 6,346). Specific studies include the following: (1) Brazilian 

High Risk Cohort (BHRC 73 ); (2) Developmental Chinese Color 

Nest Project (CCNP 74,75 ); (3) Healthy Brain Network (HBN 17 ); 

(4) Nathan Kline Institute-Rockland Sample (NKI 18 ); (5) Philadel-

phia Neurodevelopmental Cohort (PNC 16,76 ). The vast majority of 

data included in RBC is from childhood, adolescence, and early 

adulthood (age range: 5–22 years old), with the exception of the 

NKI dataset that also includes participants from across the life-

span (up to 85 years old). All datasets have a relatively balanced 

sex distribution (about 45% female across all datasets). In addi-

tion, RBC provides information about participant race and 

ethnicity, handedness, body mass index (BMI), participant edu-

cation, parental education, and psychopathology (see below).

RBC provides harmonized phenotypic data across 

studies

Selection of phenotypic instruments predated the RBC, and as 

such, reflects the design of each study. Specifically, the Child 

Behavior Checklist (CBCL) was used in BHRC, Chinese Color 

Nest Project (CCNP), Healthy Brain Network (HBN), and 

NKI while GOASSESS was used in Philadelphia Neurodevelop-

mental Cohort (PNC). The CBCL is a 120-item parent-report 

assessment of emotional and behavioral phenotypes. 77 PNC 

did not include the CBCL but rather assessed psychopathology 

using a highly structured psychiatric screening interview 

(GOASSESS). 78

In RBC, we sought to derive major dimensions of psychopa-

thology that both harmonized differences between samples as-

sessed with the same instrument (i.e., the CBCL) as well as 

harmonizing differences between instruments (i.e., the CBCL

vs. GOASSESS; see Figure 1A). To this end, we modeled psy-

chopathology using a bifactor model. 37–39 Specifically, bifactor 

models yield a factor that represents overall psychopathology 

(also known as the ‘‘p factor’’) and orthogonal factors for specific 

symptom domains. We first evaluated 12 bifactor models based 

on previous literature to identify the model that best harmonized 

phenotypic data, minimizing between-study differences in 

CBCL. 44 Furthermore, we extensively evaluated methods for 

harmonizing GOASSESS with CBCL using CFA. 42,43 Ultimately, 

we developed a harmonized model that included a general psy-

chopathology factor as well as specific factors for internalizing, 

externalizing, and attention symptoms 43 (Figure 1B; also see 

Tables S2–S3 for model fits and factor structure for harmonized 

CBCL–GOASSESS model). Participant scores for general psy-

chopathology and domain-specific factors are publicly shared 

in RBC.

An illustrative example of the impact of harmonization on psy-

chiatric phenotypes in RBC is apparent when comparing the 

overall psychopathology factor (p factor) and the externalizing 

factor in PNC and HBN (Figures 1C and 1D). As noted above, 

PNC and HBN used different instruments to assess psychiatric 

phenotypes (CBCL vs. GOASSESS). They also differed in their 

sample recruitment strategy: while PNC is a community-based 

sample, HBN primarily consists of help-seeking youth with sig-

nificant mental health symptoms. As such, we expect higher 

levels of psychopathology in HBN than PNC. Notably, before 

harmonization, this difference was not apparent (Figure 1C; orig-

inal psychopathology score: t = − 8.4e− 15, p = 0.9). Following 

harmonization, higher levels of psychopathology were evident 

in HBN as expected (Figure 1C; harmonized psychopathology 

score: t = 22.9, p = 1.3e− 110). These harmonized factor scores 

aligned with clinical diagnostic categories defined by the DSM 

(Figure 1E). For example, conduct disorder was marked by 

elevated externalizing factor and p factor values, whereas major 

depression and generalized anxiety were marked by higher p 

factor and internalizing factor scores. In contrast, all general 

and specific factors were low in typically developing youth. 

Together, this harmonization process allows for direct pooling 

of phenotypic data across the diverse studies included in RBC.

Neuroimaging data are curated in a fully reproducible 

manner in RBC

We aggregated structural and functional neuroimaging data from 

multiple independently collected, large-scale data resources in 

RBC, while addressing challenges due to variations in imaging 

data acquisition (Tables S4–S5). Imaging metadata, described 

by the Brain Imaging Data Structure (BIDS 79 ), can be used to

Figure 1. RBC provides harmonized phenotypic data

(A) Phenotypic data were separately collected by studies included in RBC using different instruments (i.e., CBCL vs. GOASSESS).

To harmonize phenotypic data, expert 1-to-1 semantic item-matching was used to identify 36 compatible items across studies, which were then reduced to 22 

harmonized items.

(B) The McElroy bifactor model was used on harmonized items, yielding a general psychopathology factor (i.e., p factor) and orthogonal factors that represent 

specific domains (i.e., externalizing, internalizing, and attention).

(C and D) The impact of the RBC phenotypic data harmonization is demonstrated for PNC (GOASSESS questionnaire) and HBN (CBCL checklist), depicting 

original total scores (i.e., normalized sum scores based on full item sets) and harmonized factors for p factor (C) and externalizing factor (D). Expected cohort 

differences (e.g., higher levels of psychopathology in HBN) becomes more evident in harmonized data.

(E) Factor scores aligned with clinical diagnostic categories. For example, higher externalizing and p factors were observed in conduct disorder, while higher 

internalizing and p factors were observed in major depression and anxiety disorders. All general and specific factors were low in typical development.
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automatically configure processing workflows (e.g., ‘‘BIDS-

apps’’ 79 ). Such automatic configuration facilitates processing 

of large datasets that may have been collected using different 

data acquisition protocols. However, given that automatic 

configuration of processing workflows relies on metadata, any 

inaccuracies in metadata can lead to pipelines that are repro-

ducible but wrong. This reliance makes careful curation of meta-

data essential as any issues at the curation step will influence all 

subsequent analysis. Yet, data curation is typically an ad-hoc 

process, often involving poorly-recorded manual intervention 

that is not reproducible, compromising the chain of reproduc-

ibility from the start.

To overcome these challenges, we converted all datasets to 

the BIDS format and curated the data using the reproducible 

workflows provided by the Curation of BIDS (CuBIDS 80 ) pack-

age. CuBIDS summarizes the heterogeneity in image acquisition 

and facilitates metadata curation. Moreover, CuBIDS uses 

DataLad 55 to ensure reproducibility throughout the curation pro-

cess. Each study in RBC was curated with CuBIDS, yielding 

summary tables that describe and summarize heterogeneity in 

image acquisition (see STAR Methods for details). For example, 

PNC had 3 different CuBIDS parameter groups for structural im-

ages (i.e., T1-weighted MRI scans), separating T1 images to a 

main group with the majority of scans (n = 1597) and 2 variant 

groups with only a few scans each (e.g., n = 3 and n = 1). The 

CuBIDS summary files also indicate the source of the variance 

in image acquisition parameters. For example, the sources of 

the variance in PNC T1 images were obliquity for one variant 

group and slightly different echo and repetition times for the 

other variant group. Notably, functional MRI data were generally 

more heterogeneous, where the main source of the variance was 

the number of volumes acquired during fMRI scans. In all cases, 

using CuBIDS to curate the RBC data bolstered our confidence 

in the metadata used by BIDS-apps to configure image process-

ing pipelines.

RBC provides fully processed structural and functional 

MRI data

Differences in data processing pipelines across studies present 

significant barriers to aggregating data from multiple resources. 

To support cross-study analyses, we used uniform processing 

pipelines and maintained a comprehensive audit trail in RBC. 

Specifically, following data curation, we used consistent image 

processing pipelines across studies to generate a standardized 

set of commonly used measures of brain structure and func-

tion. 15,19,56,81,82 To ensure reproducibility and transparency, we 

adopted the ‘‘FAIRly-big’’ framework, 54 which enabled all data 

preparation and analyses to be accompanied by a detailed audit 

trail in DataLad. 55 This audit trail not only allows for tracking all 

steps in the processing pipeline but also provides a robust 

mechanism to rerun the pipelines, preserving methodological 

integrity. While the use of random numbers in imaging pipelines, 

such as FreeSurfer, 52 sMRIPrep, 83 and C-PAC, 53 can lead to 

slight variations in derived outputs (e.g., zip files with differing 

shasums), the pipeline commands are fully rerunnable, and their 

execution history is carefully recorded. This ensures that the 

entire process remains transparent and auditable, even if certain 

imaging derivatives are not strictly identical upon re-execution.

In RBC, we provide fully processed data including an exten-

sive set of commonly used structural and functional data deriva-

tives (Figure 2). Structural derivatives include surface area, 

cortical thickness, gray matter volume, folding and curvature 

indices, as well as summary whole-brain measures such as total 

intracranial volume. Functional data derivatives include prepro-

cessed time series and functional connectivity matrices with 

multiple edge weights (e.g., pairwise Pearson and partial corre-

lations between regional time series; Figure 2B). In addition, 

RBC provides regional measures such as Regional Homogeneity 

(ReHo, 84 Amplitude of Low Frequency Fluctuation (ALFF 85 ), and 

fractional ALFF (fALFF 86 ) (Figure 2C). Both structural and func-

tional data are available in parcellated format using 16 anatom-

ical, functional, and multimodal atlases (see STAR Methods for 

further details).

RBC data are accompanied by harmonized measures

of QC

Data quality is one of the most important confounding factors in 

neuroimaging research. Image quality—driven mainly by in-

scanner motion—affects both measures of brain structure 68,87,88 

and functional connectivity. 23,64–66 Impact of data quality is even 

more pronounced in studies of development and psychopathol-

ogy, where younger individuals and those with psychiatric symp-

toms tend to have higher in-scanner motion. 20,64,89 Inconsistent 

quality control (QC) criteria complicate cross-study compara-

bility, yielding different samples and discrepant results from 

the same data. Thus, harmonized QC metrics that can be used 

for sample construction and model covariates (e.g., continuous 

QC metrics) are required to account for the impact of data 

quality.

To ensure consistent sample selection and comparable 

cross-study analyses, we generated harmonized measures of 

neuroimaging data QC in RBC. These measures are accompa-

nied by specific QC guidelines that allow for consistent quality 

assurance. Summary information on the number of participants 

with structural and functional scans before and after applying 

RBC’s recommended QC is available in Figure S1. Overall, 

approximately 90% of RBC data had adequate structural and 

functional QC (range: 75% for HBN to 99% for CCNP). Study-

and modality-specific data on how RBC’s recommended 

QC affects sample size are detailed in Table S6. As expected, 

image quality varied by study, with lower quality in studies 

with younger participants and greater psychopathology 

(e.g., HBN).

Structural MRI

RBC provides both harmonized QC information for sMRI based 

on expert manual ratings as well as automated, quantitative 

indices of image quality. Specifically, every structural image 

was manually evaluated by 2–5 expert raters in multiple phases 

using Swipes for Science, a web application for binary image 

classification 90 (Figure 3A). Expert raters assigned ratings of 

‘‘Pass’’ or ‘‘Fail’’ to four slices per each image. Each image 

was assigned a score per rater by averaging across slices, and 

then an overall QC score of Pass, ‘‘Artifact,’’ or Fail was assigned 

to the image based on the average rating across raters. Specif-

ically, Pass or Fail labels were assigned to a given image if all 

raters agreed about its quality (i.e., all raters assigned the
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same label of either Pass or Fail to the image). The intermediate 

artifact label was assigned to an image when there was 

disagreement between raters. The reliability of ratings was as-

sessed across raters using a subset of images, using ratings 

for 1,896 participants (totaling 7,584 slice ratings). We found a 

high level of agreement among raters (71.5% agreement; 

average Cohen’s kappa = 0.71; Figure 3B). The majority of struc-

tural scans across studies were labeled as Pass and were 

considered of adequate quality (82.6% on average across 

studies; Figure 3C). However, there was heterogeneity in data 

quality across datasets: HBN had the most artifact and fail scans 

compared with the other four studies, consistent with the fact 

that HBN includes younger help-seeking individuals with higher 

levels of psychopathology (with ADHD being the most frequent 

diagnosis). Furthermore, we found a positive trend between 

the average manual ratings and participant age (age range: 

5–21 years old; Spearman rho = 0.28; Figure 3E), consistent 

with lower in-scanner motion and improved image quality in 

older individuals.

In addition to the manual expert ratings, we calculated the Eu-

ler number for each structural scan as part of the FreeSurfer pro-

cessing pipeline. The Euler number reflects the topological

complexity of the reconstructed cortical surface: a lower Euler 

number indicates more defects in surface reconstructions (i.e., 

holes in the reconstructed cortical surface), and a ceiling of 0 rep-

resents the highest possible quality by this metric. Previous re-

ports have demonstrated that the Euler number is an accurate, 

fully automated measure of data quality, capturing variation in 

data quality within the coarse categories provided by manual rat-

ings. 88,91–93 Consistent with prior work, we found that the Euler 

number was positively associated with average manual expert 

ratings in RBC (Spearman rho = 0.63; Figure 3D). We recom-

mend including Euler number as a covariate in secondary anal-

ysis of RBC data in addition to excluding data that do not meet 

RBC’s data quality criteria based on the categorical QC labels. 

Functional MRI

fMRI derivatives in RBC are accompanied by extensive mea-

sures of QC, including multiple indices of both in-scanner motion 

and image registration quality. To facilitate consistent QC across 

datasets, we generated a summary functional QC score. Specif-

ically, fMRI runs with low in-scanner motion (i.e., median 

framewise displacement [FD] ≤ 0.2) and high image normaliza-

tion quality (i.e., normalized cross correlation ≥ 0.8) were consid-

ered of adequate quality.

Figure 2. RBC provides processed neuroimaging derivatives

(A) RBC integrates structural and functional neuroimaging data from 5 neurodevelopmental datasets.

(B and C) Following careful data curation and consistent data preprocessing, neuroimaging data derivatives were estimated and publicly released in RBC. A few 

examples of group-average functional data derivatives are depicted: (B) functional connectivity matrices for 3 atlases with multiple edge weights (Pearson and 

partial correlations between processed regional time series) and their corresponding coefficients of variation (ratio between standard deviation and average 

absolute correlation value); (C) regional properties such as Regional Homogeneity (ReHo) and amplitude of low frequency fluctuation (ALFF).
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Using this approach, a relatively small proportion of partici-

pants per study were excluded due to poor data quality (9.7% 

excluded across studies). As expected, due to younger partici-

pants and higher prevalence of psychopathology, HBN had the 

largest number of individuals with increased in-scanner motion 

(Figures 4A and 4B). In-scanner motion decreased with age 

(Spearman rho = − 0.22; Figure 4C). Furthermore, median FD 

was positively associated with higher p factor (Spearman rho = 

0.15; Figure 4D), suggesting that individuals with higher overall 

psychopathology tend to have higher in-scanner motion. Finally, 

median FD during fMRI was negatively related to manual ratings

of structural image quality (Spearman rho = − 0.45; Figure 4E), 

indicating that individuals with higher in-scanner motion during 

functional scans also had lower structural scan quality. Taken 

together, these extensive structural and functional QC metrics 

allow for consistent quality assurance of imaging data in RBC. 

We strongly encourage researchers to use our recommended 

quality assurance ratings when working with RBC dataset. How-

ever, we also provide all data—even the scans that do not pass 

QC—to help accelerate progress on image QC research (see 

STAR Methods for details on different versions of publicly 

released RBC data).

Figure 3. RBC data are accompanied by harmonized structural QC metrics

Harmonized structural QC metrics were estimated based on expert manual ratings and automated methods.

(A) Each structural image was manually evaluated by 2–5 expert raters in 7 phases using Swipes for Science. Expert raters assigned pass or fail labels to 4 two-

dimensional slices per image. An overall QC score of pass, artifact, or fail was then assigned to each image: scans were labeled pass or fail if all raters were in 

agreement about their quality while artifact was assigned when there was any disagreement.

(B) Comparing final QC labels to expert ratings demonstrated a high level of agreement among raters (71.5% agreement; average pairwise Cohen’s kappa = 0.71).

(C) Proportion of data with pass, artifact, and fail labels are depicted for each study. HBN had the most artifact and fail scans compared with the other four studies.

(D) A continuous automated measure of data quality, Euler number, was estimated as part of the FreeSurfer processing pipeline. As expected, Euler number was 

positively associated with the average expert ratings (Spearman rho = 0.63).

(E) Average expert ratings were positively associated with age, indicating higher in-scanner motion, hence, lower image quality in younger individuals (Spearman 

rho = 0.28).
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Figure 4. RBC data are accompanied by harmonized functional QC metrics

An extensive list of harmonized QC metrics were generated for functional data, including summary measures of in-scanner motion, image registration, and 

normalization quality indices.

(A) Median Framewise Displacement (FD) is depicted as an example functional QC metric (bar plots colored by participant age). Dashed line indicates RBC’s 

recommended threshold for median FD, demonstrating that only a small proportion of individuals had high in-scanner motion.

(B) As demonstrated in (A), the majority of RBC functional data pass the in-scanner motion threshold of 0.2. Consistent with structural QC (Figure 3), HBN had the 

largest number of individuals with high in-scanner motion.

(C) Median FD was negatively associated with participant age, suggesting higher motion in younger individuals (Spearman rho = − 0.22).

(D) In-scanner motion displayed a positive trend with p factor, suggesting that individuals with higher overall psychopathology tend to have higher in-scanner 

motion (Spearman rho = 0.15).

(E) Median FD in functional data was negatively associated with average manual ratings in structural data, indicating that individuals with higher in-scanner motion 

during functional scans also had lower structural scan quality (Spearman rho = − 0.45).
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Neuroimaging features are associated with age and 

psychopathology in youth

To illustrate the utility of RBC, we examined how neuroimaging 

features were related to participant age and overall psychopa-

thology. To ensure sensitivity to both linear and non-linear rela-

tionships, we used Generalized Additive Models (GAMs), while 

controlling for covariates such as sex and data quality. 60,94,95 

Prior to statistical analyses, imaging measures were harmonized 

using CovBat-GAM while protecting the effects of model 

covariates such as age (as a smooth term), sex, data quality, 

and the p factor (as linear terms) 57–61 (see Figure S2 for site 

variation before and after harmonization). Sample sizes varied

(N = 3,847 to 4,827) depending on data modality (i.e., structural 

vs. functional features), analysis type (i.e., age vs. psychopathol-

ogy analysis), and whether QC was implemented (Table S7). 

Structural neuroimaging features are associated with 

development and psychopathology

We first assessed developmental associations with brain struc-

ture using structural MRI derivatives, including cortical thickness 

(CT), surface area (SA), and gray matter volume (GMV). The data 

were parcellated into 400 regions using the Schaefer-400 

atlas. 96 As a baseline, we evaluated age effects in combined 

RBC data without QC implementation or imaging data harmoni-

zation (Figure 5A). We found that developmental effects varied

Figure 5. Structural data derivatives are associated with age in youth

Generalized additive models (GAMs) were used to examine the relationship between participant age and structural data derivatives, including cortical thickness 

(CT) and surface area (SA).

(A) We found an overall decrease in mean CT during development in aggregated RBC data without QC or harmonization. However, developmental effects varied 

markedly between studies as demonstrated by study-specific model fits (color-coded curves). We also examined regional age effects using separate models for 

each brain region. Age effects were quantified using ranked partial R 2 and are depicted on the cortical surface after correcting for multiple comparisons (FDR 

corrected).

(B) To assess QC and harmonization effects, we repeated the analysis after excluding data with Fail structural QC and harmonizing neuroimaging data using 

CovBat-GAM. Following QC and harmonization, the developmental effects on mean CT and SA became more similar between studies as evident by study-

specific fits. Similar to before, results demonstrated an overall decrease in mean CT with development. Regional analyses identified heterogeneous develop-

mental effects on the cortex.
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markedly between studies. For example, mean CT displayed a 

sharp decline with age in BHRC and PNC whereas these effects 

were more gradual in CCNP, HBN, and NKI. However, following 

QC and harmonization, the developmental patterns converged 

across studies and sites (Figure 5B; see Figure S3A for develop-

mental patterns across sites). Mean CT declined markedly with 

age; GMV and SA showed more gradual changes (CT and SA 

in Figure 5 and GMV in Figure S4). Regional analyses identified 

heterogeneous developmental effects in CT and SA across the 

cortex. CT decreased with age in most cortical regions, with 

the most prominent decrease observed in medial parietal, lateral 

and medial prefrontal, and temporal regions. SA displayed a 

combination of increases and decreases with age, such that 

medial frontal and parts of visual and motor cortices displayed 

an increase in SA whereas lateral parietal, temporal and prefron-

tal cortices displayed a decrease in SA during development 

(Figure 5B). Regional variations were consistent with the original 

analyses after controlling for global effects by including mean 

CT, SA, or GMV in addition to other covariates (i.e., sex and Euler 

number; Figure S5). In addition, we repeated the analyses after 

implementing QC but before harmonizing imaging data 

(Figure S6A). We found that although QC removed data with 

low quality, data harmonization was required to effectively ac-

count for site and study differences.

We next examined the relationship between brain structure and 

psychopathology (p factor) using the aggregated data (Figure 6). 

Similar to age-related findings, whole-brain associations between 

structural features and p factor converged across studies and sites 

following QC and data harmonization (Figure 6B; see Figure S3B 

for results across sites). Although regional analyses identified

Figure 6. Structural data derivatives are associated with psychopathology in youth

(A) GAM analyses using aggregated RBC data without QC or harmonization identified an overall increase in mean CT with increased p factor and decreasing trend 

in mean SA with increased p factor. Similar to age-effects (Figure 5), whole-brain associations between brain structure and psychopathology varied between 

studies. Regional analyses identified significant associations between structural features and p factor in a subset of brain regions.

(B) Following QC and harmonization, whole-brain association converged between studies, demonstrating no relationship between mean CT and p factor and a 

decreasing trend in mean SA with increased p factor. Regional analyses identified no significant associations between regional CT and psychopathology and 

significant decreasing patterns in SA with increased psychopathology. Note that CT was significantly associated with p factor in a subset of regions before QC 

and harmonization. This suggests that including low-quality data or combining multi-site datasets without data harmonization may result in spurious associations.
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significant association with p factor in both CT and SA in combined 

RBC data without QC and harmonization (Figure 6A), only SA was 

significantly associated with p factor following QC and harmoniza-

tion (Figure 6B). The results demonstrated that SA decreased with 

overall psychopathology, with the most prominent decrease in 

medial and lateral prefrontal cortices. We also repeated the ana-

lyses after implementing QC but before harmonizing imaging 

data (Figure S6B). This analysis suggested the presence of signif-

icant associations between CT and p factor without data harmoni-

zation. However, these effects largely disappeared after harmoni-

zation with CovBat-GAM. Together, these findings underscore the 

importance of QC and harmonization when combining heteroge-

neous data. Importantly, including low-quality data in the analysis 

or combining multi-site datasets without data harmonization may 

result in spurious associations between psychopathology and 

brain structure.

Functional neuroimaging features are associated with 

development and psychopathology

To assess the developmental variations in brain function, we inves-

tigated how within- and between-network functional connectivity 

were associated with age (Figure 7) and overall psychopathology 

(Figure 8). We evaluated functional connectivity matrices with 

400 cortical regions, 96 each assigned to one of the canonical 7

Yeo-Krienen networks. 97 Similar to the findings for structural 

data, age-related variations in network-level connectivity 

converged to similar patterns across studies and sites following 

structural and functional QC and data harmonization (Figure 7B 

compared with Figure 7A; see Figure S3C for results across sites). 

Following QC and harmonization, we observed an overall increase 

in within-network connectivity during development for all resting-

state networks. However, the amount of age-related increase in 

within-network connectivity varied between networks with the 

ventral attention network demonstrating the largest increase in 

connectivity during development (Figure 7B; Partial R 2 = 0.067, 

p FDR < 0.0001). In contrast, between-network functional connec-

tivity decreased with age in most networks. However, these age ef-

fects were heterogeneous (Figure 7B). For example, connectivity 

between ventral attention and default mode networks significantly 

decreased with age (Figure 7B; Partial R 2 = − 0.065, p FDR < 0.0001), 

while connectivity between ventral attention and dorsal attention 

networks increased with development (Figure 7B; Partial R 2 = 

0.046, p FDR < 0.0001).

Finally, we assessed the relationship between p factor and 

network-level functional connectivity (Figure 8). Without QC or 

harmonization, we found significant associations between p fac-

tor and within- and between-network functional connectivity in

Figure 7. Functional data derivatives are associated with age in youth

(A) Aggregated data without QC or harmonization were used to model age-related variations in network-level functional connectivity.

Results are depicted in a matrix (left), where the diagonal values correspond to within-network age-effects (partial R 2 ) and off-diagonal values correspond to 

between-network age effects. Asterisks indicate statistical significance after correcting for multiple comparisons (FDR-corrected p values: * indicates 

0.001 < p < 0.05; ** indicates 0.0001 < p < 0.001; *** indicates p < 0.0001). Overall, we found an increase in within-network connectivity with development while 

between-network age-effects were more heterogeneous. Example results (marked via circles in the matrix) are shown for within-network connectivity in the 

ventral attention network and between-network connectivity between the default mode and ventral attention networks. Study-specific model fits varied between 

studies, especially for within-network connectivity.

(B) We repeated the analyses following QC and harmonization. Within- and between-network age effects displayed similar associations as before (with variations 

in effect size and significance). However, study-specific model fits converged and displayed consistent patterns across studies.
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multiple networks (Figure 8A). However, following QC and 

harmonization, we observed significantly increased connectivity 

only between default mode and frontoparietal control networks 

with increasing psychopathology (Figure 8B; Partial R 2 = 0.004, 

p FDR = 0.0002; see Figure S3D for results across sites). As for 

sMRI, we repeated the analyses after implementing QC but 

before harmonizing imaging data (Figure S6C for age effects 

and Figure S6D for psychopathology). Together, these analyses 

showcase how RBC data can be used and highlight the impor-

tance of rigorous QC and data harmonization.

Evidence for sex differences in brain development 

Lastly, we examined the effects of biological sex. Consistent with 

previous literature, 98,99 we found widespread significant sex differ-

ences in structural features, even after controlling for global effects 

(Figures S7A and S7B). As in previous reports, 100–102 we found sig-

nificant sex differences in network-level functional connectivity

(Figure S7C). Specifically, we found that females had greater 

within-network connectivity in the default mode network (Partial 

R 2 = 0.005, p FDR < 0.0001). In contrast, we found that males 

had greater between-network connectivity between the 

default mode network and the ventral attention (Partial R 2 = 

0.009, p FDR < 0.0001), dorsal attention (Partial R 2 = 0.006, 

p FDR < 0.0001), visual (Partial R 2 = 0.004, p FDR < 0.0001), and so-

matomotor (Partial R 2 = 0.002, p FDR = 0.01) networks. These find-

ings indicate a less segregated default mode network in males. In-

teractions between biological sex and age are summarized in 

Figures S8.

DISCUSSION

Developmental and psychiatric neuroimaging research often 

faces significant obstacles: limited sample sizes, variability in

Figure 8. Functional data derivatives are associated with psychopathology in youth

(A) GAM analysis with aggregated data without QC or harmonization identified significant associations between network-level connectivity and p factor in multiple 

networks.

Results are depicted in a matrix (left), where the diagonal values correspond to within-network age-effects (partial R 2 ) and off-diagonal values correspond to 

between-network age-effects. Asterisks indicate statistical significance of the findings after FDR correction (corrected p values: * indicates 0.001 < p < 0.05; 

** indicates 0.0001 < p < 0.001; *** indicates p < 0.0001). An example relationship (marked via a circle in the matrix) between psychopathology and between-

network connectivity is shown for the default mode and frontoparietal control networks.

(B) Following QC and harmonization, we only identified a significant positive association between p factor and between-network connectivity in the default mode 

and frontoparietal control networks.

ll
NeuroResource

12 Neuron 113, 1–22, November 19, 2025

Please cite this article in press as: Shafiei et al., Reproducible Brain Charts: An open data resource for mapping brain development and its associations 
with mental health, Neuron (2025), https://doi.org/10.1016/j.neuron.2025.08.026



image acquisition and psychiatric phenotyping, and inconsistent 

data analysis workflows. 5,7,9,25,26,30 These collectively hinder the 

generalizability of results, and act as a brake on scientific 

progress. RBC addresses these challenges by integrating and 

harmonizing data from over 6,000 participants across five major 

neurodevelopmental cohorts. We employed advanced harmoni-

zation techniques to overcome variability in psychiatric pheno-

typing and imaging protocols, ensuring that data from different 

studies can be meaningfully combined with confidence. Further-

more, neuroimaging data with uniform processing are comple-

mented by standardized QC measures to ensure rigor. Initial re-

sults defining consistent patterns of brain development 

underscore the degree to which RBC facilitates robust and 

generalizable studies of the developing brain.

RBC is a response to the proliferation of large-scale studies of 

brain development. 13–18,74,75 RBC builds on previous data ag-

gregation and harmonization efforts such as the International 

Neuroimaging Data-sharing Initiative (INDI), the Autism Brain Im-

aging Data Exchange (ABIDE) Preprocessed, and the ADHD-200 

Preprocessed, 13,22,56,103,104 while distinguishing itself through a 

strong emphasis on harmonization, reproducibility, and data 

quality. However, this emphasis posed unique and sometimes 

unforeseen challenges; RBC reflects 6 years of sustained meth-

odological efforts. Next, we detail what was required as well as 

lessons learned across several key domains.

Concise, harmonized psychiatric phenotyping 

Harmonizing psychiatric phenotypes remains a major challenge 

for the field; RBC was no exception. The harmonized dimensions 

of psychopathology released with RBC were only possible after 

a series of detailed methodological studies, which evaluated a 

broad range of bifactor models to harmonize constructs. 42–44 

The resulting factor scores provide a parsimonious summary of 

mental health data, disambiguating general and specific dimen-

sions of psychopathology. 37–39 This approach aligns with the 

dimensional and hierarchical characterization of psychopathol-

ogy emphasized in HiTOP. 40,41 It should be noted that recent 

studies have raised important concerns regarding the alignment 

of bifactor models of psychopathology with established theoret-

ical frameworks. 105 Despite potential shortcomings, the validity 

of the general factor of psychopathology (i.e., p factor) derived 

from these models is supported by extensive evidence. 44,106–110 

Importantly, bifactor models also offer pragmatic advantages to 

researchers, such as parsing inter-item covariance into orthog-

onal scores (i.e., latent dimensions) that can be used simulta-

neously in hypothesis testing. When dealing with the inevitable 

comorbidity of psychopathology symptoms, extracting a general 

factor to explain them is often the most practical solution. Here, 

we exploited bifactor modeling’s strength in facilitating cross-

study comparisons despite the different sampling strategies of 

the component studies. 42

Reproducible image curation

The BIDS format has been a boon for the field. 26,79,111 However, 

many studies-like several included in RBC—have not previously 

been released in BIDS. Furthermore, BIDS metadata may be 

inaccurate or missing. This is a critical and under-recognized 

problem as widely-used image processing pipelines (e.g.,

BIDS-apps) automatically configure workflows based on imag-

ing metadata—leading to processed data that may be inaccu-

rate (e.g., reproducible but wrong). Typically, metadata is 

corrected manually in an ad-hoc fashion, compromising repro-

ducibility before image processing even begins. This was an 

unanticipated challenge in RBC—large datasets that required 

significant metadata curation. To address this, we created 

CuBIDS, 80 which allows for reproducible BIDS curation. Notably, 

the detailed summary of metadata provided by CuBIDS also re-

vealed more significant protocol variation in each of the compo-

nent studies than originally anticipated. Such protocol variation 

is usually unacknowledged; studies typically report only the in-

tended protocol. Moving forward, the practical consequences 

of such variation merit evaluation and likely suggest the need 

for multi-level harmonization methods that can address variation 

in image acquisition both within and across studies. 112

Uniform image processing and reproducible workflows 

In RBC, we followed the example of prior data aggregations— 

such as the ABIDE and ADHD-200 Preprocessed 56,104 –and 

released fully processed data. We started by leveraging contain-

erized, open-source pipelines—such as FreeSurfer, 52 sMRI-

Prep, 83 and C-PAC 53 —to ensure uniform processing of struc-

tural and functional MRI data. The need for such uniform 

processing was underscored after our initial benchmarking 

study revealed that even seemingly innocuous analytic choices 

(e.g., template version) can introduce significant variability. 51 

Both that study and prior work revealed that the use of global 

signal regression (GSR) has a substantial impact on derived fea-

tures; the impact of GSR on findings remains one of the most 

common and time-consuming questions addressed in peer re-

view. 113–119 We took advantage of the exceptional configurabil-

ity of C-PAC to execute two high-performance denoising pipe-

lines both with and without GSR.

The use of containerized processing pipelines is a major asset 

for reproducibility but does not on its own allow for full audit trail. 

In RBC, we adopted the ‘‘FAIRly-big’’ workflow 54 : a framework 

that uses DataLad 55 to ensure reproducible processing of large 

datasets. This framework aligns with the FAIR principles (find-

ability, accessibility, interoperability, and reusability) 120 by 

enabling open, modular, and reusable workflows. However, 

while we successfully applied the FAIRly-big workflow in RBC, 

it was not straightforward: it had a steep learning curve despite 

our team’s significant technical expertise. This experience led 

our team to develop dedicated software—the BIDS App Boot-

strap (BABS 121 )—that automates the application of FAIRly-big. 

While we did not use BABS software for this initial release of 

RBC, moving forward we anticipate that it will significantly lower 

the barriers to researchers adopting FAIRly-big and DataLad in 

their own work.

QC

One critical yet often-overlooked factor in cross-study reproduc-

ibility is the role of QC and QC-based sample selection. Even 

when identical processing pipelines and QC metrics are used, 

differences in inclusion criteria can result in different samples 

included in data analysis, potentially leading to divergent find-

ings from the same dataset. To address these challenges, we
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provide extensive harmonized QC metrics and recommended 

QC guidelines for using RBC data. These include both categor-

ical QC measures that can be used for sample selection as 

well as continuous measures of data quality that can be used 

as model covariates.

While RBC provides harmonized QC metrics and standardized 

guidelines, our analyses highlight significant remaining chal-

lenges. For example, we observed that participants who are 

younger or had higher levels of psychopathology tended to 

have poorer data quality. This raises important concerns about 

how QC procedures may inadvertently reduce generalizability 

to populations of the most interest. Ultimately, while our QC ef-

forts confirm many findings from prior studies, 17,18 they also un-

derscore the trade-offs inherent in balancing data quality with 

inclusivity.

Convergent developmental findings and ongoing 

challenges in translational psychiatry

As an initial evaluation of the utility of RBC, we examined the as-

sociations of structural and functional imaging features with age. 

Aligning with a large body of prior work, 3,122–127 we found evi-

dence for a decline in CT, SA, and GMV in all datasets following 

careful QC and harmonization. Consistent with a rich literature 

from lifespan network neuroscience, 95,128–140 we also found 

evidence for a decline in between-network functional connectiv-

ity paired with increases in within-network connectivity. 

These findings suggest that resting-state functional networks 

become more segregated and specialized during develop-

ment. 95,137,140–143 Notably, these results were far less consistent 

prior to harmonization and QC, emphasizing how variation in 

data quality and acquisition parameters may obscure even 

robust effects of brain development.

In contrast to the highly consistent developmental findings, the 

existing literature on associations between major dimensions of 

psychopathology and imaging features have been more var-

ied. 144–152 These inconsistencies may be due to small sample 

sizes, limited reliability, and biological heterogeneity. 9,28,153–156 

Echoing at least part of the existing literature, 144,145,147,148,152,157 

we found that reduced SA and GMV were linked to higher overall 

psychopathology. Additionally, we found that higher overall 

psychopathology was associated with greater connectivity be-

tween the default mode and frontoparietal control networks, sug-

gesting a loss of normative developmental network segrega-

tion. 128,139,152,158–162 These results are not surprising in that they 

are consistent with multiple published reports–this consistency 

and the large sample used bolsters confidence in our results. 

However, in contrast to the larger effects of brain development, 

it should be emphasized that the effect sizes of associations 

with psychopathology were small. Such small effect sizes remain 

a major challenge for the field, highlighting the need for more sen-

sitive imaging measures, better methods for characterizing psy-

chopathology, and approaches for parsing heterogeneity in links 

between brain and behavior. 28,147,155,156,163–166

Notably, our analyses of brain development and links to psy-

chopathology also highlighted the importance of QC and data 

harmonization. For example, our initial analysis of combined 

RBC data without QC or neuroimaging data harmonization iden-

tified significant associations between CT and psychopathology

in multiple cortical regions. However, those associations were no 

longer significant following QC and data harmonization. We 

observed similar effects in the fMRI data. These findings under-

score that large samples are necessary but not sufficient—high-

quality, harmonized data are also required.

Limitations and future directions

There are several methodological and technical limitations that 

must be considered when using RBC. First, RBC provides exten-

sive demographics and phenotypic data (e.g., p factor) that can 

be accessed and used without any restrictions. However, more 

sensitive phenotypes—such as certain behavioral, clinical, and 

cognitive measures—are not released as part of the RBC dataset 

due to specific data privacy and DUA protocols set by the 

component studies. We note that for HBN and NKI datasets— 

two of the five studies included in RBC, comprising a large 

portion of the total data (n = 3,940; 62% of total participants)— 

granular phenotypic data are already publicly available via their 

respective study portals. Second, the majority of the data 

included in RBC are cross-sectional, with the exception of a 

smaller subset of individuals who have follow-up longitudinal 

data. Future work is required to provide public large longitudinal 

datasets to systematically study neurodevelopmental trajec-

tories of brain and behavior data within the same individuals 

over time. Third, while RBC provides a relatively diverse data 

resource and incorporates data from five prominent neurodeve-

lopmental datasets spanning three different continents, it is not 

fully representative of diverse populations. Fourth, parent or 

caregiver reports were the primary source of psychopathology 

measures in RBC. While using parent-reported measures of psy-

chopathology provides valuable insights and is considered a 

reasonable approach, these reports reflect only one perspective 

and often diverge from youth self-reports. 167,168 Finally, RBC’s 

neuroimaging data consist of structural and functional MRI 

data. Future efforts are required to provide large-scale neurode-

velopmental datasets that include multiple neuroimaging modal-

ities, such as diffusion-weighted MRI (DWI) studies of brain 

microstructure and arterial spin-labeled (ASL) MRI measures of 

cerebral perfusion.

Moving forward, RBC’s utility will be amplified by its adher-

ence to FAIR principles—findability, accessibility, interopera-

bility, and reusability. RBC data are easily findable and readily 

accessible: all raw and fully processed RBC data are publicly 

shared via the International Neuroimaging Data-sharing Initiative 

(INDI) and are accessible without any DUA requirements. By 

openly releasing de-identified data and removing barriers asso-

ciated with cumbersome DUAs, RBC accelerates scientific dis-

covery. However, it is important to note that while RBC imposes 

no DUA for data access, individual researchers may still be sub-

ject to local or institutional policies regarding the use of publicly 

shared human data. Users are therefore encouraged to consult 

with their own institutions to ensure compliance with any appli-

cable regulations. RBC data interoperability is ensured by stan-

dard data structures such as BIDS and tidy tabular derivative 

data along with well-documented, open-source imaging pipe-

lines. Moreover, RBC data can be redistributed without restric-

tion, ensuring that it is reusable. For example, researchers can 

use RBC data to develop tools or integrate RBC data with other
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datasets. Crucially, such efforts can be shared alongside RBC on 

INDI. These contributions may include additional derivatives 

generated using other BIDS-compliant processing pipelines

(e.g., FastSurfer, 169 fMRIPrep, 170 XCP-D 171 , HippUnfold 172 ,

and Micapipe 173 ), helping to extend RBC’s utility across a wider 

array of research approaches. RBC is also accompanied by a 

version-controlled website to help facilitate data access and 

maintenance (https://reprobrainchart.github.io/). We provide a 

‘‘quick-start guide’’ on how to access and download RBC data 

on the RBC website (https://reprobrainchart.github.io/docs/ 

get_data). We also provide detailed analysis workflows that 

allow users to replicate the results reported here (see ‘‘data 

and code availability’’). For support, researchers can post ques-

tions to INCF NeuroStars using the RBC tag (https://neurostars. 

org/tag/rbc).

Beyond providing a large new open data resource for the com-

munity, RBC also offers a transparent and reproducible workflow 

for large-scale data integration and sharing, which may serve as 

a model for future multi-study efforts that others can adopt or 

adapt. While not all phenotypic measures could be included 

due to data-sharing restrictions, RBC serves as an important 

resource that future studies can build upon through expanded 

consent and tiered access models. Taken together, RBC accel-

erates large-scale, robust, and reproducible research in devel-

opmental and psychiatric neuroscience.

RESOURCE AVAILABILITY

Lead contact

Requests for further information should be directed to the lead contact, Theo-

dore D Satterthwaite (sattertt@pennmedicine.upenn.edu).

Materials availability

All harmonized phenotypes as well as raw and processed neuroimaging data 

are openly shared via DataLad and the International Neuroimaging Data-

sharing Initiative (INDI). The released RBC data are accessible without any 

data use agreement (DUA) requirements and can be downloaded using 

DataLad via https://github.com/ReproBrainChart.

Data and code availability

All processing pipelines are shared using Docker containers for frictionless 

portability across platforms (https://github.com/ReproBrainChart) along with 

the analysis workflows and data used in this study (https://github.com/ 

ReproBrainChart/rbc-analysis-template). RBC data release is also accompa-

nied by a website to help facilitate data access and maintenance (https:// 

reprobrainchart.github.io/). RBC website provides additional information and 

guidelines on how to access the data. Follow-up queries on RBC are closely 

monitored on INCF NeuroStars (https://neurostars.org/tag/rbc).
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Koroshetz, W.J., Pé rez-Stable, E.J., Riley, W.T., Bloch, M.H., Conway, 

K., et al. (2018). The conception of the ABCD study: From substance 

use to a broad NIH collaboration. Dev. Cogn. Neurosci. 32, 4–7. 

https://doi.org/10.1016/j.dcn.2017.10.002.

20. Fair, D.A., Nigg, J.T., Iyer, S., Bathula, D., Mills, K.L., Dosenbach, N.U.F., 

Schlaggar, B.L., Mennes, M., Gutman, D., Bangaru, S., et al. (2012). 

Distinct neural signatures detected for ADHD subtypes after controlling 

for micro-movements in resting state functional connectivity MRI data. 

Front. Syst. Neurosci. 6, 80. https://doi.org/10.3389/fnsys.2012.00080.

21. Di Martino, A., O’Connor, D., Chen, B., Alaerts, K., Anderson, J.S., Assaf, 

M., Balsters, J.H., Baxter, L., Beggiato, A., Bernaerts, S., et al. (2017). 

Enhancing studies of the connectome in autism using the autism brain 

imaging data exchange II. Sci. Data 4, 170010. https://doi.org/10.1038/ 

sdata.2017.10.

22. Di Martino, A., Yan, C.G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., 

Anderson, J.S., Assaf, M., Bookheimer, S.Y., Dapretto, M., et al. (2014). 

The autism brain imaging data exchange: Towards a large-scale evalua-

tion of the intrinsic brain architecture in autism. Mol. Psychiatry 19, 

659–667. https://doi.org/10.1038/mp.2013.78.

23. Yan, C.-G., Craddock, R.C., Zuo, X.-N., Zang, Y.-F., and Milham, M.P. 

(2013). Standardizing the intrinsic brain: Towards robust measurement of 

inter-individual variation in 1000 functional connectomes. NeuroImage 

80, 246–262. https://doi.org/10.1016/j.neuroimage.2013.04.081.

24. Mennes, M., Biswal, B.B., Castellanos, F.X., and Milham, M.P. (2013). 

Making data sharing work: The FCP/INDI experience. NeuroImage 82, 

683–691. https://doi.org/10.1016/j.neuroimage.2012.10.064.

25. Poldrack, R.A., and Poline, J.-B. (2015). The publication and reproduc-

ibility challenges of shared data. Trends Cogn. Sci. 19, 59–61. https:// 

doi.org/10.1016/j.tics.2014.11.008.

26. Gilmore, R.O., Lorenzo Kennedy, J.L., and Adolph, K.E. (2018). Practical 

solutions for sharing data and materials from psychological research.

ll
NeuroResource

16 Neuron 113, 1–22, November 19, 2025

Please cite this article in press as: Shafiei et al., Reproducible Brain Charts: An open data resource for mapping brain development and its associations 
with mental health, Neuron (2025), https://doi.org/10.1016/j.neuron.2025.08.026

https://doi.org/10.1016/j.neuron.2025.08.026
https://doi.org/10.1016/j.neuron.2025.08.026
https://doi.org/10.1002/mpr.1359
https://doi.org/10.1002/mpr.1359
https://doi.org/10.1016/j.biopsych.2014.01.006
https://doi.org/10.1038/s41586-022-04554-y
https://doi.org/10.1126/science.283.5409.1908
https://doi.org/10.1126/science.283.5409.1908
https://doi.org/10.1002/hbm.21069
https://doi.org/10.1038/nrn788
https://doi.org/10.1016/j.neuron.2011.11.004
https://doi.org/10.1016/j.neuron.2011.11.004
https://doi.org/10.3389/fnins.2012.00152
https://doi.org/10.3389/fnins.2012.00152
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1016/j.scib.2023.03.047
https://doi.org/10.1016/j.scib.2023.03.047
https://doi.org/10.1038/s41386-024-01888-1
https://doi.org/10.1038/s41386-024-01888-1
https://doi.org/10.1016/j.dcn.2024.101466
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.1016/j.neuroimage.2018.03.049
https://doi.org/10.1016/j.neuroimage.2018.03.049
https://doi.org/10.1016/j.neuroimage.2018.08.050
https://doi.org/10.1016/j.neuroimage.2018.08.050
https://doi.org/10.1016/j.neuroimage.2013.07.064
https://doi.org/10.1016/j.neuroimage.2013.07.064
https://doi.org/10.1038/sdata.2017.181
https://doi.org/10.1038/sdata.2017.181
https://doi.org/10.1038/s41597-022-01329-y
https://doi.org/10.1038/s41597-022-01329-y
https://doi.org/10.1016/j.dcn.2017.10.002
https://doi.org/10.3389/fnsys.2012.00080
https://doi.org/10.1038/sdata.2017.10
https://doi.org/10.1038/sdata.2017.10
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1016/j.neuroimage.2013.04.081
https://doi.org/10.1016/j.neuroimage.2012.10.064
https://doi.org/10.1016/j.tics.2014.11.008
https://doi.org/10.1016/j.tics.2014.11.008


Adv. Methods Pract. Psychol. Sci. 1, 121–130. https://doi.org/10.1177/ 

2515245917746500.

27. Zuo, X.-N., Anderson, J.S., Bellec, P., Birn, R.M., Biswal, B.B., Blautzik, 

J., Breitner, J.C.S., Buckner, R.L., Calhoun, V.D., Castellanos, F.X., et al. 

(2014). An open science resource for establishing reliability and repro-

ducibility in functional connectomics. Sci. Data 1, 140049. https://doi. 

org/10.1038/sdata.2014.49.

28. Milham, M.P., Vogelstein, J., and Xu, T. (2021). Removing the reliability 

bottleneck in functional magnetic resonance imaging research to achieve 

clinical utility. JAMA Psychiatry 78, 587–588. https://doi.org/10.1001/ja-

mapsychiatry.2020.4272.

29. Xu, T., Kiar, G., Cho, J.W., Bridgeford, E.W., Nikolaidis, A., Vogelstein, J. 

T., and Milham, M.P. (2023). ReX: An integrative tool for quantifying and 

optimizing measurement reliability for the study of individual differences. 

Nat. Methods 20, 1025–1028. https://doi.org/10.1038/s41592-023-

01901-3.

30. Laird, A.R. (2021). Large, open datasets for human connectomics 

research: Considerations for reproducible and responsible data use. 

NeuroImage 244, 118579. https://doi.org/10.1016/j.neuroimage.2021. 

118579.

31. Kang, K., Seidlitz, J., Bethlehem, R.A.I., Xiong, J., Jones, M.T., Mehta, K., 

Keller, A.S., Tao, R., Randolph, A., Larsen, B., et al. (2024). Study design 

features increase replicability in brain-wide association studies. Nature 

636, 719–727. https://doi.org/10.1038/s41586-024-08260-9.

32. McElroy, E., Villadsen, A., Patalay, P., Goodman, A., Richards, M., 

Northstone, K., Fearon, P., Tibber, M., Gondek, D., and Ploubidis, G.B. 

(2020) Harmonisation and Measurement Properties of Mental Health 

Measures in Six British Cohorts.

33. Polanczyk, G.V., Willcutt, E.G., Salum, G.A., Kieling, C., and Rohde, L.A. 

(2014). ADHD prevalence estimates across three decades: An updated 

systematic review and meta-regression analysis. Int. J. Epidemiol. 43, 

434–442. https://doi.org/10.1093/ije/dyt261.

34. Luningham, J.M., Hendriks, A.M., Krapohl, E., Fung Ip, H., van 
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and Khan, A.R. (2022). Automated hippocampal unfolding for morphom-

etry and subfield segmentation with HippUnfold. eLife 11, e77945. 

https://doi.org/10.7554/eLife.77945.

173. Cruces, R.R., Royer, J., Herholz, P., Lariviè re, S., Vos de Wael, R., 
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study description

The RBC project contains data from 5 large studies of brain development (age range: 5-85 years old) from N=6,346 participants 

(N=2,869 Female). All studies included structural and functional Magnetic Resonance Imaging (MRI) data as well as phenotypic 

data. Studies were conducted in Brazil, China, and the United States of America. Specific studies include: Brazilian High Risk Cohort 

(BHRC 73 ; n=610), Developmental Chinese Color Nest Project (CCNP 74,75 ; n=195), Healthy Brain Network (HBN 17 ; n=2,611), Nathan 

Kline Institute–Rockland Sample (NKI 18 ; n=1,329), and Philadelphia Neurodevelopmental Cohort (PNC 16,76 ; n=1,601).

BHRC 73 is a sample of children and adolescents attending school in Brazil (Porto Alegre and Sã o Paulo cities) that is aimed to be a 

random sample of the state-funded school-based community in addition to children with increased family risk of mental disorders. 

The study was approved by the ethics committee of the University of Sã o Paulo.

CCNP 74,75 is a sample of children and adolescents that is aimed to represent the population residing in multiple cities of China with 

varying economies and from different regions of the country (https://ccnp.scidb.cn/en). The ethical approval for this study was ob-

tained from the Institutional Review Board of the Chinese Academy of Sciences (CAS) Institute of Psychology and Beijing Normal

University.

HBN 17 is a sample of children and adolescents residing in the New York City area (United States of America) that is aimed to repre-

sent a diverse sample of healthy and help-seeking individuals with heterogeneous metrics of developmental psychopathology. The

HBN study included data from four different acquisition sites: Staten Island (SI - Mobile Scanner), Rutgers University (RU), The City

University of New York (CUNY), and Citigroup Biomedical Imaging Center (CBIC). The study was approved by the Chesapeake Insti-

tutional Review Board.

NKI–Rockland Sample 18 is aimed to represent a lifespan sample of individuals with varying demographic distributions residing in 

the United States. The Institutional Review Board approved this project at the Nathan Kline Institute.

PNC 16,76 is a community sample of children and adolescents residing in the greater Philadelphia area (United States) that is aimed 

to represent a diverse developmental sample. The study was approved by the Institutional Review Boards of the University of Penn-

sylvania and the Children’s Hospital of Philadelphia.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Reproducible Brain Charts (RBC) data resource This paper; accompanying

website: https://reprobrainchart.github.io

N/A

Brazil High Risk Cohort (BHRC) Salum et al. 73 N/A

Developmental Chinese Color Nest Project (CCNP) Liu et al. 74 N/A

Healthy Brain Network (HBN) Alexander et al. 17 N/A

Nathan Kline Institute–Rockland Sample (NKI) Tobe et al. 18 N/A

Philadelphia Neurodevelopmental Cohort (PNC) Satterthwaite et al. 16 ; Satterthwaite et al. 76 N/A

Software and algorithms

CuBIDS Covitz et al. 80 N/A

FreeSurfer Fischl 52 RRID: SCR_001847

sMRIPrep Esteban et al. 83 N/A

C-PAC Cameron et al. 53 RRID: SCR_000862

fMRIPrep Esteban et al. 170 RRID: SCR_016216

Swipes for Science Keshavan et al. 90 N/A

DataLad Halchenko et al. 55 RRID: SCR_003931

AFNI tools Cox 174 RRID: SCR_005927

Python RRID: SCR_008394

RStudio RRID: SCR_000432
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Written informed consents were obtained from all participants (or their parents or legal guardians) by each study separately as part 

of the study-specific data collection procedure.

T1-weighted structural MRI and resting-state, task, and movie-watching functional MRI data were included in the RBC dataset. All 

scans were defaced and de-identified to ensure ethical compliance and protect participants’ privacy. Data acquisition parameters 

varied by study and data acquisition sites. Detailed information about structural and functional MRI data acquisitions are summarized 

in Tables S4–S5.

METHOD DETAILS

Phenotypic data harmonization

RBC includes psychiatric phenotyping data for each study, which were assessed using one of two different phenotypic question-

naires. The Child Behavior Checklist (CBCL 77 ) was used in the BHRC, CCNP, HBN, and NKI studies, while the GOASSESS inter-

view 78 was used in the PNC study. To ensure that measures of psychopathology were consistent across study, we used a bifactor 

modeling strategy to harmonize differences between samples that used the same instrument (i.e., the CBCL) as well as differences 

between disparate instruments (i.e., GOASSESS vs. CBCL). The CBCL is a 120-item parent-report assessment of emotional and 

behavioral symptoms over the past 6 months, answered on a 3-point scale (0=not true, 1=somewhat/sometimes true, and 2=very 

true/often). It encompasses eight syndromes: anxious-depressed, withdrawn-depressed, somatic complaints, rule-breaking 

behavior, aggressive behavior, social problems, thought problems, and attention problems. 77 To harmonize CBCL with 

GOASSESS, CBCL scores of 1 and 2 were collapsed to generate a binary-scaled variable compatible with GOASSESS (i.e., 0 or 

1). The GOASSESS is a structured screening interview administered to collateral informants (usually a caregiver) by trained asses-

sors. It contains 112 unconditioned screening items based on DSM-IV constructs, including symptoms of mood disorders (Major 

Depressive Episode, Manic Episode), anxiety disorders (Generalized Anxiety Disorder, Separation Anxiety Disorder, Specific Phobia, 

Social Phobia, Panic Disorder, Agoraphobia, Obsessive-Compulsive Disorder, Post-traumatic Stress Disorder), Attention Deficit/ 

Hyperactivity Disorder (ADHD), behavioral (Oppositional Defiant Disorder, Conduct Disorders) and eating disorders (Anorexia, 

Bulimia), and suicidal thinking and behavior. Items are scored as 0 (absent) or 1 (ever present). The instrument is abbreviated and 

modified from the epidemiologic version of the NIMH Genetic Epidemiology Research Branch Kiddie-SADS, and its development 

is described and tested elsewhere. 78

We tested a sequence of harmonization procedures to minimize between-cohort and between-questionnaire differences across 

studies, as well as to disentangle general and specific aspects of psychopathology. In a previous work, we thoroughly tested the 

impact of different bifactor model configurations on the resulting factor scores 44 in addition to six item-matching strategies that 

best harmonize different questionnaires. 42 We then tested the best bifactor model configuration using several parameters to identify 

the model that best harmonized CBCL and GOASSESS questionnaires used in RBC in another previous work. 43 In brief, 12 CBCL 

bifactor models were first identified from previous literature, which varied in item and factor configurations. 44 The impact of these 

modeling choices was small for the general psychopathology factor (i.e., p-factor), but quite marked for the specific factors. 44 We 

then tested 6 item-matching strategies to harmonize items between questionnaires (i.e., CBCL and GOASSESS), where we found 

that the expert-based 1-to-1 semantic item-matching performed best for item harmonization. 42 Finally, the extent to which the 

CBCL–GOASSESS harmonized models were similar to the original models was assessed across different models. 43 We selected 

the McElroy model as it: (1) demonstrated measurement invariance between the questionnaires; (2) retained the majority of original 

items during the harmonization process; (3) included harmonized items that were endorsed in all samples; and (4) was among the 

best four harmonized bifactor models in terms of factor reliability and authenticity (i.e., generated factor scores fairly correlated 

and close to the factor scores from full item set models). 42–44

In our previous RBC harmonization studies and for the publicly released RBC dataset, all factor scores were estimated with confir-

matory factor analysis (CFA) using delta parameterization and Weighted Least Squares with diagonal weight matrix with standard 

errors and mean- and variance-adjusted Chi-square test statistics (WLSMV) estimators. RBC studies were used as clusters in the 

CFA in the bifactor model that included all RBC data. Analyses were carried out in Mplus 8.6 175 and implemented in R version 

4.0.3 using the MplusAutomation package, 176 which was also used to extract factor scores generated in Mplus using maximum a 

posteriori method. The global model fit was evaluated using root mean square error of approximation (RMSEA), comparative fit index 

(CFI), Tucker–Lewis index (TLI), and standardized root mean square residual (SRMR). RMSEA lower than 0.060 and CFI or TLI values 

higher than 0.950 indicate a good-to-excellent model. SRMR lower than or equal to 0.080 indicates acceptable fit, and lower than 

0.060 in combination with previous indices indicates good fit. 177 Only individuals that filled the CBCL and GOASSESS on the day 

of neuroimaging were included in the publicly released RBC dataset.

Reproducible neuroimaging data curation and workflows

We curated all raw neuroimaging data and metadata in a fully-reproducible fashion that conforms with the Brain Imaging Data Struc-

ture (BIDS 79 ) using the Curation of BIDS (CuBIDS 80 ) software package. CuBIDS provides a workflow for identifying unique combi-

nations of imaging data acquisition parameters based on metadata, summarizing the heterogeneity in an MRI BIDS dataset, and 

reproducibly modifying scan filenames to reflect information about their imaging parameters. These curation steps are critical given 

that preprocessing pipelines designed for BIDS datasets (e.g., ‘‘BIDS-apps’’ 79 ) automatically configure workflows based on a
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dataset’s accompanying metadata. However, potential inaccuracies or missing information in metadata may lead to incorrectly 

configured pipelines that will run without any errors (i.e., pipelines that are reproducible but wrong). CuBIDS facilitates the identifi-

cation of such inaccuracies or missing information in metadata and categorizes imaging data in subgroups (i.e., unique parameter 

groups) based on the heterogeneity of their metadata.

We applied CuBIDS to RBC data and generated a CuBIDS summary data file for each study included in the RBC dataset. The 

CuBIDS summary tables are provided along with the RBC BIDS data, available at https://github.com/ReproBrainChart. CuBIDS 

was then used to rename each BIDS data file based on the scanning parameters of the identified parameter groups, such that 

the new file names indicated the source of the variance between different parameter groups. Notably, all data curation steps 

were fully tracked via CuBIDS’s wrapped use of DataLad 55 throughout, ensuring the tracking of version history and yielding a com-

plete audit trail. After categorizing data based on heterogeneity of their acquisition parameters, we used an automated procedure 

implemented in CuBIDS to create an example dataset with one subject from each acquisition group for each study. The example 

dataset was then used to closely examine the heterogeneity of data and make necessary adjustments to the data curation step 

(e.g., if there were errors or missing information in metadata). Eventually, the example dataset was used to test image processing 

pipelines to ensure that they performed well on each combination of acquisition parameters present in the dataset. Finally, to run 

the RBC neuroimaging data through modality specific preprocessing pipelines, we employed the FAIRly-big workflow. 54 FAIRly-

big is a DataLad-based open-source framework that is suitable for reproducible processing of large-scale datasets. We adapted 

the FAIRly-big workflow for RBC image processing to ensure that all data preparation and processing were accompanied by a 

full audit trail in DataLad. 55

Structural MRI data processing and quality control

Structural MRI (sMRI) data were processed using FreeSurfer v6.0.1 52 and sMRIPrep v0.7.1, 83 yielding commonly used measures of 

brain structure. Specifically, structural images underwent correction for intensity non-uniformity and skull-stripping with ANT’s brain 

extraction workflow. Brain surfaces were then reconstructed using FreeSurfer. RBC provides full FreeSurfer outputs as well as tabu-

lated data parcellated using 35 anatomical, functional, and multimodal atlases that were included to align with the functional image 

processing. Atlases include the Desikan Killiany 178 , Glasser 179 , Gordon, 180 and multiple resolutions of the Schaefer 96 parcellation 

among others. Specific features include commonly used measures of brain structure such as regional surface area, cortical thick-

ness, gray matter volume, and folding and curvature indices. Moreover, summary brain measures such as total intracranial volume, 

ventricle size, and mean and standard deviation of various measures (e.g., cortical thickness, surface area) are provided for the whole 

brain and per hemisphere. Tabulated data are also accompanied by.json files describing each structural feature in detail.

An important feature of RBC is the emphasis on harmonized measures of neuroimaging data quality control (QC). To achieve 

consistent quality ratings across all studies in RBC, every structural image was manually evaluated by 2-5 expert raters using Swipes 

for Science, a web application for binary image classification. 90 The expert rating workflow consisted of seven phases (Figure 3). 

Overall, 4 two-dimensional slices per participant (two axial and two sagittal slices extracted per structural scan) were created to 

rate each scan. To ensure consistent slice selection across participants, the anatomical images were registered (linear rigid body) 

to the MNI152 template space prior to slice selection. Expert raters (experience in brain imaging: range = 0.17-16 years; mean = 

5.63 years; SD = 5.76 years) evaluated a total of 28,780 slices and assigned ‘‘Pass’’ or ‘‘Fail’’ to those slices based on visual inspec-

tion only. A ‘‘Pass’’ rating would be given if an image was deemed of sufficient quality for skullstriping and segmentation of cerebro-

spinal fluid (CSF), white, and gray matter. Slices were presented to the raters in random order.

More specifically, Phase 1 involved generating the ground truth for 200 images to either ‘‘Pass’’ (rating of 1) or ‘‘Fail’’ (rating of 0). 

Two senior raters evaluated these images and agreed on 96% of the slices. The images with disagreement were further evaluated 

after skulltripping and brain segmentation, using Configurable Pipeline for the Analysis of Connectomes (C-PAC 53 ) pipeline. The 

expert raters then reached 100% concordance through consensus of either ‘‘Pass’’ or ‘‘Fail’’ for each slice. In Phase 2, these 

ground-truth annotated images (i.e., outcome of Phase 1) were used to train four raters until they reached at least 85% concordance 

with the ground-truth. In Phase 3, all raters manually rated 10% of images and the reliability of ratings was assessed across raters. In 

Phase 4, the raters were divided into two groups with balanced experience and evaluated 20% of the remaining images indepen-

dently, such that no overlapping images were assessed by the two groups. In Phase 5, the reliability of ratings was re-assessed 

(similar to Phase 3), where all raters manually rated another 10% of the remaining images. In Phase 6, the raters were divided into 

two groups again to rate 20% of the remaining images (similar to Phase 4). Finally, in Phase 7, a new set of images that were not 

included in the first 6 phases were evaluated by raters. To avoid sequence type or scanner parameters biases, each Swipes for Sci-

ence instance for each phase contained data from all data acquisition sites and studies.

Following manual expert ratings, an overall QC determination score of ‘‘Pass’’, ‘‘Artifact’’, or ‘‘Fail’’ was assigned to each structural 

image as the final scan quality based on the average rating across raters. ‘‘Pass’’ or ‘‘Fail’’ labels were assigned to images if all raters 

agreed about their quality. For example, if all raters agreed that a given image was of adequate quality (i.e., all raters assigned ‘‘Pass’’ 

or rating of 1 to the image), the average rating across raters was equal to 1 and the image was labeled as ‘‘Pass’’. Similarly, if all raters 

assigned ‘‘Fail’’ or rating of 0 to an image, the image was labeled as ‘‘Fail’’ (i.e., average rating of 0 across raters). If there was any 

disagreement between raters about a given image’s quality (i.e., a combination of 1 and 0 ratings for the image), the ‘‘Artifact’’ label 

was assigned to that image (i.e., an average value between 0 and 1). Summary information on the number of participants with struc-

tural scans before and after applying RBC’s recommended QC is available in Figure S1.
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In addition to the manual ratings, we calculated the Euler number from FreeSurfer. 88 The Euler number is calculated as part of the 

FreeSurfer processing pipeline and reflects the topological complexity of the initial reconstructed cortical surface. 88 Euler number is 

calculated as the sum of the vertices and faces subtracted by the number of faces. Lower values below an ideal value of 2 indicate 

more defects in surface reconstruction. Euler number can be used as a continuous measure of structural MRI QC (e.g., can be 

included as a covariate in downstream analysis) whereas manual ratings provide categorical QC labels. Previous reports have 

demonstrated that the Euler number is an accurate, fully-automated measure of data quality, capturing variation in data quality within 

the coarse categories provided by manual ratings. 18,88,91–93

Functional MRI data processing and quality control

As noted above, preprocessing steps were carried out in DataLad 55 using the FAIRly-big workflow 54 to track provenance and ensure 

the re-executability of processing workflows for all RBC studies. Following guidelines from extensive benchmarking and harmoniza-

tion studies, 51 functional MRI (fMRI) data were preprocessed using Configurable Pipeline for the Analysis of Connectomes (C-PAC 

v1.8.5.dev1 53 ), with a pipeline configuration file specifically developed for RBC 181 including a fixed random state to maximize repro-

ducibility. This configuration produces commonly used measures of functional MRI data such as fully processed fMRI time-series 

and functional connectivity matrices (e.g., Pearson and partial correlations between processed regional time-series). In addition, 

the functional data derivatives include regional measures based on processed time-series such as Regional Homogeneity 

(ReHo 84 ), Amplitude of Low Frequency Fluctuation (ALFF 85 ), and fractional ALFF (fALFF 86 ). Processed time-series and functional 

connectivity are available in parcellated format using 17 different atlases, including AAL 182 , Glasser 179 and Schaefer 96 parcellations. 

ReHo, ALFF, and fALFF are available in volumetric MNI space (MNI152NLin6ASym).

For anatomical preprocessing, the configuration specified C-PAC’s reimplementation of the NiWorkflows ANTs brain extraction 

workflow 183–185 and segmentation using FSL-FAST 186 with a 0.95 threshold for each tissue type. Anatomical registration was config-

ured to use antsRegistration 185 on skull-stripped images at 1mm isotropic resolution with parameters specified in the configura-

tion file. 181

Functional registration was configured to first use C-PAC’s reimplementation of the NiWorkflows reference image estimation 

method 187,188 with boundary-based registration performed on skull-stripped images to MNI152NLin6ASym-template space using 

FSL-FLIRT 189,190 with binarized partial volume white matter masks. It then used C-PAC’s reimplementation of the fMRIPrep sin-

gle-step resampling workflow 170,191 at 2mm isotropic resolution. Motion statistics were calculated before slice-timing correction us-

ing the previously established reference image and FSL-MCFLIRT 190 for motion estimation. Where field maps were present, distor-

tion correction was performed using FSL-FUGUE 192 or FSL-TOPUP 192 depending on the type of field maps. Functional masking was 

configured to use a reference image from TemplateFlow 193 and C-PAC’s reimplementation of the NiWorkflows BOLD masking 

method. 188,194 A mean functional image was also generated using AFNI 3dTstat. 174 The first 2 timepoints were excluded from

analysis. 

AFNI 3dDespike 174 was run on template-space images. Prior to nuisance regression, the brain mask, CSF mask, and white matter 

mask were eroded using C-PAC’s reimplementation of the NiWorkflows utility interface for converting tissue probability masks into 

regions of interest. 188,195 Two nuisance regression strategies (named ‘‘36-parameter’’ and ‘‘aCompCor’’, with global signal regres-

sion (GSR) or aCompCor as part of the strategy, respectively and exclusively) were run in parallel in template space (the full specific 

nuisance regression configurations can be found in the configuration file 181 ).

Time-series extraction 196 was performed, and correlation matrices were generated using Nilearn’s ‘‘correlation’’ and ‘‘partial cor-

relation’’ methods 197,198 separately for each of the specified region of interest atlases. ALFF 85 and fALFF 86 were calculated in tem-

plate space using a sequence of AFNI tools. 174,199,200 Regional Homogeneity 84 was calculated in template space using NiBabel 201 

and NumPy 202 in Python. 203

C-PAC outputs also include extensive measures of quality control, such as various in-scanner motion parameters (e.g., framewise 

displacement), functional image to structural image (e.g., to T1-weighted scan or MNI template) registration and normalization quality 

parameters, generated for each preprocessed BOLD image using C-PAC’s reimplementation 204 of the xcpEngine quality control dic-

tionary. 193 As part of the RBC data release, we performed an initial quality assurance procedure using measures of in-scanner motion 

quantified as Framewise Displacement (FD) and normalization quality quantified as cross correlation from normalization of functional 

image to template image. Functional MRI runs with a median FD less than or equal to 0.2 and normalized cross correlation greater 

than or equal to 0.8 were considered of adequate quality. These thresholds were selected after extensive manual review of images. 

Similar to structural data, the majority of functional scans passed RBC’s QC thresholds. Summary information on the number of par-

ticipants with functional scans before and after applying RBC’s recommended QC is available in Figure S1. Overall, about 90% of 

RBC data passed both structural and functional QC guidelines.

Following the initial structural and functional data QC procedure, three different versions of the RBC dataset were publicly released 

and are accessible depending on the user’s choice of QC threshold: (1) structural images with ‘‘Pass’’ label only and functional im-

ages that passed the motion and image normalization QC threshold; (2) structural images with ‘‘Pass’’ and ‘‘Artifact’’ labels and func-

tional images that passed the motion and image normalization QC threshold; (3) all structural and functional images including QC 

failures. Versions (1) and (2) are recommended by RBC; however, users may use Version (3) for research on QC or to apply their 

desired QC procedures using the extensive structural and functional QC information accompanying RBC data.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Example analysis workflow with RBC data

In addition to providing a publicly available data resource, we illustrated the utility of RBC data and the increased statistical power of 

the aggregated sample. Specifically, we examined the relationship between derived structural and functional neuroimaging features 

and both participant age and general psychopathology. Furthermore, we evaluated whether those associations are influenced by 

RBC’s QC protocols and imaging data harmonization.

Neuroimaging data harmonization

RBC provides both raw and processed neuroimaging data for each dataset. However, due to differences in scanners and sequences 

used in data collection between studies, there is significant technical variance between studies and sites that requires harmonization. 

Therefore, users may want to statistically harmonize neuroimaging data across studies and data acquisition sites. However, neuro-

imaging data harmonization remains an ongoing research topic in the field with a growing number of statistical methods that aim to 

effectively harmonize data between multiple sites and studies. Given the lack of consensus on a single neuroimaging data harmo-

nization technique, we released unharmonized neuroimaging data in RBC. This allows researchers to implement their method of 

choosing to harmonize the imaging data based on their specific research questions. In addition, given that statistical harmonization 

models require specification of covariates that are hypothesis-dependent, researchers can define the covariates they want to include 

in the harmonization analysis. While RBC’s released neuroimaging data is unharmonized, below we provide an example workflow to 

harmonize the imaging data and illustrate its utility in our analysis. This workflow can be tailored by RBC users for their specific

hypotheses. 

We used CovBat-GAM 57–61 to harmonize structural and functional MRI data across data acquisition sites. Specifically, we used the 

‘‘covfam’’ function with Generalized Additive Model (GAM) from ComBatFamiliy in R 4.2.2. The ‘‘covfam’’ function uses CovBat 61 

(Correcting Covariance Batch Effects) to harmonize the mean and covariance of data across multiple batches (e.g., sites, datasets). 

In our developmental analysis, data acquisition sites were treated as batches. Covariates included in harmonization were age as a 

smooth term (to account for linear and nonlinear age effects), and sex and data quality (i.e., Euler number for structural data and me-

dian FD for functional data) as linear terms. We used a separate harmonization for the psychopathology analyses, where general psy-

chopathology from the bifactor model (p-factor) was added as a linear term to the model. CovBat-GAM yields harmonized structural 

and functional data while protecting effects of model covariates. To evaluate the effect of harmonization, we repeated analysis before 

and after data harmonization.

Generalized Additive Models (GAM)

We used Generalized Additive Models (GAMs) to delineate linear and nonlinear developmental effects (i.e., age effects) and assess 

the relationship between neuroimaging data derivatives and general psychopathology (i.e., p-factor). 60,94,95 The analysis was per-

formed using the ‘‘mgcv’’ package in R 4.2.2. To ensure all studies contributed to the analysis, a subset of aggregated RBC data 

within the age range of 6-22 years old was used for this analysis. Structural features included cortical thickness (CT), surface area 

(SA), and gray matter volume (GMV), and functional features included between- and within-network resting-state functional connec-

tivity. Structural and functional data parcellated into 400 brain regions using the Schaefer-400 atlas. 96 Functional networks were 

defined using the 7 Yeo-Krienen networks for the parcellated functional data. 97 Within-network connectivity was estimated as the 

average functional connectivity between regions from a given network and all the other regions from the same network. Between-

network connectivity was estimated as the average connectivity between regions from a given network and regions from all the other 

networks. Note that we used the baseline functional scans of individuals who were scanned at multiple time points (e.g., BHRC and 

NKI). For individuals with multiple functional data at the baseline, we used the average functional connectivity across scans at the 

baseline.

Separate GAMs were fit for functional and structural features as dependent variables. Each GAM included age as a smooth term 

and sex and data quality as linear covariates. The linear covariate for data quality was the Euler number for structural data and median 

FD for functional data. For models evaluating associations with overall psychopathology, the p-factor was also included in GAMs as a 

linear term. In all GAM analyses, the maximum basis complexity was set to 3 for the smooth term (i.e., age) to avoid overfitting. The 

code invocation used to fit the model was: ‘mgcv::gam(feature ∼ s(age, k=3, fx=F) + factor(sex) + data_quality)’. The GAM formula 

also included p-factor as a linear term for psychopathology analysis. The Restricted Maximum Likelihood (REML) approach was used 

to estimate the smoothing parameters in GAMs. We performed the analyses at two resolutions: (1) whole-brain models, where we 

examined average structural and functional features across the cortex for each participant; (2) regional and network level GAMs, 

where we evaluated regional structural features and network-level functional features (e.g., mean within- or between-network con-

nectivity) for each participant.

The effect size of associations between imaging features and age were estimated as partial R 2 . We quantified partial R 2 as the dif-

ference in Residual Sum of Squares (SSE) between the full model that included the smooth term for age and a reduced model with no 

age term (i.e., only including model covariates) normalized by SSE of the reduced model. Normalization by SSE of the reduced model 

highlights the relative contribution of the predictor (e.g., age) to the reduced model. The linear effect size for the relationship between 

p-factor and neuroimaging features was also estimated in a similar manner, where partial R 2 was defined as the difference in SSE 

between the full model and a reduced model without p-factor. We used a signed version of partial R 2 , such that the sign reflected 

the directionality of observed effects (increase or decrease in neuroimaging features with increasing age or p-factor). To obtain
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the directionality of partial R 2 for age analysis, we calculated the mean derivative of the model fit for the smooth term (i.e., age). A 

positive sign was assigned to partial R 2 if the mean derivative was positive, reflecting an overall increasing trend between the neuro-

imaging feature of interest and age, whereas a negative sign was assigned to partial R 2 where the mean derivative was negative. To 

obtain the directionality of partial R 2 for p-factor analysis, we used the sign of the t-value associated with the linear p-factor term. The 

statistical significance of the associations between neuroimaging features and age or p-factor was assessed using analysis of vari-

ance (ANOVA) between the full model and reduced model that excluded the term of interest. Results were corrected for multiple com-

parisons by controlling for the false discovery rate (FDR correction; Q<0.05).

To assess how neuroimaging data QC and harmonization impacted our findings, we repeated all structural and functional GAM 

analyses with three different versions of data: First, we used all neuroimaging data without excluding individuals based on QC thresh-

olds and without applying neuroimaging data harmonization. Second, we used structural MRI data from individuals with ‘‘Pass’’ or 

‘‘Artifact’’ structural QC (i.e., excluding scans with ‘‘Failed’’ structural QC) and functional data that passed functional QC thresholds 

(median FD < 0.2 and normalization cross correlation > 0.8). However, we did not apply neuroimaging data harmonization in this 

version. Third and finally, we used neuroimaging data that passed structural and functional QC (as above) and performed GAM an-

alyses after applying neuroimaging data harmonization.

Finally, we tested how participant sex and its interaction with age relate to harmonized structural and functional features. Similar to 

the original analysis, separate GAMs were fit for functional and structural features as dependent variables using within- or between-

network connectivity for functional and CT, SA, and GMV for structural data. We first assessed the effects of participant sex on neuro-

imaging features by including biological sex as a linear two-level factor in GAMs. The effect size for the sex term was estimated in a 

similar manner to the original analysis, where partial R 2 was defined as the difference in SSE between the full model and a reduced 

model without sex for each cortical region for structural data and for resting-state networks for functional data. The directionality of 

the observed effects was assessed using the sign of the t-value associated with the sex term, such that a positive value corresponded 

to higher values in females than males. Multiple comparisons were accounted for using FDR. We also repeated the analysis after 

controlling for global cortical effects by including mean CT (for CT analysis) and total intracranial volume (TIV, for SA and GMV an-

alyses) as model covariates.

We next examined how the interaction between biological sex and age influences the developmental patterns. Specifically, we 

added a factor-smooth interaction term to GAMs to estimate how age-related changes vary by sex. For structural data, we assessed 

the sex-by-age interaction on the whole-brain level using the average CT, SA, and GMV maps, as well as on the regional level. We 

also repeated the regional analysis after controlling for global cortical effects by including mean CT (for CT analysis) and TIV (for SA 

and GMV analyses) as model covariates. For functional data, we assessed the sex-by-age interaction on within- and between-

network connectivity. The interaction effect size was quantified using the F-statistic from GAMs. All reported statistics were corrected 

for multiple comparisons using FDR.
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