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SUMMARY

Mental disorders are increasingly understood as disorders of brain development. Large and heterogeneous
samples are required to define generalizable links between brain development and psychopathology. To this
end, we introduce Reproducible Brain Charts (RBC), an open resource that integrates data from 5 large
studies of brain development in youth from three continents (N = 6,346). Bifactor models were used to create
harmonized psychiatric phenotypes, capturing major dimensions of psychopathology. Following rigorous
quality assurance, neuroimaging data were carefully curated and processed using consistent pipelines in
a reproducible manner. Initial analyses of RBC emphasize the benefit of careful quality assurance and
data harmonization in delineating developmental effects and associations with psychopathology. Critically,
all RBC data—including harmonized psychiatric phenotypes, unprocessed images, and fully processed im-
aging derivatives—are openly shared without a data use agreement via the International Neuroimaging Data-
sharing Initiative. Together, RBC facilitates large-scale, reproducible, and generalizable research in develop-
mental and psychiatric neuroscience.

INTRODUCTION ment have the potential to track healthy brain maturation and

identify deviations linked to psychopathology. However, large
Mental disorders are increasingly understood as disorders of and diverse samples are necessary to detect reliable patterns
brain development.' Neuroimaging studies of brain develop- of neurodevelopment and identify generalizable links to
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psychopathology.*~'? Multiple independent open science initia-
tives have facilitated this by sharing data publicly.”">~9 While
it is possible to aggregate data across independent
studies,>?°? it is not necessarily a straightforward process
due to variation in neuroimaging and psychiatric phenotyping
protocols used.”®** Obstacles in combining disparate data
lead most investigators to use only a fraction of the data avail-
able.””>?® To address these challenges, we introduce the
Reproducible Brain Charts (RBC) initiative: a large-scale, open
data resource for the developing brain and psychiatry.

RBC addresses five major obstacles. First, there is abundant
evidence that large, high-quality samples are essential for
defining reliable brain-behavior associations.®*?"2° This is
particularly challenging for studies of brain development, where
large samples are also necessary to define a normative growth
curve.® To yield generalizable results, samples must not only
be large but also diverse.*® 2193031 Basic dimensions of diver-
sity include age, sex, socioeconomic status, clinical diagnosis,
race, and genetic ancestry.>® Accordingly, large-scale samples
must encompass such variability to identify generalizable pat-
terns of neurodevelopment and their links to mental health. In
response, RBC has assembled a diverse dataset from five major
developmental cohorts across three continents, spanning
various recruitment strategies and thereby enriching both psy-
chopathology and demographic diversity. This model serves
as a foundational starting point for future expansions and the in-
clusion of data from additional studies and cohorts.

Second, combining psychiatric phenotypic data across large-
scale studies presents multiple challenges.>?=° An initial chal-
lenge is obvious: different studies often employ disparate
assessment tools to measure the same construct. Moreover,
even when the same assessment is used, important psychomet-
ric properties may vary across populations. Aggregated data
thus require careful harmonization of both measures and
response properties. RBC addresses this by mapping differing
tools to a common framework using a bifactor model.®”~** Bifac-
tor models provide a robust solution by extracting a general fac-
tor (the “p factor”) that captures shared variance across symp-
toms and distinct domain-specific factors (e.g., internalizing or
externalizing symptoms) that remain independent of the general
factor. This approach effectively summarizes correlated psychi-
atric symptoms and diagnoses, aligning with dimensional
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models like Hierarchical Taxonomy of Psychopathology
(HITOP)*>*" and Research Domain Criteria (RDoC).**

A third major challenge is that both image acquisition param-
eters and image processing procedures vary considerably
across large-scale studies. Even within multi-site studies with
harmonized protocols, variation in scanners and protocol adher-
ence introduces significant technical variability.?>*° Further-
more, many large-scale studies do not publicly release fully pro-
cessed data. When they do, different studies utilize discrepant
image processing pipelines, further complicating data aggrega-
tion and the reproducible integration of findings across
studies.*®®' To address this, we processed all RBC data with
standard tools like FreeSurfer®® and the Configurable Pipeline
for Analysis of Connectomes (C-PAC®®). C-PAC’s highly config-
urable workflow allowed us to uniformly apply multiple versions
of image processing across the entire data resource. Notably,
all image processing steps were executed within the FAIRIy-
big framework,* maintaining a detailed audit trail via DatalLad.>®
Fully documented and traceable data curation and processing
enable researchers to rerun and adapt workflows for their ana-
lyses, facilitating harmonization and integration across data-
sets.”® Following such reproducible image processing, we
further reduced acquisition-related variation using statistical
techniques adapted from computational genomics to harmonize
imaging features.®”~%°

Fourth, variation in data quality remains a very important
confound in neuroimaging research, with in-scanner motion pro-
foundly impacting imaging features such as functional connec-
tivity. This challenge is particularly acute for studies of brain
development and psychiatry, as younger children and individ-
uals with significant symptoms tend to move more during scan-
ning sessions.?%%* Without meticulous quality control (QC), the
substantial effects of data quality can easily overshadow the
more subtle variations associated with brain development or
psychopathology, leading to spurious associations that may be
misinterpreted as biologically meaningful.?>**°® To address
this, RBC provides an extensive array of QC metrics alongside
specific suggestions for exclusion criteria, bolstering the validity
of the integrated data.

Fifth and finally, the mechanics of data access remain a major
obstacle for investigators who hope to exploit large-scale data
resources. Administratively cumbersome data use agreements
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(DUAs) often delay researchers and diminish the returns on pub-
lic investments.?>2"*%6972 |n contrast, the fully de-identified
data in RBC is released as a completely open resource. This
open-access approach allows all harmonized psychiatric phe-
notypes and imaging data to be freely shared via the Interna-
tional Neuroimaging Data-sharing Initiative (INDI**) without the
need for a DUA, thereby accelerating research and maximizing
the impact of public investments.

RESULTS

RBC aggregates five diverse neurodevelopmental
datasets

RBC integrates demographics, psychiatric phenotyping, and
both T1-weighted structural and resting-state and task
functional Magnetic Resonance Imaging (MRI) data from five
diverse and prominent developmental cohorts (see Table S1; to-
tal N = 6,346). Specific studies include the following: (1) Brazilian
High Risk Cohort (BHRC'®); (2) Developmental Chinese Color
Nest Project (CCNP’*°); (3) Healthy Brain Network (HBN');
(4) Nathan Kline Institute-Rockland Sample (NKI'®); (5) Philadel-
phia Neurodevelopmental Cohort (PNC'®7%). The vast majority of
data included in RBC is from childhood, adolescence, and early
adulthood (age range: 5-22 years old), with the exception of the
NKI dataset that also includes participants from across the life-
span (up to 85 years old). All datasets have a relatively balanced
sex distribution (about 45% female across all datasets). In addi-
tion, RBC provides information about participant race and
ethnicity, handedness, body mass index (BMI), participant edu-
cation, parental education, and psychopathology (see below).

RBC provides harmonized phenotypic data across
studies
Selection of phenotypic instruments predated the RBC, and as
such, reflects the design of each study. Specifically, the Child
Behavior Checklist (CBCL) was used in BHRC, Chinese Color
Nest Project (CCNP), Healthy Brain Network (HBN), and
NKI while GOASSESS was used in Philadelphia Neurodevelop-
mental Cohort (PNC). The CBCL is a 120-item parent-report
assessment of emotional and behavioral phenotypes.”” PNC
did not include the CBCL but rather assessed psychopathology
using a highly structured psychiatric screening interview
(GOASSESS).”®

In RBC, we sought to derive major dimensions of psychopa-
thology that both harmonized differences between samples as-
sessed with the same instrument (i.e., the CBCL) as well as
harmonizing differences between instruments (i.e., the CBCL

Neuron

vs. GOASSESS; see Figure 1A). To this end, we modeled psy-
chopathology using a bifactor model.®”° Specifically, bifactor
models yield a factor that represents overall psychopathology
(also known as the “p factor”) and orthogonal factors for specific
symptom domains. We first evaluated 12 bifactor models based
on previous literature to identify the model that best harmonized
phenotypic data, minimizing between-study differences in
CBCL.** Furthermore, we extensively evaluated methods for
harmonizing GOASSESS with CBCL using CFA.*>*® Ultimately,
we developed a harmonized model that included a general psy-
chopathology factor as well as specific factors for internalizing,
externalizing, and attention symptoms”® (Figure 1B; also see
Tables S2-S3 for model fits and factor structure for harmonized
CBCL-GOASSESS model). Participant scores for general psy-
chopathology and domain-specific factors are publicly shared
in RBC.

An illustrative example of the impact of harmonization on psy-
chiatric phenotypes in RBC is apparent when comparing the
overall psychopathology factor (p factor) and the externalizing
factor in PNC and HBN (Figures 1C and 1D). As noted above,
PNC and HBN used different instruments to assess psychiatric
phenotypes (CBCL vs. GOASSESS). They also differed in their
sample recruitment strategy: while PNC is a community-based
sample, HBN primarily consists of help-seeking youth with sig-
nificant mental health symptoms. As such, we expect higher
levels of psychopathology in HBN than PNC. Notably, before
harmonization, this difference was not apparent (Figure 1C; orig-
inal psychopathology score: t = —8.4e—15, p = 0.9). Following
harmonization, higher levels of psychopathology were evident
in HBN as expected (Figure 1C; harmonized psychopathology
score: t =22.9, p = 1.3e—110). These harmonized factor scores
aligned with clinical diagnostic categories defined by the DSM
(Figure 1E). For example, conduct disorder was marked by
elevated externalizing factor and p factor values, whereas major
depression and generalized anxiety were marked by higher p
factor and internalizing factor scores. In contrast, all general
and specific factors were low in typically developing youth.
Together, this harmonization process allows for direct pooling
of phenotypic data across the diverse studies included in RBC.

Neuroimaging data are curated in a fully reproducible
manner in RBC

We aggregated structural and functional neuroimaging data from
multiple independently collected, large-scale data resources in
RBC, while addressing challenges due to variations in imaging
data acquisition (Tables S4-S5). Imaging metadata, described
by the Brain Imaging Data Structure (BIDS’®), can be used to

Figure 1. RBC provides harmonized phenotypic data

(A) Phenotypic data were separately collected by studies included in RBC using different instruments (i.e., CBCL vs. GOASSESS).
To harmonize phenotypic data, expert 1-to-1 semantic item-matching was used to identify 36 compatible items across studies, which were then reduced to 22

harmonized items.

(B) The McElroy bifactor model was used on harmonized items, yielding a general psychopathology factor (i.e., p factor) and orthogonal factors that represent

specific domains (i.e., externalizing, internalizing, and attention).

(C and D) The impact of the RBC phenotypic data harmonization is demonstrated for PNC (GOASSESS questionnaire) and HBN (CBCL checklist), depicting
original total scores (i.e., normalized sum scores based on full item sets) and harmonized factors for p factor (C) and externalizing factor (D). Expected cohort
differences (e.g., higher levels of psychopathology in HBN) becomes more evident in harmonized data.

(E) Factor scores aligned with clinical diagnostic categories. For example, higher externalizing and p factors were observed in conduct disorder, while higher
internalizing and p factors were observed in major depression and anxiety disorders. All general and specific factors were low in typical development.
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automatically configure processing workflows (e.g., “BIDS-
apps”’®). Such automatic configuration facilitates processing
of large datasets that may have been collected using different
data acquisition protocols. However, given that automatic
configuration of processing workflows relies on metadata, any
inaccuracies in metadata can lead to pipelines that are repro-
ducible but wrong. This reliance makes careful curation of meta-
data essential as any issues at the curation step will influence all
subsequent analysis. Yet, data curation is typically an ad-hoc
process, often involving poorly-recorded manual intervention
that is not reproducible, compromising the chain of reproduc-
ibility from the start.

To overcome these challenges, we converted all datasets to
the BIDS format and curated the data using the reproducible
workflows provided by the Curation of BIDS (CuBIDS®®) pack-
age. CuBIDS summarizes the heterogeneity in image acquisition
and facilitates metadata curation. Moreover, CuBIDS uses
Datal.ad®® to ensure reproducibility throughout the curation pro-
cess. Each study in RBC was curated with CuBIDS, yielding
summary tables that describe and summarize heterogeneity in
image acquisition (see STAR Methods for details). For example,
PNC had 3 different CuBIDS parameter groups for structural im-
ages (i.e., T1-weighted MRI scans), separating T1 images to a
main group with the majority of scans (n = 1597) and 2 variant
groups with only a few scans each (e.g., n =3 and n = 1). The
CuBIDS summary files also indicate the source of the variance
in image acquisition parameters. For example, the sources of
the variance in PNC T1 images were obliquity for one variant
group and slightly different echo and repetition times for the
other variant group. Notably, functional MRI data were generally
more heterogeneous, where the main source of the variance was
the number of volumes acquired during fMRI scans. In all cases,
using CuBIDS to curate the RBC data bolstered our confidence
in the metadata used by BIDS-apps to configure image process-
ing pipelines.

RBC provides fully processed structural and functional
MRI data

Differences in data processing pipelines across studies present
significant barriers to aggregating data from multiple resources.
To support cross-study analyses, we used uniform processing
pipelines and maintained a comprehensive audit trail in RBC.
Specifically, following data curation, we used consistent image
processing pipelines across studies to generate a standardized
set of commonly used measures of brain structure and func-
tion.">19:56:81.82 Tg ensure reproducibility and transparency, we
adopted the “FAIRIy-big” framework,>* which enabled all data
preparation and analyses to be accompanied by a detailed audit
trail in DatalLad.®® This audit trail not only allows for tracking all
steps in the processing pipeline but also provides a robust
mechanism to rerun the pipelines, preserving methodological
integrity. While the use of random numbers in imaging pipelines,
such as FreeSurfer,”> sMRIPrep,®® and C-PAC,*® can lead to
slight variations in derived outputs (e.g., zip files with differing
shasums), the pipeline commands are fully rerunnable, and their
execution history is carefully recorded. This ensures that the
entire process remains transparent and auditable, even if certain
imaging derivatives are not strictly identical upon re-execution.

¢? CellPress

In RBC, we provide fully processed data including an exten-
sive set of commonly used structural and functional data deriva-
tives (Figure 2). Structural derivatives include surface area,
cortical thickness, gray matter volume, folding and curvature
indices, as well as summary whole-brain measures such as total
intracranial volume. Functional data derivatives include prepro-
cessed time series and functional connectivity matrices with
multiple edge weights (e.g., pairwise Pearson and partial corre-
lations between regional time series; Figure 2B). In addition,
RBC provides regional measures such as Regional Homogeneity
(ReHo,®* Amplitude of Low Frequency Fluctuation (ALFF®®), and
fractional ALFF (FALFF®%) (Figure 2C). Both structural and func-
tional data are available in parcellated format using 16 anatom-
ical, functional, and multimodal atlases (see STAR Methods for
further details).

RBC data are accompanied by harmonized measures

of QC

Data quality is one of the most important confounding factors in
neuroimaging research. Image quality—driven mainly by in-
scanner motion—affects both measures of brain structure®®:7:88
and functional connectivity.?***-%° Impact of data quality is even
more pronounced in studies of development and psychopathol-
ogy, where younger individuals and those with psychiatric symp-
toms tend to have higher in-scanner motion.?%%*#° Inconsistent
quality control (QC) criteria complicate cross-study compara-
bility, yielding different samples and discrepant results from
the same data. Thus, harmonized QC metrics that can be used
for sample construction and model covariates (e.g., continuous
QC metrics) are required to account for the impact of data
quality.

To ensure consistent sample selection and comparable
cross-study analyses, we generated harmonized measures of
neuroimaging data QC in RBC. These measures are accompa-
nied by specific QC guidelines that allow for consistent quality
assurance. Summary information on the number of participants
with structural and functional scans before and after applying
RBC’s recommended QC is available in Figure S1. Overall,
approximately 90% of RBC data had adequate structural and
functional QC (range: 75% for HBN to 99% for CCNP). Study-
and modality-specific data on how RBC’s recommended
QC affects sample size are detailed in Table S6. As expected,
image quality varied by study, with lower quality in studies
with younger participants and greater psychopathology
(e.g., HBN).

Structural MRI

RBC provides both harmonized QC information for sMRI based
on expert manual ratings as well as automated, quantitative
indices of image quality. Specifically, every structural image
was manually evaluated by 2-5 expert raters in multiple phases
using Swipes for Science, a web application for binary image
classification®® (Figure 3A). Expert raters assigned ratings of
“Pass” or “Fail” to four slices per each image. Each image
was assigned a score per rater by averaging across slices, and
then an overall QC score of Pass, “Artifact,” or Fail was assigned
to the image based on the average rating across raters. Specif-
ically, Pass or Fail labels were assigned to a given image if all
raters agreed about its quality (i.e., all raters assigned the
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Figure 2. RBC provides processed neuroimaging derivatives

(A) RBC integrates structural and functional neuroimaging data from 5 neurodevelopmental datasets.

(B and C) Following careful data curation and consistent data preprocessing, neuroimaging data derivatives were estimated and publicly released in RBC. A few
examples of group-average functional data derivatives are depicted: (B) functional connectivity matrices for 3 atlases with multiple edge weights (Pearson and
partial correlations between processed regional time series) and their corresponding coefficients of variation (ratio between standard deviation and average
absolute correlation value); (C) regional properties such as Regional Homogeneity (ReHo) and amplitude of low frequency fluctuation (ALFF).

same label of either Pass or Fail to the image). The intermediate  complexity of the reconstructed cortical surface: a lower Euler
artifact label was assigned to an image when there was number indicates more defects in surface reconstructions (i.e.,
disagreement between raters. The reliability of ratings was as-  holes in the reconstructed cortical surface), and a ceiling of O rep-
sessed across raters using a subset of images, using ratings resents the highest possible quality by this metric. Previous re-
for 1,896 participants (totaling 7,584 slice ratings). We found a  ports have demonstrated that the Euler number is an accurate,
high level of agreement among raters (71.5% agreement; fully automated measure of data quality, capturing variation in
average Cohen’s kappa = 0.71; Figure 3B). The majority of struc-  data quality within the coarse categories provided by manual rat-
tural scans across studies were labeled as Pass and were ings.®®°'""° Consistent with prior work, we found that the Euler
considered of adequate quality (82.6% on average across number was positively associated with average manual expert
studies; Figure 3C). However, there was heterogeneity in data ratings in RBC (Spearman rho = 0.63; Figure 3D). We recom-
quality across datasets: HBN had the most artifact and fail scans  mend including Euler number as a covariate in secondary anal-
compared with the other four studies, consistent with the fact ysis of RBC data in addition to excluding data that do not meet
that HBN includes younger help-seeking individuals with higher =~ RBC’s data quality criteria based on the categorical QC labels.
levels of psychopathology (with ADHD being the most frequent  Functional MRI
diagnosis). Furthermore, we found a positive trend between {MRI derivatives in RBC are accompanied by extensive mea-
the average manual ratings and participant age (age range: suresof QC, including multiple indices of both in-scanner motion
5-21 years old; Spearman rho = 0.28; Figure 3E), consistent and image registration quality. To facilitate consistent QC across
with lower in-scanner motion and improved image quality in  datasets, we generated a summary functional QC score. Specif-
older individuals. ically, fMRI runs with low in-scanner motion (i.e., median
In addition to the manual expert ratings, we calculated the Eu-  framewise displacement [FD] < 0.2) and high image normaliza-
ler number for each structural scan as part of the FreeSurfer pro-  tion quality (i.e., normalized cross correlation > 0.8) were consid-
cessing pipeline. The Euler number reflects the topological ered of adequate quality.

6 Neuron 7113, 1-22, November 19, 2025



Please cite this article in press as: Shafiei et al., Reproducible Brain Charts: An open data resource for mapping brain development and its associations
with mental health, Neuron (2025), https://doi.org/10.1016/j.neuron.2025.08.026

Neuron

A Manual quality control

¢? CellPress

B Rater reliabilty

—_— as Rater A Rater B Rater C Rater D Rater E
Individual Template
space l space
2D defaced brain slices
(2 axial and 2 sagittal
slices per subject)
Pass
SWIPESFORSCIENCE
6 raters
Artifact [
[ Phase 1 ][ Phase 2 ][Phases 3-7]
Fail
C QCdetermination label D Euler number E Age association
Pass @ Artifact @ Fail
1.0 1 1.00 4 1.00 4
c 087 ,8075' E 0.75 //”—
(e} ] -
B 0.6 S o
8_ %{‘ 0.50 % 0.50
o > 0.25 > 0.25
0.2 1 ‘ < <
0o L INE HNE M - 0.00 § 0.00 1
' BHRC CCNP HBN NKI  PNC -1500 -1000 -500 0 5 10 15 20

Dataset

Euler number

Age (years)

Figure 3. RBC data are accompanied by harmonized structural QC metrics
Harmonized structural QC metrics were estimated based on expert manual ratings and automated methods.

(A) Each structural image was manually evaluated by 2-5 expert raters in 7 phases using Swipes for Science. Expert raters assigned pass or fail labels to 4 two-
dimensional slices per image. An overall QC score of pass, artifact, or fail was then assigned to each image: scans were labeled pass or fail if all raters were in
agreement about their quality while artifact was assigned when there was any disagreement.

(B) Comparing final QC labels to expert ratings demonstrated a high level of agreement among raters (71.5% agreement; average pairwise Cohen’s kappa =0.71).
(C) Proportion of data with pass, artifact, and fail labels are depicted for each study. HBN had the most artifact and fail scans compared with the other four studies.
(D) A continuous automated measure of data quality, Euler number, was estimated as part of the FreeSurfer processing pipeline. As expected, Euler number was
positively associated with the average expert ratings (Spearman rho = 0.63).

(E) Average expert ratings were positively associated with age, indicating higher in-scanner motion, hence, lower image quality in younger individuals (Spearman

rho = 0.28).

Using this approach, a relatively small proportion of partici-
pants per study were excluded due to poor data quality (9.7%
excluded across studies). As expected, due to younger partici-
pants and higher prevalence of psychopathology, HBN had the
largest number of individuals with increased in-scanner motion
(Figures 4A and 4B). In-scanner motion decreased with age
(Spearman rho = —0.22; Figure 4C). Furthermore, median FD
was positively associated with higher p factor (Spearman rho =
0.15; Figure 4D), suggesting that individuals with higher overall
psychopathology tend to have higher in-scanner motion. Finally,
median FD during fMRI was negatively related to manual ratings

of structural image quality (Spearman rho = —0.45; Figure 4E),
indicating that individuals with higher in-scanner motion during
functional scans also had lower structural scan quality. Taken
together, these extensive structural and functional QC metrics
allow for consistent quality assurance of imaging data in RBC.
We strongly encourage researchers to use our recommended
quality assurance ratings when working with RBC dataset. How-
ever, we also provide all data—even the scans that do not pass
QC—to help accelerate progress on image QC research (see
STAR Methods for details on different versions of publicly
released RBC data).
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Figure 4. RBC data are accompanied by harmonized functional QC metrics

An extensive list of harmonized QC metrics were generated for functional data, including summary measures of in-scanner motion, image registration, and
normalization quality indices.

(A) Median Framewise Displacement (FD) is depicted as an example functional QC metric (bar plots colored by participant age). Dashed line indicates RBC’s
recommended threshold for median FD, demonstrating that only a small proportion of individuals had high in-scanner motion.

(B) As demonstrated in (A), the majority of RBC functional data pass the in-scanner motion threshold of 0.2. Consistent with structural QC (Figure 3), HBN had the
largest number of individuals with high in-scanner motion.

(C) Median FD was negatively associated with participant age, suggesting higher motion in younger individuals (Spearman rho = —0.22).

(D) In-scanner motion displayed a positive trend with p factor, suggesting that individuals with higher overall psychopathology tend to have higher in-scanner
motion (Spearman rho = 0.15).

(E) Median FD in functional data was negatively associated with average manual ratings in structural data, indicating that individuals with higher in-scanner motion
during functional scans also had lower structural scan quality (Spearman rho = —0.45).
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Figure 5. Structural data derivatives are associated with age in youth

Generalized additive models (GAMs) were used to examine the relationship between participant age and structural data derivatives, including cortical thickness
(CT) and surface area (SA).

(A) We found an overall decrease in mean CT during development in aggregated RBC data without QC or harmonization. However, developmental effects varied
markedly between studies as demonstrated by study-specific model fits (color-coded curves). We also examined regional age effects using separate models for
each brain region. Age effects were quantified using ranked partial R? and are depicted on the cortical surface after correcting for multiple comparisons (FDR
corrected).

(B) To assess QC and harmonization effects, we repeated the analysis after excluding data with Fail structural QC and harmonizing neuroimaging data using
CovBat-GAM. Following QC and harmonization, the developmental effects on mean CT and SA became more similar between studies as evident by study-
specific fits. Similar to before, results demonstrated an overall decrease in mean CT with development. Regional analyses identified heterogeneous develop-

mental effects on the cortex.

Neuroimaging features are associated with age and
psychopathology in youth

To illustrate the utility of RBC, we examined how neuroimaging
features were related to participant age and overall psychopa-
thology. To ensure sensitivity to both linear and non-linear rela-
tionships, we used Generalized Additive Models (GAMs), while
controlling for covariates such as sex and data quality.®%-94:9
Prior to statistical analyses, imaging measures were harmonized
using CovBat-GAM while protecting the effects of model
covariates such as age (as a smooth term), sex, data quality,
and the p factor (as linear terms)®’ ' (see Figure S2 for site
variation before and after harmonization). Sample sizes varied

(N = 3,847 to 4,827) depending on data modality (i.e., structural
vs. functional features), analysis type (i.e., age vs. psychopathol-
ogy analysis), and whether QC was implemented (Table S7).
Structural neuroimaging features are associated with
development and psychopathology

We first assessed developmental associations with brain struc-
ture using structural MRI derivatives, including cortical thickness
(CT), surface area (SA), and gray matter volume (GMV). The data
were parcellated into 400 regions using the Schaefer-400
atlas.’® As a baseline, we evaluated age effects in combined
RBC data without QC implementation or imaging data harmoni-
zation (Figure 5A). We found that developmental effects varied
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Figure 6. Structural data derivatives are associated with psychopathology in youth

(A) GAM analyses using aggregated RBC data without QC or harmonization identified an overall increase in mean CT with increased p factor and decreasing trend
in mean SA with increased p factor. Similar to age-effects (Figure 5), whole-brain associations between brain structure and psychopathology varied between
studies. Regional analyses identified significant associations between structural features and p factor in a subset of brain regions.

(B) Following QC and harmonization, whole-brain association converged between studies, demonstrating no relationship between mean CT and p factor and a
decreasing trend in mean SA with increased p factor. Regional analyses identified no significant associations between regional CT and psychopathology and
significant decreasing patterns in SA with increased psychopathology. Note that CT was significantly associated with p factor in a subset of regions before QC
and harmonization. This suggests that including low-quality data or combining multi-site datasets without data harmonization may result in spurious associations.

markedly between studies. For example, mean CT displayed a
sharp decline with age in BHRC and PNC whereas these effects
were more gradual in CCNP, HBN, and NKI. However, following
QC and harmonization, the developmental patterns converged
across studies and sites (Figure 5B; see Figure S3A for develop-
mental patterns across sites). Mean CT declined markedly with
age; GMV and SA showed more gradual changes (CT and SA
in Figure 5 and GMV in Figure S4). Regional analyses identified
heterogeneous developmental effects in CT and SA across the
cortex. CT decreased with age in most cortical regions, with
the most prominent decrease observed in medial parietal, lateral
and medial prefrontal, and temporal regions. SA displayed a
combination of increases and decreases with age, such that
medial frontal and parts of visual and motor cortices displayed
an increase in SA whereas lateral parietal, temporal and prefron-

10 Neuron 7113, 1-22, November 19, 2025

tal cortices displayed a decrease in SA during development
(Figure 5B). Regional variations were consistent with the original
analyses after controlling for global effects by including mean
CT, SA, or GMV in addition to other covariates (i.e., sex and Euler
number; Figure S5). In addition, we repeated the analyses after
implementing QC but before harmonizing imaging data
(Figure SBA). We found that although QC removed data with
low quality, data harmonization was required to effectively ac-
count for site and study differences.

We next examined the relationship between brain structure and
psychopathology (p factor) using the aggregated data (Figure 6).
Similar to age-related findings, whole-brain associations between
structural features and p factor converged across studies and sites
following QC and data harmonization (Figure 6B; see Figure S3B
for results across sites). Although regional analyses identified
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Figure 7. Functional data derivatives are associated with age in youth

(A) Aggregated data without QC or harmonization were used to model age-related variations in network-level functional connectivity.

Results are depicted in a matrix (left), where the diagonal values correspond to within-network age-effects (partial R%) and off-diagonal values correspond to
between-network age effects. Asterisks indicate statistical significance after correcting for multiple comparisons (FDR-corrected p values: * indicates
0.001 < p < 0.05; ** indicates 0.0001 < p < 0.001; *** indicates p < 0.0001). Overall, we found an increase in within-network connectivity with development while
between-network age-effects were more heterogeneous. Example results (marked via circles in the matrix) are shown for within-network connectivity in the
ventral attention network and between-network connectivity between the default mode and ventral attention networks. Study-specific model fits varied between
studies, especially for within-network connectivity.

(B) We repeated the analyses following QC and harmonization. Within- and between-network age effects displayed similar associations as before (with variations

in effect size and significance). However, study-specific model fits converged and displayed consistent patterns across studies.

significant association with p factor in both CT and SA in combined
RBC data without QC and harmonization (Figure 6A), only SA was
significantly associated with p factor following QC and harmoniza-
tion (Figure 6B). The results demonstrated that SA decreased with
overall psychopathology, with the most prominent decrease in
medial and lateral prefrontal cortices. We also repeated the ana-
lyses after implementing QC but before harmonizing imaging
data (Figure S6B). This analysis suggested the presence of signif-
icant associations between CT and p factor without data harmoni-
zation. However, these effects largely disappeared after harmoni-
zation with CovBat-GAM. Together, these findings underscore the
importance of QC and harmonization when combining heteroge-
neous data. Importantly, including low-quality data in the analysis
or combining multi-site datasets without data harmonization may
result in spurious associations between psychopathology and
brain structure.

Functional neuroimaging features are associated with
development and psychopathology

To assess the developmental variations in brain function, we inves-
tigated how within- and between-network functional connectivity
were associated with age (Figure 7) and overall psychopathology
(Figure 8). We evaluated functional connectivity matrices with
400 cortical regions,”® each assigned to one of the canonical 7

Yeo-Krienen networks.®” Similar to the findings for structural
data, age-related variations in network-level connectivity
converged to similar patterns across studies and sites following
structural and functional QC and data harmonization (Figure 7B
compared with Figure 7A; see Figure S3C for results across sites).
Following QC and harmonization, we observed an overall increase
in within-network connectivity during development for all resting-
state networks. However, the amount of age-related increase in
within-network connectivity varied between networks with the
ventral attention network demonstrating the largest increase in
connectivity during development (Figure 7B; Partial R? = 0.067,
Prpr < 0.0001). In contrast, between-network functional connec-
tivity decreased with age in most networks. However, these age ef-
fects were heterogeneous (Figure 7B). For example, connectivity
between ventral attention and default mode networks significantly
decreased with age (Figure 7B; Partial R?=-0.065, Prpr<0.0001),
while connectivity between ventral attention and dorsal attention
networks increased with development (Figure 7B; Partial R? =
0.046, PrpR < 00001)

Finally, we assessed the relationship between p factor and
network-level functional connectivity (Figure 8). Without QC or
harmonization, we found significant associations between p fac-
tor and within- and between-network functional connectivity in
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Figure 8. Functional data derivatives are associated with psychopathology in youth
(A) GAM analysis with aggregated data without QC or harmonization identified significant associations between network-level connectivity and p factor in multiple

networks.

Results are depicted in a matrix (left), where the diagonal values correspond to within-network age-effects (partial R?) and off-diagonal values correspond to

between-network age-effects. Asterisks indicate statistical significance of the findings after FDR correction (corrected p values: *

indicates 0.001 < p < 0.05;

** indicates 0.0001 < p < 0.001; *** indicates p < 0.0001). An example relationship (marked via a circle in the matrix) between psychopathology and between-
network connectivity is shown for the default mode and frontoparietal control networks.
(B) Following QC and harmonization, we only identified a significant positive association between p factor and between-network connectivity in the default mode

and frontoparietal control networks.

multiple networks (Figure 8A). However, following QC and
harmonization, we observed significantly increased connectivity
only between default mode and frontoparietal control networks
with increasing psychopathology (Figure 8B; Partial R? = 0.004,
pror = 0.0002; see Figure S3D for results across sites). As for
sMRI, we repeated the analyses after implementing QC but
before harmonizing imaging data (Figure S6C for age effects
and Figure S6D for psychopathology). Together, these analyses
showcase how RBC data can be used and highlight the impor-
tance of rigorous QC and data harmonization.

Evidence for sex differences in brain development

Lastly, we examined the effects of biological sex. Consistent with
previous literature,”®°° we found widespread significant sex differ-
ences in structural features, even after controlling for global effects
(Figures S7Aand S7B). As in previous reports, '°°~'°? we found sig-
nificant sex differences in network-level functional connectivity

12 Neuron 7113, 1-22, November 19, 2025

(Figure S7C). Specifically, we found that females had greater
within-network connectivity in the default mode network (Partial
R? = 0.005, prpr < 0.0001). In contrast, we found that males
had greater between-network connectivity between the
default mode network and the ventral attention (Partial R? =
0.009, prpr < 0.0001), dorsal attention (Partial R* = 0.006,
Prpr < 0.0001), visual (Partial R? = 0.004, prpr < 0.0001), and so-
matomotor (Partial R% = 0.002, prpr = 0.01) networks. These find-
ings indicate a less segregated default mode network in males. In-
teractions between biological sex and age are summarized in
Figures S8.

DISCUSSION

Developmental and psychiatric neuroimaging research often
faces significant obstacles: limited sample sizes, variability in
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image acquisition and psychiatric phenotyping, and inconsistent
data analysis workflows.*":92526:30 These collectively hinder the
generalizability of results, and act as a brake on scientific
progress. RBC addresses these challenges by integrating and
harmonizing data from over 6,000 participants across five major
neurodevelopmental cohorts. We employed advanced harmoni-
zation techniques to overcome variability in psychiatric pheno-
typing and imaging protocols, ensuring that data from different
studies can be meaningfully combined with confidence. Further-
more, neuroimaging data with uniform processing are comple-
mented by standardized QC measures to ensure rigor. Initial re-
sults defining consistent patterns of brain development
underscore the degree to which RBC facilitates robust and
generalizable studies of the developing brain.

RBC is a response to the proliferation of large-scale studies of
brain development.'®'7*7> RBC builds on previous data ag-
gregation and harmonization efforts such as the International
Neuroimaging Data-sharing Initiative (INDI), the Autism Brain Im-
aging Data Exchange (ABIDE) Preprocessed, and the ADHD-200
Preprocessed, '%:22:°6:103.104 \yhile distinguishing itself through a
strong emphasis on harmonization, reproducibility, and data
quality. However, this emphasis posed unique and sometimes
unforeseen challenges; RBC reflects 6 years of sustained meth-
odological efforts. Next, we detail what was required as well as
lessons learned across several key domains.

Concise, harmonized psychiatric phenotyping
Harmonizing psychiatric phenotypes remains a major challenge
for the field; RBC was no exception. The harmonized dimensions
of psychopathology released with RBC were only possible after
a series of detailed methodological studies, which evaluated a
broad range of bifactor models to harmonize constructs.*”~**
The resulting factor scores provide a parsimonious summary of
mental health data, disambiguating general and specific dimen-
sions of psychopathology.>’*° This approach aligns with the
dimensional and hierarchical characterization of psychopathol-
ogy emphasized in HITOP.*>*! It should be noted that recent
studies have raised important concerns regarding the alignment
of bifactor models of psychopathology with established theoret-
ical frameworks.'%> Despite potential shortcomings, the validity
of the general factor of psychopathology (i.e., p factor) derived
from these models is supported by extensive evidence.’* 06110
Importantly, bifactor models also offer pragmatic advantages to
researchers, such as parsing inter-item covariance into orthog-
onal scores (i.e., latent dimensions) that can be used simulta-
neously in hypothesis testing. When dealing with the inevitable
comorbidity of psychopathology symptoms, extracting a general
factor to explain them is often the most practical solution. Here,
we exploited bifactor modeling’s strength in facilitating cross-
study comparisons despite the different sampling strategies of
the component studies.*?

Reproducible image curation

The BIDS format has been a boon for the field.”®"%'"" However,
many studies-like several included in RBC —have not previously
been released in BIDS. Furthermore, BIDS metadata may be
inaccurate or missing. This is a critical and under-recognized
problem as widely-used image processing pipelines (e.g.,

¢? CellPress

BIDS-apps) automatically configure workflows based on imag-
ing metadata—leading to processed data that may be inaccu-
rate (e.g., reproducible but wrong). Typically, metadata is
corrected manually in an ad-hoc fashion, compromising repro-
ducibility before image processing even begins. This was an
unanticipated challenge in RBC—large datasets that required
significant metadata curation. To address this, we created
CuBIDS,? which allows for reproducible BIDS curation. Notably,
the detailed summary of metadata provided by CuBIDS also re-
vealed more significant protocol variation in each of the compo-
nent studies than originally anticipated. Such protocol variation
is usually unacknowledged; studies typically report only the in-
tended protocol. Moving forward, the practical consequences
of such variation merit evaluation and likely suggest the need
for multi-level harmonization methods that can address variation
in image acquisition both within and across studies.'"?

Uniform image processing and reproducible workflows
In RBC, we followed the example of prior data aggregations—
such as the ABIDE and ADHD-200 Preprocessed”®'%*-and
released fully processed data. We started by leveraging contain-
erized, open-source pipelines—such as FreeSurfer,> sMRI-
Prep,®® and C-PAC>®*—to ensure uniform processing of struc-
tural and functional MRI data. The need for such uniform
processing was underscored after our initial benchmarking
study revealed that even seemingly innocuous analytic choices
(e.g., template version) can introduce significant variability.®
Both that study and prior work revealed that the use of global
signal regression (GSR) has a substantial impact on derived fea-
tures; the impact of GSR on findings remains one of the most
common and time-consuming questions addressed in peer re-
view.""®""9 We took advantage of the exceptional configurabil-
ity of C-PAC to execute two high-performance denoising pipe-
lines both with and without GSR.

The use of containerized processing pipelines is a major asset
for reproducibility but does not on its own allow for full audit trail.
In RBC, we adopted the “FAIRIy-big” workflow®*: a framework
that uses Datal.ad®” to ensure reproducible processing of large
datasets. This framework aligns with the FAIR principles (find-
ability, accessibility, interoperability, and reusability)'*° by
enabling open, modular, and reusable workflows. However,
while we successfully applied the FAIRIly-big workflow in RBC,
it was not straightforward: it had a steep learning curve despite
our team’s significant technical expertise. This experience led
our team to develop dedicated software—the BIDS App Boot-
strap (BABS'?')—that automates the application of FAIRIly-big.
While we did not use BABS software for this initial release of
RBC, moving forward we anticipate that it will significantly lower
the barriers to researchers adopting FAIRIly-big and Datalad in
their own work.

QcC

One critical yet often-overlooked factor in cross-study reproduc-
ibility is the role of QC and QC-based sample selection. Even
when identical processing pipelines and QC metrics are used,
differences in inclusion criteria can result in different samples
included in data analysis, potentially leading to divergent find-
ings from the same dataset. To address these challenges, we
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provide extensive harmonized QC metrics and recommended
QC guidelines for using RBC data. These include both categor-
ical QC measures that can be used for sample selection as
well as continuous measures of data quality that can be used
as model covariates.

While RBC provides harmonized QC metrics and standardized
guidelines, our analyses highlight significant remaining chal-
lenges. For example, we observed that participants who are
younger or had higher levels of psychopathology tended to
have poorer data quality. This raises important concerns about
how QC procedures may inadvertently reduce generalizability
to populations of the most interest. Ultimately, while our QC ef-
forts confirm many findings from prior studies,'”"'® they also un-
derscore the trade-offs inherent in balancing data quality with
inclusivity.

Convergent developmental findings and ongoing
challenges in translational psychiatry

As an initial evaluation of the utility of RBC, we examined the as-
sociations of structural and functional imaging features with age.
Aligning with a large body of prior work,>'??"'?" we found evi-
dence for a decline in CT, SA, and GMV in all datasets following
careful QC and harmonization. Consistent with a rich literature
from lifespan network neuroscience,”'?®7'** we also found
evidence for a decline in between-network functional connectiv-
ity paired with increases in within-network connectivity.
These findings suggest that resting-state functional networks
become more segregated and specialized during develop-
ment.®> 137140143 Notably, these results were far less consistent
prior to harmonization and QC, emphasizing how variation in
data quality and acquisition parameters may obscure even
robust effects of brain development.

In contrast to the highly consistent developmental findings, the
existing literature on associations between major dimensions of
psychopathology and imaging features have been more var-
ied.'**7152 These inconsistencies may be due to small sample
sizes, limited reliability, and biological heterogeneity.®% 1557156
Echoing at least part of the existing literature, '#4145:147:148.152.157
we found that reduced SA and GMV were linked to higher overall
psychopathology. Additionally, we found that higher overall
psychopathology was associated with greater connectivity be-
tween the default mode and frontoparietal control networks, sug-
gesting a loss of normative developmental network segrega-
tion, 128:189.152,158-162 Thage results are not surprising in that they
are consistent with multiple published reports-this consistency
and the large sample used bolsters confidence in our results.
However, in contrast to the larger effects of brain development,
it should be emphasized that the effect sizes of associations
with psychopathology were small. Such small effect sizes remain
a major challenge for the field, highlighting the need for more sen-
sitive imaging measures, better methods for characterizing psy-
chopathology, and approaches for parsing heterogeneity in links
between brain and behavior,?847+155:156.163-166

Notably, our analyses of brain development and links to psy-
chopathology also highlighted the importance of QC and data
harmonization. For example, our initial analysis of combined
RBC data without QC or neuroimaging data harmonization iden-
tified significant associations between CT and psychopathology
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in multiple cortical regions. However, those associations were no
longer significant following QC and data harmonization. We
observed similar effects in the fMRI data. These findings under-
score that large samples are necessary but not sufficient—high-
quality, harmonized data are also required.

Limitations and future directions

There are several methodological and technical limitations that
must be considered when using RBC. First, RBC provides exten-
sive demographics and phenotypic data (e.g., p factor) that can
be accessed and used without any restrictions. However, more
sensitive phenotypes—such as certain behavioral, clinical, and
cognitive measures—are not released as part of the RBC dataset
due to specific data privacy and DUA protocols set by the
component studies. We note that for HBN and NKI datasets—
two of the five studies included in RBC, comprising a large
portion of the total data (n = 3,940; 62% of total participants)—
granular phenotypic data are already publicly available via their
respective study portals. Second, the majority of the data
included in RBC are cross-sectional, with the exception of a
smaller subset of individuals who have follow-up longitudinal
data. Future work is required to provide public large longitudinal
datasets to systematically study neurodevelopmental trajec-
tories of brain and behavior data within the same individuals
over time. Third, while RBC provides a relatively diverse data
resource and incorporates data from five prominent neurodeve-
lopmental datasets spanning three different continents, it is not
fully representative of diverse populations. Fourth, parent or
caregiver reports were the primary source of psychopathology
measures in RBC. While using parent-reported measures of psy-
chopathology provides valuable insights and is considered a
reasonable approach, these reports reflect only one perspective
and often diverge from youth self-reports.'®”'®® Finally, RBC’s
neuroimaging data consist of structural and functional MRI
data. Future efforts are required to provide large-scale neurode-
velopmental datasets that include multiple neuroimaging modal-
ities, such as diffusion-weighted MRI (DWI) studies of brain
microstructure and arterial spin-labeled (ASL) MRI measures of
cerebral perfusion.

Moving forward, RBC’s utility will be amplified by its adher-
ence to FAIR principles—findability, accessibility, interopera-
bility, and reusability. RBC data are easily findable and readily
accessible: all raw and fully processed RBC data are publicly
shared via the International Neuroimaging Data-sharing Initiative
(INDI) and are accessible without any DUA requirements. By
openly releasing de-identified data and removing barriers asso-
ciated with cumbersome DUAs, RBC accelerates scientific dis-
covery. However, it is important to note that while RBC imposes
no DUA for data access, individual researchers may still be sub-
ject to local or institutional policies regarding the use of publicly
shared human data. Users are therefore encouraged to consult
with their own institutions to ensure compliance with any appli-
cable regulations. RBC data interoperability is ensured by stan-
dard data structures such as BIDS and tidy tabular derivative
data along with well-documented, open-source imaging pipe-
lines. Moreover, RBC data can be redistributed without restric-
tion, ensuring that it is reusable. For example, researchers can
use RBC data to develop tools or integrate RBC data with other
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datasets. Crucially, such efforts can be shared alongside RBC on
INDI. These contributions may include additional derivatives
generated using other BIDS-compliant processing pipelines
(e.g., FastSurfer,’®® fMRIPrep,'’® XCP-D'"", HippUnfold'’?,
and Micapipe'”®), helping to extend RBC’s utility across a wider
array of research approaches. RBC is also accompanied by a
version-controlled website to help facilitate data access and
maintenance (https://reprobrainchart.github.io/). We provide a
“quick-start guide” on how to access and download RBC data
on the RBC website (https://reprobrainchart.github.io/docs/
get_data). We also provide detailed analysis workflows that
allow users to replicate the results reported here (see “data
and code availability”). For support, researchers can post ques-
tions to INCF NeuroStars using the RBC tag (https://neurostars.
org/tag/rbc).

Beyond providing a large new open data resource for the com-
munity, RBC also offers a transparent and reproducible workflow
for large-scale data integration and sharing, which may serve as
a model for future multi-study efforts that others can adopt or
adapt. While not all phenotypic measures could be included
due to data-sharing restrictions, RBC serves as an important
resource that future studies can build upon through expanded
consent and tiered access models. Taken together, RBC accel-
erates large-scale, robust, and reproducible research in devel-
opmental and psychiatric neuroscience.

RESOURCE AVAILABILITY

Lead contact
Requests for further information should be directed to the lead contact, Theo-
dore D Satterthwaite (sattertt@pennmedicine.upenn.edu).

Materials availability

All harmonized phenotypes as well as raw and processed neuroimaging data
are openly shared via DataLad and the International Neuroimaging Data-
sharing Initiative (INDI). The released RBC data are accessible without any
data use agreement (DUA) requirements and can be downloaded using
Datalad via https://github.com/ReproBrainChart.

Data and code availability

All processing pipelines are shared using Docker containers for frictionless
portability across platforms (https://github.com/ReproBrainChart) along with
the analysis workflows and data used in this study (https://github.com/
ReproBrainChart/rbc-analysis-template). RBC data release is also accompa-
nied by a website to help facilitate data access and maintenance (https://
reprobrainchart.github.io/). RBC website provides additional information and
guidelines on how to access the data. Follow-up queries on RBC are closely
monitored on INCF NeuroStars (https://neurostars.org/tag/rbc).
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STARxMETHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited data
Reproducible Brain Charts (RBC) data resource This paper; accompanying N/A

website: https://reprobrainchart.github.io
Brazil High Risk Cohort (BHRC) Salum et al.” N/A
Developmental Chinese Color Nest Project (CCNP) Liu et al.”* N/A
Healthy Brain Network (HBN) Alexander et al."” N/A
Nathan Kiline Institute—-Rockland Sample (NKI) Tobe et al.’® N/A
Philadelphia Neurodevelopmental Cohort (PNC) Satterthwaite et al.'®; Satterthwaite et al.”® N/A
Software and algorithms
CuBIDS Covitz et al.®° N/A
FreeSurfer Fischl®? RRID: SCR_001847
sMRIPrep Esteban et al.®® N/A
C-PAC Cameron et al.”® RRID: SCR_000862
fMRIPrep Esteban et al.'”° RRID: SCR_016216
Swipes for Science Keshavan et al.”® N/A
Datalad Halchenko et al.*® RRID: SCR_003931
AFNI tools Cox'" RRID: SCR_005927
Python RRID: SCR_008394
RStudio RRID: SCR_000432

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study description

The RBC project contains data from 5 large studies of brain development (age range: 5-85 years old) from N=6,346 participants
(N=2,869 Female). All studies included structural and functional Magnetic Resonance Imaging (MRI) data as well as phenotypic
data. Studies were conducted in Brazil, China, and the United States of America. Specific studies include: Brazilian High Risk Cohort
(BHRC"?; n=610), Developmental Chinese Color Nest Project (CCNP’*"%; n=195), Healthy Brain Network (HBN'"; n=2,611), Nathan
Kline Institute—Rockland Sample (NKI'8; n=1,329), and Philadelphia Neurodevelopmental Cohort (PNC'®%; n=1,601).

BHRC’® is a sample of children and adolescents attending school in Brazil (Porto Alegre and S&o Paulo cities) that is aimed to be a
random sample of the state-funded school-based community in addition to children with increased family risk of mental disorders.
The study was approved by the ethics committee of the University of Sdo Paulo.

CCNP’#7%is a sample of children and adolescents that is aimed to represent the population residing in multiple cities of China with
varying economies and from different regions of the country (https://ccnp.scidb.cn/en). The ethical approval for this study was ob-
tained from the Institutional Review Board of the Chinese Academy of Sciences (CAS) Institute of Psychology and Beijing Normal
University.

HBN'" isa sample of children and adolescents residing in the New York City area (United States of America) that is aimed to repre-
sent a diverse sample of healthy and help-seeking individuals with heterogeneous metrics of developmental psychopathology. The
HBN study included data from four different acquisition sites: Staten Island (S| - Mobile Scanner), Rutgers University (RU), The City
University of New York (CUNY), and Citigroup Biomedical Imaging Center (CBIC). The study was approved by the Chesapeake Insti-
tutional Review Board.

NKI-Rockland Sample'® is aimed to represent a lifespan sample of individuals with varying demographic distributions residing in
the United States. The Institutional Review Board approved this project at the Nathan Kline Institute.

PNC'%7% is a community sample of children and adolescents residing in the greater Philadelphia area (United States) that is aimed
to represent a diverse developmental sample. The study was approved by the Institutional Review Boards of the University of Penn-
sylvania and the Children’s Hospital of Philadelphia.

Neuron 713, 1-22.e1-e6, November 19, 2025 el



https://ccnp.scidb.cn/en
https://reprobrainchart.github.io

Please cite this article in press as: Shafiei et al., Reproducible Brain Charts: An open data resource for mapping brain development and its associations
with mental health, Neuron (2025), https://doi.org/10.1016/j.neuron.2025.08.026

¢ CellPress Neuron

Written informed consents were obtained from all participants (or their parents or legal guardians) by each study separately as part
of the study-specific data collection procedure.

T1-weighted structural MRI and resting-state, task, and movie-watching functional MRI data were included in the RBC dataset. All
scans were defaced and de-identified to ensure ethical compliance and protect participants’ privacy. Data acquisition parameters
varied by study and data acquisition sites. Detailed information about structural and functional MRI data acquisitions are summarized
in Tables S4-S5.

METHOD DETAILS

Phenotypic data harmonization

RBC includes psychiatric phenotyping data for each study, which were assessed using one of two different phenotypic question-
naires. The Child Behavior Checklist (CBCL77) was used in the BHRC, CCNP, HBN, and NKI studies, while the GOASSESS inter-
view’® was used in the PNC study. To ensure that measures of psychopathology were consistent across study, we used a bifactor
modeling strategy to harmonize differences between samples that used the same instrument (i.e., the CBCL) as well as differences
between disparate instruments (i.e., GOASSESS vs. CBCL). The CBCL is a 120-item parent-report assessment of emotional and
behavioral symptoms over the past 6 months, answered on a 3-point scale (0O=not true, 1=somewhat/sometimes true, and 2=very
true/often). It encompasses eight syndromes: anxious-depressed, withdrawn-depressed, somatic complaints, rule-breaking
behavior, aggressive behavior, social problems, thought problems, and attention problems.”” To harmonize CBCL with
GOASSESS, CBCL scores of 1 and 2 were collapsed to generate a binary-scaled variable compatible with GOASSESS (i.e., 0 or
1). The GOASSESS is a structured screening interview administered to collateral informants (usually a caregiver) by trained asses-
sors. It contains 112 unconditioned screening items based on DSM-IV constructs, including symptoms of mood disorders (Major
Depressive Episode, Manic Episode), anxiety disorders (Generalized Anxiety Disorder, Separation Anxiety Disorder, Specific Phobia,
Social Phobia, Panic Disorder, Agoraphobia, Obsessive-Compulsive Disorder, Post-traumatic Stress Disorder), Attention Deficit/
Hyperactivity Disorder (ADHD), behavioral (Oppositional Defiant Disorder, Conduct Disorders) and eating disorders (Anorexia,
Bulimia), and suicidal thinking and behavior. ltems are scored as 0 (absent) or 1 (ever present). The instrument is abbreviated and
modified from the epidemiologic version of the NIMH Genetic Epidemiology Research Branch Kiddie-SADS, and its development
is described and tested elsewhere.”®

We tested a sequence of harmonization procedures to minimize between-cohort and between-questionnaire differences across
studies, as well as to disentangle general and specific aspects of psychopathology. In a previous work, we thoroughly tested the
impact of different bifactor model configurations on the resulting factor scores** in addition to six item-matching strategies that
best harmonize different questionnaires.*” We then tested the best bifactor model configuration using several parameters to identify
the model that best harmonized CBCL and GOASSESS questionnaires used in RBC in another previous work.*® In brief, 12 CBCL
bifactor models were first identified from previous literature, which varied in item and factor configurations.44 The impact of these
modeling choices was small for the general psychopathology factor (i.e., p-factor), but quite marked for the specific factors.** We
then tested 6 item-matching strategies to harmonize items between questionnaires (i.e., CBCL and GOASSESS), where we found
that the expert-based 1-to-1 semantic item-matching performed best for item harmonization.* Finally, the extent to which the
CBCL-GOASSESS harmonized models were similar to the original models was assessed across different models.*® We selected
the McElroy model as it: (1) demonstrated measurement invariance between the questionnaires; (2) retained the majority of original
items during the harmonization process; (3) included harmonized items that were endorsed in all samples; and (4) was among the
best four harmonized bifactor models in terms of factor reliability and authenticity (i.e., generated factor scores fairly correlated
and close to the factor scores from full item set models).*>*

In our previous RBC harmonization studies and for the publicly released RBC dataset, all factor scores were estimated with confir-
matory factor analysis (CFA) using delta parameterization and Weighted Least Squares with diagonal weight matrix with standard
errors and mean- and variance-adjusted Chi-square test statistics (WLSMV) estimators. RBC studies were used as clusters in the
CFA in the bifactor model that included all RBC data. Analyses were carried out in Mplus 8.6'”° and implemented in R version
4.0.3 using the MplusAutomation package,'’® which was also used to extract factor scores generated in Mplus using maximum a
posteriori method. The global model fit was evaluated using root mean square error of approximation (RMSEA), comparative fit index
(CFI), Tucker-Lewis index (TLI), and standardized root mean square residual (SRMR). RMSEA lower than 0.060 and CFl or TLI values
higher than 0.950 indicate a good-to-excellent model. SRMR lower than or equal to 0.080 indicates acceptable fit, and lower than
0.060 in combination with previous indices indicates good fit.'”” Only individuals that filled the CBCL and GOASSESS on the day
of neuroimaging were included in the publicly released RBC dataset.

Reproducible neuroimaging data curation and workflows

We curated all raw neuroimaging data and metadata in a fully-reproducible fashion that conforms with the Brain Imaging Data Struc-
ture (BIDS’®) using the Curation of BIDS (CuBIDS®°) software package. CuBIDS provides a workflow for identifying unique combi-
nations of imaging data acquisition parameters based on metadata, summarizing the heterogeneity in an MRI BIDS dataset, and
reproducibly modifying scan filenames to reflect information about their imaging parameters. These curation steps are critical given
that preprocessing pipelines designed for BIDS datasets (e.g., “BIDS-apps”’®) automatically configure workflows based on a
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dataset’s accompanying metadata. However, potential inaccuracies or missing information in metadata may lead to incorrectly
configured pipelines that will run without any errors (i.e., pipelines that are reproducible but wrong). CuBIDS facilitates the identifi-
cation of such inaccuracies or missing information in metadata and categorizes imaging data in subgroups (i.e., unique parameter
groups) based on the heterogeneity of their metadata.

We applied CuBIDS to RBC data and generated a CuBIDS summary data file for each study included in the RBC dataset. The
CuBIDS summary tables are provided along with the RBC BIDS data, available at https://github.com/ReproBrainChart. CuBIDS
was then used to rename each BIDS data file based on the scanning parameters of the identified parameter groups, such that
the new file names indicated the source of the variance between different parameter groups. Notably, all data curation steps
were fully tracked via CuBIDS’s wrapped use of Datal.ad®® throughout, ensuring the tracking of version history and yielding a com-
plete audit trail. After categorizing data based on heterogeneity of their acquisition parameters, we used an automated procedure
implemented in CuBIDS to create an example dataset with one subject from each acquisition group for each study. The example
dataset was then used to closely examine the heterogeneity of data and make necessary adjustments to the data curation step
(e.g., if there were errors or missing information in metadata). Eventually, the example dataset was used to test image processing
pipelines to ensure that they performed well on each combination of acquisition parameters present in the dataset. Finally, to run
the RBC neuroimaging data through modality specific preprocessing pipelines, we employed the FAIRIly-big workflow.** FAIRIy-
big is a DatalLad-based open-source framework that is suitable for reproducible processing of large-scale datasets. We adapted
the FAIRIy-big workflow for RBC image processing to ensure that all data preparation and processing were accompanied by a
full audit trail in DataLad.®®

Structural MRI data processing and quality control

Structural MRI (sMRI) data were processed using FreeSurfer v6.0.1°? and sMRIPrep v0.7.1,%° yielding commonly used measures of
brain structure. Specifically, structural images underwent correction for intensity non-uniformity and skull-stripping with ANT’s brain
extraction workflow. Brain surfaces were then reconstructed using FreeSurfer. RBC provides full FreeSurfer outputs as well as tabu-
lated data parcellated using 35 anatomical, functional, and multimodal atlases that were included to align with the functional image
processing. Atlases include the Desikan Killiany'®, Glasser'’®, Gordon,'®° and multiple resolutions of the Schaefer®® parcellation
among others. Specific features include commonly used measures of brain structure such as regional surface area, cortical thick-
ness, gray matter volume, and folding and curvature indices. Moreover, summary brain measures such as total intracranial volume,
ventricle size, and mean and standard deviation of various measures (e.g., cortical thickness, surface area) are provided for the whole
brain and per hemisphere. Tabulated data are also accompanied by.json files describing each structural feature in detail.

An important feature of RBC is the emphasis on harmonized measures of neuroimaging data quality control (QC). To achieve
consistent quality ratings across all studies in RBC, every structural image was manually evaluated by 2-5 expert raters using Swipes
for Science, a web application for binary image classification.?® The expert rating workflow consisted of seven phases (Figure 3).
Overall, 4 two-dimensional slices per participant (two axial and two sagittal slices extracted per structural scan) were created to
rate each scan. To ensure consistent slice selection across participants, the anatomical images were registered (linear rigid body)
to the MNI152 template space prior to slice selection. Expert raters (experience in brain imaging: range = 0.17-16 years; mean =
5.63 years; SD = 5.76 years) evaluated a total of 28,780 slices and assigned “Pass” or “Fail” to those slices based on visual inspec-
tion only. A “Pass” rating would be given if an image was deemed of sufficient quality for skullstriping and segmentation of cerebro-
spinal fluid (CSF), white, and gray matter. Slices were presented to the raters in random order.

More specifically, Phase 1 involved generating the ground truth for 200 images to either “Pass” (rating of 1) or “Fail” (rating of 0).
Two senior raters evaluated these images and agreed on 96% of the slices. The images with disagreement were further evaluated
after skulltripping and brain segmentation, using Configurable Pipeline for the Analysis of Connectomes (C-PAC®®) pipeline. The
expert raters then reached 100% concordance through consensus of either “Pass” or “Fail” for each slice. In Phase 2, these
ground-truth annotated images (i.e., outcome of Phase 1) were used to train four raters until they reached at least 85% concordance
with the ground-truth. In Phase 3, all raters manually rated 10% of images and the reliability of ratings was assessed across raters. In
Phase 4, the raters were divided into two groups with balanced experience and evaluated 20% of the remaining images indepen-
dently, such that no overlapping images were assessed by the two groups. In Phase 5, the reliability of ratings was re-assessed
(similar to Phase 3), where all raters manually rated another 10% of the remaining images. In Phase 6, the raters were divided into
two groups again to rate 20% of the remaining images (similar to Phase 4). Finally, in Phase 7, a new set of images that were not
included in the first 6 phases were evaluated by raters. To avoid sequence type or scanner parameters biases, each Swipes for Sci-
ence instance for each phase contained data from all data acquisition sites and studies.

Following manual expert ratings, an overall QC determination score of “Pass”, “Artifact”, or “Fail” was assigned to each structural
image as the final scan quality based on the average rating across raters. “Pass” or “Fail” labels were assigned to images if all raters
agreed about their quality. For example, if all raters agreed that a given image was of adequate quality (i.e., all raters assigned “Pass”
or rating of 1 to the image), the average rating across raters was equal to 1 and the image was labeled as “Pass”. Similarly, if all raters
assigned “Fail” or rating of 0 to an image, the image was labeled as “Fail” (i.e., average rating of 0 across raters). If there was any
disagreement between raters about a given image’s quality (i.e., a combination of 1 and 0 ratings for the image), the “Artifact” label
was assigned to that image (i.e., an average value between 0 and 1). Summary information on the number of participants with struc-
tural scans before and after applying RBC’s recommended QC is available in Figure S1.
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In addition to the manual ratings, we calculated the Euler number from FreeSurfer.®® The Euler number is calculated as part of the
FreeSurfer processing pipeline and reflects the topological complexity of the initial reconstructed cortical surface.®® Euler number is
calculated as the sum of the vertices and faces subtracted by the number of faces. Lower values below an ideal value of 2 indicate
more defects in surface reconstruction. Euler number can be used as a continuous measure of structural MRI QC (e.g., can be
included as a covariate in downstream analysis) whereas manual ratings provide categorical QC labels. Previous reports have
demonstrated that the Euler number is an accurate, fully-automated measure of data quality, capturing variation in data quality within
the coarse categories provided by manual ratings. '-#%91-9

Functional MRI data processing and quality control
As noted above, preprocessing steps were carried out in DatalLad’® using the FAIRIy-big workflow®* to track provenance and ensure
the re-executability of processing workflows for all RBC studies. Following guidelines from extensive benchmarking and harmoniza-
tion studies,”' functional MRI (fMRI) data were preprocessed using Configurable Pipeline for the Analysis of Connectomes (C-PAC
v1.8.5.dev1°®), with a pipeline configuration file specifically developed for RBC'®" including a fixed random state to maximize repro-
ducibility. This configuration produces commonly used measures of functional MRI data such as fully processed fMRI time-series
and functional connectivity matrices (e.g., Pearson and partial correlations between processed regional time-series). In addition,
the functional data derivatives include regional measures based on processed time-series such as Regional Homogeneity
(ReHo®"), Amplitude of Low Frequency Fluctuation (ALFF®°), and fractional ALFF (fALFF®®). Processed time-series and functional
connectivity are available in parcellated format using 17 different atlases, including AAL'®?, Glasser'”® and Schaefer®® parcellations.
ReHo, ALFF, and fALFF are available in volumetric MNI space (MNI152NLin6ASym).

For anatomical preprocessing, the configuration specified C-PAC’s reimplementation of the NiWorkflows ANTs brain extraction

workflow #3785 and segmentation using FSL-FAST'®® with a 0.95 threshold for each tissue type. Anatomical registration was config-
ured to use antsRegistration'®> on skull-stripped images at 1mm isotropic resolution with parameters specified in the configura-
tion file."®’

Functional registration was configured to first use C-PAC’s reimplementation of the NiWorkflows reference image estimation
method'®”'®® with boundary-based registration performed on skull-stripped images to MNI152NLin6ASym-template space using
FSL-FLIRT'®%"°° with binarized partial volume white matter masks. It then used C-PAC’s reimplementation of the fMRIPrep sin-
gle-step resampling workflow'”%'°" at 2mm isotropic resolution. Motion statistics were calculated before slice-timing correction us-
ing the previously established reference image and FSL-MCFLIRT'®° for motion estimation. Where field maps were present, distor-
tion correction was performed using FSL-FUGUE '®? or FSL-TOPUP'°? depending on the type of field maps. Functional masking was
configured to use a reference image from TemplateFlow'®® and C-PAC’s reimplementation of the NiWorkflows BOLD masking
method.'®%"9* A mean functional image was also generated using AFNI 3dTstat.'”* The first 2 timepoints were excluded from
analysis.

AFNI 3dDespike'”* was run on template-space images. Prior to nuisance regression, the brain mask, CSF mask, and white matter
mask were eroded using C-PAC’s reimplementation of the NiWorkflows utility interface for converting tissue probability masks into
regions of interest.'®®'°° Two nuisance regression strategies (named “36-parameter” and “aCompCor”, with global signal regres-
sion (GSR) or aCompCor as part of the strategy, respectively and exclusively) were run in parallel in template space (the full specific
nuisance regression configurations can be found in the configuration file'®").

Time-series extraction'®® was performed, and correlation matrices were generated using Nilearn’s “correlation” and “partial cor-
relation” methods'®”'°¢ separately for each of the specified region of interest atlases. ALFF®° and fALFF®® were calculated in tem-
plate space using a sequence of AFNI tools.'”*99?%° Regional Homogeneity®* was calculated in template space using NiBabel*""
and NumPy?% in Python.?%®

C-PAC outputs also include extensive measures of quality control, such as various in-scanner motion parameters (e.g., framewise
displacement), functional image to structural image (e.g., to T1-weighted scan or MNI template) registration and normalization quality
parameters, generated for each preprocessed BOLD image using C-PAC’s reimplementation®® of the xcpEngine quality control dic-
tionary.'%® As part of the RBC data release, we performed an initial quality assurance procedure using measures of in-scanner motion
quantified as Framewise Displacement (FD) and normalization quality quantified as cross correlation from normalization of functional
image to template image. Functional MRI runs with a median FD less than or equal to 0.2 and normalized cross correlation greater
than or equal to 0.8 were considered of adequate quality. These thresholds were selected after extensive manual review of images.
Similar to structural data, the majority of functional scans passed RBC’s QC thresholds. Summary information on the number of par-
ticipants with functional scans before and after applying RBC’s recommended QC is available in Figure S1. Overall, about 90% of
RBC data passed both structural and functional QC guidelines.

Following the initial structural and functional data QC procedure, three different versions of the RBC dataset were publicly released
and are accessible depending on the user’s choice of QC threshold: (1) structural images with “Pass” label only and functional im-
ages that passed the motion and image normalization QC threshold; (2) structural images with “Pass” and “Artifact” labels and func-
tional images that passed the motion and image normalization QC threshold; (3) all structural and functional images including QC
failures. Versions (1) and (2) are recommended by RBC; however, users may use Version (3) for research on QC or to apply their
desired QC procedures using the extensive structural and functional QC information accompanying RBC data.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Example analysis workflow with RBC data

In addition to providing a publicly available data resource, we illustrated the utility of RBC data and the increased statistical power of
the aggregated sample. Specifically, we examined the relationship between derived structural and functional neuroimaging features
and both participant age and general psychopathology. Furthermore, we evaluated whether those associations are influenced by
RBC’s QC protocols and imaging data harmonization.

Neuroimaging data harmonization

RBC provides both raw and processed neuroimaging data for each dataset. However, due to differences in scanners and sequences
used in data collection between studies, there is significant technical variance between studies and sites that requires harmonization.
Therefore, users may want to statistically harmonize neuroimaging data across studies and data acquisition sites. However, neuro-
imaging data harmonization remains an ongoing research topic in the field with a growing number of statistical methods that aim to
effectively harmonize data between multiple sites and studies. Given the lack of consensus on a single neuroimaging data harmo-
nization technique, we released unharmonized neuroimaging data in RBC. This allows researchers to implement their method of
choosing to harmonize the imaging data based on their specific research questions. In addition, given that statistical harmonization
models require specification of covariates that are hypothesis-dependent, researchers can define the covariates they want to include
in the harmonization analysis. While RBC'’s released neuroimaging data is unharmonized, below we provide an example workflow to
harmonize the imaging data and illustrate its utility in our analysis. This workflow can be tailored by RBC users for their specific
hypotheses.

We used CovBat-GAM®"~®" to harmonize structural and functional MRI data across data acquisition sites. Specifically, we used the
“covfam” function with Generalized Additive Model (GAM) from ComBatFamiliy in R 4.2.2. The “covfam” function uses CovBat®'
(Correcting Covariance Batch Effects) to harmonize the mean and covariance of data across multiple batches (e.g., sites, datasets).
In our developmental analysis, data acquisition sites were treated as batches. Covariates included in harmonization were age as a
smooth term (to account for linear and nonlinear age effects), and sex and data quality (i.e., Euler number for structural data and me-
dian FD for functional data) as linear terms. We used a separate harmonization for the psychopathology analyses, where general psy-
chopathology from the bifactor model (p-factor) was added as a linear term to the model. CovBat-GAM yields harmonized structural
and functional data while protecting effects of model covariates. To evaluate the effect of harmonization, we repeated analysis before
and after data harmonization.

Generalized Additive Models (GAM)

We used Generalized Additive Models (GAMs) to delineate linear and nonlinear developmental effects (i.e., age effects) and assess
the relationship between neuroimaging data derivatives and general psychopathology (i.e., p-factor).?>%*°> The analysis was per-
formed using the “mgcv” package in R 4.2.2. To ensure all studies contributed to the analysis, a subset of aggregated RBC data
within the age range of 6-22 years old was used for this analysis. Structural features included cortical thickness (CT), surface area
(SA), and gray matter volume (GMV), and functional features included between- and within-network resting-state functional connec-
tivity. Structural and functional data parcellated into 400 brain regions using the Schaefer-400 atlas.’® Functional networks were
defined using the 7 Yeo-Krienen networks for the parcellated functional data.®” Within-network connectivity was estimated as the
average functional connectivity between regions from a given network and all the other regions from the same network. Between-
network connectivity was estimated as the average connectivity between regions from a given network and regions from all the other
networks. Note that we used the baseline functional scans of individuals who were scanned at multiple time points (e.g., BHRC and
NKI). For individuals with multiple functional data at the baseline, we used the average functional connectivity across scans at the
baseline.

Separate GAMs were fit for functional and structural features as dependent variables. Each GAM included age as a smooth term
and sex and data quality as linear covariates. The linear covariate for data quality was the Euler number for structural data and median
FD for functional data. For models evaluating associations with overall psychopathology, the p-factor was also included in GAMs as a
linear term. In all GAM analyses, the maximum basis complexity was set to 3 for the smooth term (i.e., age) to avoid overfitting. The
code invocation used to fit the model was: ‘mgcv::gam(feature ~ s(age, k=3, fx=F) + factor(sex) + data_quality)’. The GAM formula
also included p-factor as alinear term for psychopathology analysis. The Restricted Maximum Likelihood (REML) approach was used
to estimate the smoothing parameters in GAMs. We performed the analyses at two resolutions: (1) whole-brain models, where we
examined average structural and functional features across the cortex for each participant; (2) regional and network level GAMs,
where we evaluated regional structural features and network-level functional features (e.g., mean within- or between-network con-
nectivity) for each participant.

The effect size of associations between imaging features and age were estimated as partial R2. We quantified partial R? as the dif-
ference in Residual Sum of Squares (SSE) between the full model that included the smooth term for age and a reduced model with no
age term (i.e., only including model covariates) normalized by SSE of the reduced model. Normalization by SSE of the reduced model
highlights the relative contribution of the predictor (e.g., age) to the reduced model. The linear effect size for the relationship between
p-factor and neuroimaging features was also estimated in a similar manner, where partial R? was defined as the difference in SSE
between the full model and a reduced model without p-factor. We used a signed version of partial R?, such that the sign reflected
the directionality of observed effects (increase or decrease in neuroimaging features with increasing age or p-factor). To obtain
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the directionality of partial R? for age analysis, we calculated the mean derivative of the model fit for the smooth term (i.e., age). A
positive sign was assigned to partial R? if the mean derivative was positive, reflecting an overall increasing trend between the neuro-
imaging feature of interest and age, whereas a negative sign was assigned to partial R? where the mean derivative was negative. To
obtain the directionality of partial R? for p-factor analysis, we used the sign of the t-value associated with the linear p-factor term. The
statistical significance of the associations between neuroimaging features and age or p-factor was assessed using analysis of vari-
ance (ANOVA) between the full model and reduced model that excluded the term of interest. Results were corrected for multiple com-
parisons by controlling for the false discovery rate (FDR correction; Q<0.05).

To assess how neuroimaging data QC and harmonization impacted our findings, we repeated all structural and functional GAM
analyses with three different versions of data: First, we used all neuroimaging data without excluding individuals based on QC thresh-
olds and without applying neuroimaging data harmonization. Second, we used structural MRI data from individuals with “Pass” or
“Artifact” structural QC (i.e., excluding scans with “Failed” structural QC) and functional data that passed functional QC thresholds
(median FD < 0.2 and normalization cross correlation > 0.8). However, we did not apply neuroimaging data harmonization in this
version. Third and finally, we used neuroimaging data that passed structural and functional QC (as above) and performed GAM an-
alyses after applying neuroimaging data harmonization.

Finally, we tested how participant sex and its interaction with age relate to harmonized structural and functional features. Similar to
the original analysis, separate GAMs were fit for functional and structural features as dependent variables using within- or between-
network connectivity for functional and CT, SA, and GMV for structural data. We first assessed the effects of participant sex on neuro-
imaging features by including biological sex as a linear two-level factor in GAMs. The effect size for the sex term was estimated in a
similar manner to the original analysis, where partial R? was defined as the difference in SSE between the full model and a reduced
model without sex for each cortical region for structural data and for resting-state networks for functional data. The directionality of
the observed effects was assessed using the sign of the t-value associated with the sex term, such that a positive value corresponded
to higher values in females than males. Multiple comparisons were accounted for using FDR. We also repeated the analysis after
controlling for global cortical effects by including mean CT (for CT analysis) and total intracranial volume (TIV, for SA and GMV an-
alyses) as model covariates.

We next examined how the interaction between biological sex and age influences the developmental patterns. Specifically, we
added a factor-smooth interaction term to GAMs to estimate how age-related changes vary by sex. For structural data, we assessed
the sex-by-age interaction on the whole-brain level using the average CT, SA, and GMV maps, as well as on the regional level. We
also repeated the regional analysis after controlling for global cortical effects by including mean CT (for CT analysis) and TIV (for SA
and GMV analyses) as model covariates. For functional data, we assessed the sex-by-age interaction on within- and between-
network connectivity. The interaction effect size was quantified using the F-statistic from GAMs. All reported statistics were corrected
for multiple comparisons using FDR.
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