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Abstract

Deriving white matter (WM) bundles in-vivo has thus far mainly been applied in research
settings, leveraging high angular resolution, multi-shell diffusion MRI (dMRI) acquisitions that
enable advanced reconstruction methods. However, these advanced acquisitions are both
time-consuming and costly to acquire. The ability to reconstruct WM bundles in the massive
amounts of existing single-shelled, lower angular resolution data from legacy research studies
and healthcare systems would offer much broader clinical applications and population-level
generalizability. While legacy scans may offer a valuable, large-scale complement to
contemporary research datasets, the reliability of white matter bundles derived from these
scans remains unclear. Here, we leverage a large research dataset where each 64-direction
dMRI scan was acquired as two independent 32-direction runs per subject. To investigate how
recently developed bundle segmentation methods generalize to this data, we evaluated the
test-retest reliability of the two 32-direction scans, of WM bundle extraction across three
orientation distribution function (ODF) reconstruction methods: generalized g-sampling
imaging (GQlI), constrained spherical deconvolution (CSD), and single-shell three-tissue CSD
(SS3T). We found that the majority of WM bundles could be reliably extracted from dMRI
scans that were acquired using the 32-direction, single-shell acquisition scheme. The mean
dice coefficient of reconstructed WM bundles was consistently higher within-subject than
between-subject for all WM bundles and ODF reconstruction methods, illustrating preservation
of person-specific anatomy. Further, when using features of the bundles to predict complex
reasoning assessed using a computerized cognitive battery, we observed stable prediction
accuracies (r: 0.15-0.36) across the test-retest data. Among the three ODF reconstruction
methods, SS3T had a good balance between sensitivity and specificity in external validation,
a high intra-class correlation of extracted features, more plausible bundles, and strong
predictive performance. More broadly, these results demonstrate that bundle segmentation
can achieve robust performance even on lower angular resolution, single-shell dMRI, with
particular advantages for ODF methods optimized for single-shell data. This highlights the
considerable potential for dMRI collected in healthcare settings and legacy research datasets
to accelerate and expand the scope of WM research.
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1 Introduction

Diffusion-weighted magnetic resonance imaging (dMRI) measures the directional diffusion of
water molecules and is the key modality for non-invasively estimating white matter (WM)
microstructural tissue properties (Alexander et al., 2019; Le Bihan et al., 2001) and
reconstructing WM fiber pathways using tractography algorithms (Jeurissen et al., 2019; F.
Zhang et al.,, 2022). Advanced post-processing methods that can model multiple
compartments (Assaf & Basser, 2005; H. Zhang et al., 2012) or multiple fiber populations
(Jeurissen et al., 2014) per voxel improve reconstructions of fiber pathways and
microstructural tissue properties. However, these methods require high-angular resolution
data acquired on multiple diffusion shells as is common in large-scale neuroimaging datasets
like the Human Connectome Project (Van Essen et al., 2013), UK Biobank (Bycroft et al.,
2018), or the ABCD study (Garavan et al., 2018) with up to 270 directions acquired on up to 4
shells. Such scans are very time- and resource-intensive to acquire, limiting their practicality
to populations less tolerant to MRI. In contrast, the overwhelming majority of dMRI data
acquired over the past 30 years, as part of research protocols or in healthcare systems, is
from scans with fewer directions (between 6 and 32) and only a single-shell (typically b < 1200
s/mm?). In this work, we refer to such single-shell protocols with lower angular resolution as
simple acquisitions and the aforementioned multi-shell, higher angular resolution protocols as
advanced acquisitions. We sought to investigate how reliably WM bundles can be
reconstructed from these simple acquisitions and assess their utility for establishing brain-
behavior relationships. Understanding the reliability of such legacy or clinically acquired data
is crucial, as prediction analyses of inter-individual differences benefit from large sample sizes
(Cui & Gong, 2018; Gell et al., 2024; Scheinost et al., 2019).

Important gaps remain in understanding the reliability of reconstructions derived from single-
shell, low angular resolution scans. For instance, it has been shown that lower angular
resolution affects WM bundle reconstruction (Ambrosen et al., 2020; Calabrese et al., 2014;
Radhakrishnan et al., 2023; Vos et al., 2016; Wasserthal et al., 2018) and derived
microstructural properties (Aja-Fernandez et al., 2023; Lebel et al., 2012; Spagnolo et al.,
2024; Zhan et al., 2010). These comparisons typically highlight differences between simple
and advanced acquisitions, with greater discrepancies arising from larger differences in
acquisition protocols. While these studies primarily demonstrate that simple acquisitions often
yield less accurate results than advanced scans with multiple shells and a high angular
resolution, they leave open the important question of whether simple scans can produce
metrics that are sufficiently reliable for research use.

Following image acquisition, the choice of the orientation distribution function (ODF)
reconstruction algorithm has been shown to impact the resulting WM microstructural
properties and bundle segmentations (Daducci et al., 2014; Sydnor et al., 2018; Tournier et
al., 2012; Xie et al., 2015). In a study using single-shell scans, it has been shown that different
methods for reconstructing the ODF affect the characteristics of reconstructed WM bundles,
such as their completeness and the presence of false positives (Wilkins et al., 2015). However,
as the study included only one scan per subject, it was impossible to evaluate the impact of
the ODF reconstruction method on the test-retest reliability of the reconstructed tracts.

Finally, it remains unclear whether single-shell scans with low angular resolution are suitable
for establishing robust links between brain structure and behavior, as most studies
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investigating such associations rely on high-quality, densely sampled diffusion data (Dhamala
etal., 2021; Lo et al., 2025; Ooi et al., 2022; Yeung et al., 2023). Evidence from microstructural
analyses suggests that simpler acquisitions may compromise sensitivity to meaningful effects.
For example, Aja-Fernandez et al. (2023), found that decreasing diffusion directions from 61
to 21 altered diffusion tensor imaging (DTI) metrics and hindered the detection of group
differences between episodic and chronic migraine patients in a sample of 100 migraine
patients (Aja-Fernandez et al., 2023). Assessing brain-behavior associations in large sample
sizes using WM bundle features extracted from such simple scans is therefore critical to
determine whether such data can support studying individual differences.

Here, we investigated whether single-shell diffusion MRI scans with limited angular resolution
could reliably segment person-specific WM bundles and support analyses of brain-behavior
relationships. We also examined whether different ODF reconstruction methods
systematically affected the test-retest reliability, overlap with advanced atlas bundles, and
predictive performance. To address these questions, we used data from the Philadelphia
Neurodevelopmental Cohort (PNC, (Satterthwaite et al., 2014)), a large-scale research
dataset where each 64-direction dMRI scan was acquired as two independent 32-direction
runs per subject, which are similar to scans acquired by some healthcare systems and many
legacy research datasets. As described below, our results showed promising test-retest
reliability for the majority of reconstructed WM bundles, high correspondence with atlas
bundles derived from advanced acquisitions, and stable accuracy when predicting cognition
from features of the reconstructed bundles, warranting the use of legacy research data or
healthcare system images for research.
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2. Materials and Methods

2.1 Participants

This study utilized data from the Philadelphia Neurodevelopmental Cohort (PNC)
(Satterthwaite et al., 2014), a community-based sample of children, adolescents, and young
adults aged 8-21 from the greater Philadelphia area, designed to investigate brain
development. The cohort includes psychiatric and cognitive phenotyping for 9,428
participants, with a subsample of 1,445 individuals who underwent multimodal neuroimaging.
For our analysis, we used each participant's structural T1-weighted (T1w) scan, DWI data,
and scores from the Penn Computerized Neurocognitive Battery (Gur et al., 2012), which
assesses a range of cognitive domains. All participants over the age of 18 provided written
informed consent prior to participation. For individuals under 18, informed assent was obtained
along with written parental consent, and all participants received monetary compensation. The
study was approved by the Institutional Review Boards of the University of Pennsylvania and
the Children’s Hospital of Philadelphia.

2.2 Neuroimaging Acquisition

All MRI scans were acquired on the same 3T Siemens Tim Trio scanner (software version
VB17) with a 32-channel head coil at the Hospital of the University of Pennsylvania
(Satterthwaite et al., 2014).

The T1-weighted structural images were acquired using a magnetization-prepared rapid
acquisition gradient-echo (MPRAGE) sequence with the following set of parameters:
Repetition time (TR) = 1,810 ms, echo time (TE) = 3.51 ms, inversion time = 1,100 ms, flip
angle = 9°, field of view (FOV) = 180%240 mm, matrix = 192x256, number of slices = 160, and
the voxel resolution = 0.94x0.94x1 mm.

Diffusion scans were acquired using a distortion-minimizing twice-refocused spin-echo
(TRSE) single-shot echo-planar imaging (EPI) sequence with the following set of parameters:
TR = 8100ms, TE = 82 ms, FOV = 240x240 mm, matrix = 128x128, number of slices = 70,
slice thickness/gap = 2/0 mm, flip angle = 90/180/180, and voxel resolution =
1.875x1.875%x2mm. The total DWI acquisition protocol included 64 diffusion-weighted volumes
with a b-value of 1000 s/mm? along with 7 non-diffusion-weighted (b=0 s/mm?) volumes. To
reduce the scan time for study participants, the acquisition was split into two separate scans,
each with 32 diffusion encoding directions independently sampling the sphere that were
acquired within the same hour. To be combined into a single 64-direction scan, the gradient
schemes differed between the two 32-direction scans (exact b-vectors for each scan can be
found in (Satterthwaite et al., 2014)). The first scan had 3 b=0 images, and the second had 4
b=0 images. Here, we did not combine the two scans into a single 64-direction scan. Instead,
we considered them as independent, clinically feasible acquisitions, enabling an assessment
of test-retest reliability.

2.3 Sample Construction

The complete sample construction procedure is depicted in Figure 1. We started with a total
of n = 1,397 subjects, which had both DWI scans and the structural T1w image available. One


https://doi.org/10.1101/2025.09.02.673635

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.02.673635; this version posted September 7, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

subject was excluded due to unsuccessful processing, and 12 subjects were excluded due to
deviation from the acquisition protocol (e.g., varied repetition time or voxel size). Missing
fieldmaps were not considered a disqualifying acquisition variant because fieldmaps were not
leveraged during the preprocessing of the data to better align with a typical clinical DWI
acquisition protocol. Of the resulting subjects, 163 were excluded based on the quality control
(QC) performed in (Roalf et al., 2016). This led to a total of n = 1,221 subjects that were
included in the reliability analysis of  reconstructed WM bundles.

For the prediction analysis, 6 out of 60 WM bundles were excluded because of low bundle
reconstruction success rates (see below). The prediction analysis included subjects for which
all 54 resulting WM bundles were reconstructed for both DWI scans for all three ODF
reconstruction methods, leading to an exclusion of 125 subjects. Further, 38 subjects were
excluded based on missing covariates, such as cognitive assessments required for prediction.
The final number of subjects included in the main prediction analysis was n = 1,058.

Subjects with complete dMRI
and structural imaging data
n = 1397

Error during
processing
n=1

Subjects that successfully
completed preprocessing
and reconstruction

n = 1396

Exclude subjects with
acquisition variants
n=12
Subjects with
standard acquisitions

n=1384

Exclude subjects that failed QC
based on Roalf et al., 2016
n=163

Subjects included in

reliability analysis T I R R T TR ey ooy
n=1221 i Exclude six bundles with low reconstruction |

i fractions from the prediction analysis |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, [

Exclude subjects that do not have all

.| 54 WM bundles reconstructed in both

runs and all reconstruction methods
n=125

Subjects with a complete set of
features for both runs
n = 1096

Exclude subjects with missing
confounds or cognitive assessments
n=238

Subjects included in
prediction analysis
n = 1058

Figure 1: Subject inclusion flowchart illustrating the derivation of the final sample sizes for the reliability and
prediction analysis.
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2.4 Data Processing and Bundle Reconstruction

Figure 2 illustrates the data processing workflow. The raw diffusion data were minimally pre-
processed before undergoing three different methods for ODF reconstruction applicable to
single-shell data with low angular resolution, and subsequent WM bundle tractography based
on the ODFs.

Figure 2: Schematic describing the DWI processing pipeline. After preprocessing the raw DWI data, orientation
distribution functions (ODF) were reconstructed using three different methods suitable for single-shell data.
Subsequently, 60 known WM bundles were extracted based on the ODFs using DS/ Studio AutoTrack. The
resulting bundles were then warped to MNI space and transformed from streamlines to a 3D binary voxel-wise
mask for further analysis. Exemplary ODFs were derived from the same WM voxel across methods. The illustrated
exemplary WM bundle is the left arcuate fasciculus. The streamline and bundle visualizations were created using
MI-Brain (Rheault et al., 2016).

2.4.1 Preprocessing

Both DWI scans and the T1w scan were pre-processed using QS/Prep 0.21.4 (Cieslak et al.,
2021). Some of the text in the following section is boilerplate text that was automatically
generated in QSIPrep, released under the CCO license for reuse in manuscripts.

2.4.1.1 Anatomical Preprocessing

The T1w image was corrected for intensity non-uniformity (INU) using N4BiasFieldCorrection
(Tustison et al., 2010), ANTs 2.4.3), and used as an anatomical reference throughout the
workflow. The anatomical reference image was reoriented into AC-PC alignment via a 6-DOF
transform extracted from a full Affine registration to the MNI152NLin2009cAsym template. A
full nonlinear registration to the template from the AC-PC space was estimated via symmetric
nonlinear registration (SyN) using antsRegistration. Brain extraction was performed on the
T1w image using SynthStrip (Hoopes et al., 2022), and automated segmentation was
performed using SynthSeg (Billot, Greve, et al., 2023; Billot, Magdamo, et al., 2023) from
FreeSurfer version 7.3.1.

2.4.1.2 DWI Preprocessing

The two DWI scans per subject were preprocessed completely independently: Any images
with a b-value less than 100 s/mm? were treated as a b=0 image. MP-PCA denoising, as
implemented in MRIrix3's dwidenoise (Veraart et al., 2016), was applied with a 5-voxel
window. After MP-PCA, the mean intensity of the DWI series was adjusted so that all the mean
intensities of the b=0 images matched across each separate DWI scanning sequence. B1 field
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inhomogeneity was corrected using dwibiascorrect from MRIrix3 with the N4 algorithm
(Tustison et al., 2010) after corrected images were resampled.

FSL’s (version 6.0.7.9) eddy was used for head motion correction and Eddy current correction
(Andersson & Sotiropoulos, 2016). Eddy was configured with a g-space smoothing factor of
10, a total of 5 iterations, and 1000 voxels used to estimate hyperparameters. A linear first-
level model and a linear second-level model were used to characterize Eddy current-related
spatial distortion. g-space coordinates were forcefully assigned to shells. Field offset was
attempted to be separated from subject movement. Shells were aligned post-eddy. Eddy’s
outlier replacement was run (Andersson et al., 2016). Data were grouped by slice, only
including values from slices determined to contain at least 250 intracerebral voxels. Groups
deviating by more than 4 standard deviations from the prediction had their data replaced with
imputed values. Final interpolation was performed using the jac method.

The framewise displacement (FD) was calculated based on the preprocessed DWI using the
implementation in Nipype (following the definitions by (Power et al., 2014)). The DWI time
series were reoriented to AC-PC, generating a preprocessed DWI run in AC-PC space with
1.7mm isotropic voxels.

While fieldmaps are available in the PNC dataset, they were not used for distortion correction
to better emulate clinical acquisition conditions. In routine clinical settings, diffusion-weighted
imaging is often performed without acquiring fieldmaps, and distortion correction based on
fieldmaps would therefore not be possible for these types of scans.

2.4.2 ODF and Bundle Reconstruction

Following preprocessing of the structural and diffusion-weighted data, we reconstructed
ODFs, which serve as the basis for tractography and subsequent WM bundle reconstruction.
We compared three commonly used ODF reconstruction methods suitable for single-shell, low
angular resolution data:

- Generalized g-Sampling Imaging (GQl) (F.-C. Yeh et al., 2010) is a model-free
approach that estimates spin distribution functions (SDFs) directly from the diffusion
MRI signals using a Fourier transform relation. This enables direct voxel-wise
comparisons and can be applied to both grid and shell sampling schemes.

- Constrained spherical deconvolution (CSD) (Tournier et al., 2007) estimates a fiber
ODF (fODF) by deconvolving the measured signal with a response function - an
estimate of the signal expected from a single-fiber WM population. However, because
CSD models only the WM signal, it may produce distorted FODs in voxels affected by
partial voluming with gray matter (GM) or cerebrospinal fluid (CSF).

- Single-shell three-tissue CSD (SS3T) (Dhollander & Connelly, 2016) builds on the CSD
algorithm by estimating separate WM, GM, and CSF signal components. While multi-
tissue CSD traditionally requires multi-shell data (Jeurissen et al., 2014), SS3T
achieves similar separation using only single-shell (+b=0) data via a specialized
optimization algorithm.

We also used DS/ Studio to generate maps of quantitative anisotropy (QA, (F.-C. Yeh et al.,
2010)), isotropic diffusion (ISO), and DTl-derived scalars. Using the reconstructed ODFs, we
attempted to reconstruct 60 known WM bundles (Supplementary Table S1) with the
AutoTrack algorithm implemented in DS/ Studio. AutoTrack is based on a tractography atlas
(F.-C. Yeh et al., 2018) that uses a QA+ISO-based non-linear registration to each subject’s
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native diffusion space. For each WM bundle, seed points for deterministic tractography are
placed within the corresponding atlas-defined bundle region in the subject space. Generated
streamlines are retained only if they are sufficiently similar to an atlas streamline based on the
Hausdorff distance. For each successfully reconstructed bundle, shape metrics (F.-C. Yeh,
2020) as well as diffusion tensor imaging (DTI) metrics were extracted from the resulting
segmentation.

All three ODF reconstruction methods and bundle reconstruction were performed using
QSIRecon 0.23.2. For GQI, we used the DS/ Studio Hou version, with a mean diffusion
distance ratio of 1.25. CSD reconstruction was run using MRtrix3 (Tournier et al., 2019) based
on single-fiber response functions estimated using the tournier algorithm (Tournier et al.,
2013). For SS3T, multi-tissue fiber response functions were estimated using the MRItrix3
dhollander algorithm (Dhollander et al., 2019), and SS3T-CSD was performed using
MRtrix3Tissue (https://3Tissue.github.io), a fork of MRtrix3 (Tournier et al., 2019). Both CSD
and SS3T FODs were intensity-normalized using mtnormalize (Raffelt et al., 2017). AutoTrack
parameters were as follows: The distance tolerance was set to 22, 26, or 30 mm (evaluating
all three and selecting one per bundle), the track-to-voxel ratio to 2.0, and the yield rate to
1.0e-06. While ODF maps generated with GQI are the standard input to the AutoTrack
algorithm, the ODF maps generated using CSD and SS3T had to be converted using the
mif2fib conversion implemented in QS/Recon to be used as input to AutoTrack.

Finally, all the reconstructed bundles were warped from the subject space to the
MNI152NLin2009cAsym space. This was implemented by leveraging the transformation
generated by QS/Prep to warp between the subject AC-PC and MNI space during
preprocessing and adapting it such that it can be applied to the streamlines in MRtrix3. A
binary mask image was created where voxels traversed by at least one streamline were set
to one. Standardizing bundles in MNI space allowed us to assess the spatial alignment across
individuals and coverage provided by the bundles.

2.4 Reliability Analysis

The reliability analysis was conducted in several steps, each described in detail below.

2.5.1 Bundle Reconstruction Success Rate

First, we evaluated the reconstruction success rate for each bundle across all participants and
DWI sessions. It was calculated as the number of successful reconstructions divided by the
total number of scans collected over all subjects. We consider a reconstruction successful if
an output file was generated with reconstructed streamlines for the bundle of interest. If no
streamlines were found that were sufficiently similar to the atlas bundle of interest in terms of
Hausdorff distance, the AutoTrack algorithm did not return an output for that respective bundle
and we consider the reconstruction of that bundle for this scan to be unsuccessful. This step
does not yet consider the quality of the reconstruction; it only describes whether a given bundle
could be reconstructed at all.

2.5.2 Dice Scores

In the second step of the reliability analysis, the Dice overlap between any two reconstructions
of the same bundle was calculated. The Dice overlap is a common metric in segmentation
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tasks, probing the overlap between the ground truth (GT) and generated segmentation. It is
defined as in Eq. 1, where X and Y are two bundle masks from different scans.

2 - |1XnY| Eq. 1

Dice =
|X] + | Y]

It can take values between 0, no overlap, and 1, perfect overlap. Here, we evaluated whether
the Dice score of a given bundle is higher for two scans of the same subject (i.e., within-subject
similarity) compared to any two scans of different subjects (i.e., across-subject similarity). For
each bundle and ODF reconstruction method, we computed 1221 within-subject Dice scores
(one per subject) and 2,979,240 between-subject Dice scores. We arrived at the number of
between-subject Dice scores as described in Eq. 2, where n is the number of subjects.

# between subject Dice scores = 2n - (n—1) Eq. 2

This corresponds to all four possible pairings of scans across two different individuals - that
is, both runs from each subject were compared with both runs from the other subject. If a
bundle was not reconstructed in one or both of the scans being compared, the corresponding
Dice score was set to NaN. This differentiates missing reconstructions from cases where the
bundle was reconstructed in both scans but showed no spatial overlap (Dice = 0).

2.5.3 Discriminability

Discriminability is a statistical measure of test-retest reliability that quantifies how well
repeated measurements from the same subject can be distinguished from measurements
across different subjects (Bridgeford et al., 2021; Wang et al., 2024). It is defined as the
proportion of times that the within-subject distance is smaller than the between-subject
distance. A discriminability score of 1 is the highest possible score and indicates that for every
subject, the distance between their two images is smaller than the distance between that
subject’s images and any image from a different subject.

In our analysis, we defined the distance between two bundle reconstructions as 1 - Dice.
Using these distances, we computed discriminability separately for each of the 60 white matter
bundles using the hyppo Python package (Panda et al., 2024). Further, we compared the
discriminability values for the same bundle between different ODF reconstruction methods. To
assess whether discriminability differed significantly between the three ODF reconstruction
methods per bundle, we used permutation tests implemented in the hyppo Python package
(Panda et al., 2024). To assess whether discriminability differed significantly between the
overall distributions including all bundles, we used the Wilcoxon signed-rank test (Wilcoxon,
1992) and corrected for multiple comparisons using the Benjamini-Hochberg procedure
(Benjamini & Hochberg, 1995). For each bundle, only subjects for whom the bundle was
successfully reconstructed in both scans across all three methods were included in the
analysis.

2.5.4 Comparison to Atlas Bundles

While discriminability indicates whether a bundle reconstruction is more similar within a subject
than between subjects, it does not assess the biological plausibility of the reconstruction. To
this end, we implemented an external validation by comparing the reconstructed bundles to
the corresponding atlas bundles, which were derived from advanced diffusion data and
curated by a team of neuroanatomists (F.-C. Yeh et al., 2018). To do this, the atlas bundles
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were masked and warped from the MNI152NLin2009bAsym to the MNI152NLin2009cAsym
space using a non-linear transform with antsApplyTransforms (Avants et al., 2009) to be in
the same space as the reconstructed bundles. For each bundle reconstruction, we calculated
sensitivity and specificity by comparing the reconstructed bundle to the corresponding atlas
bundle. Here, a voxel was considered a true positive if it was present in both the atlas and our
reconstruction, a false negative if it was in the atlas but not in the reconstruction, a true
negative if it was in neither, and a false positive if it was not part of the atlas bundle but present
in the reconstruction. To avoid inflated specificity values due to the large background volume
compared to the bundle volume, we limited the calculation to voxels that belonged to the union
of the atlas bundle and all reconstructed versions of the bundle.

Additionally, probabilistic population maps were created for each bundle by adding up all
masks of the reconstructed bundle and dividing by the total number of reconstructions. These
maps, with values between [0, 1], reflect the frequency with which each voxel was assigned
to the bundle. A voxel with a value of zero indicates it was never part of the bundle, while a
value of one means it was included in every reconstruction. Visualizing these maps overlaid
on the atlas bundles provided an intuitive assessment of anatomic coverage and
reconstruction completeness for each ODF method.

2.5.5 Feature Reliability

While the reliability of bundle shape, location, and extent is crucial for subsequent analyses,
the bundles themselves are typically not used directly in brain-behavior studies. Instead, scalar
features extracted from these bundles, such as mean diffusivity (MD), fractional anisotropy
(FA), and bundle volume, serve as inputs for predictive modeling. To link bundle reliability and
prediction performance, it is therefore important to also assess feature reliability. To this end,
we calculated the intraclass correlation coefficient (ICC) for each bundle and ODF
reconstruction method for the three features considered in our prediction analysis. For every
feature, such as a particular bundle's volume, we obtained two values per ODF reconstruction
method, one from each of the two diffusion scans. Although these values were treated
separately during prediction (see Section 2.6), we used them jointly to estimate test-retest
reliability. Specifically, we computed ICC values for bundle volume, mean FA, and mean MD
for all 60 bundles and across all three ODF reconstruction methods. The ICC(1,1), as defined
by Shrout and Fleiss (Shrout & Fleiss, 1979), was calculated using the pingouin package
(Vallat, 2018). ICC values generally range from 0 to 1 and can be categorized into four levels
of test-retest reliability: excellent (ICC > 0.75), good (ICC = 0.60 to 0.74), fair (ICC = 0.40 to
0.59), and poor (ICC < 0.40) (Fleiss et al., 2003). It should be noted that the ICC was calculated
for all 60 WM bundles for completeness. The final prediction analysis, however, only included
54 out of the 60 bundles (see Section 2.6.1).

To test for significant differences between ICC distributions of different ODF reconstruction
methods, we used the Wilcoxon signed-rank test (Wilcoxon, 1992) and corrected for multiple
comparisons using the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995).
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2.6 Prediction Analysis

After assessing the reliability and completeness of the reconstructed bundles, we conducted
a second main analysis to evaluate whether features derived from these bundles can predict
inter-individual differences in cognition.

2.6.1 Prediction Framework

To assess the ability of features extracted from the reconstructed bundles to predict inter-
individual differences, we extracted features from 54 WM bundles for use in the prediction
task. Six bundles - optic radiation (L/R), corticobulbar tract (L/R), and dentatorubrothalamic
tract (left-to-right/right-to-left) - were excluded due to low reconstruction success rates and
consequently frequent NaN values in the extracted features. The features considered for each
bundle were the bundle volume (mm?®), mean FA, and mean MD. This resulted in four different
feature sets: (1) all three features for all bundles (162 features total), and (2)-(4) each
individual feature (volume, FA, or MD) across all bundles (54 features each).

As the prediction target, we used a complex reasoning accuracy score from the Penn
Computerized Neurocognitive Battery (PCNB, (Gur et al., 2010, 2012; Moore et al., 2015)).
The PCNB includes 14 cognitive tests adapted from functional neuroimaging paradigms to
assess various cognitive domains. In the main analysis, we focused on a summary score for
complex reasoning (verbal reasoning, nonverbal reasoning, and spatial processing). In a
sensitivity analysis, we considered two additional targets from the PCNB, to ensure findings
can be replicated across targets (see Section 2.6.4).

We employed a linear ridge regression model for prediction. A nested 5-fold continuous
stratified cross-validation (CV) was used, with 100 repetitions to estimate the distribution of
prediction performance. Using a stratified splitting approach ensures that the distributions of
the target variable are similar in the training and test sets. The regularization parameter a was
tuned within the inner folds of the nested CV.

To account for potential confounding variables, we regressed out participant age (in months),
mean framewise displacement (FD) (as output by QS/Prep), and sex from the features in a
CV-consistent manner. Features were standardized (z-scored) before model training.

For each of the four feature sets, we conducted predictions separately for each of the three
ODF reconstruction methods (GQI, CSD, SS3T) and both runs. This yielded a total of 24
distinct prediction pipelines in the main analysis (4 feature sets x 3 methods x 2 runs). The
prediction pipeline, including confound removal, feature preprocessing, and CV splits, was
implemented using Julearn (Hamdan et al., 2024), which is based on scikit-learn (Pedregosa
etal., 2011).

2.6.2 Prediction Accuracy

Prediction accuracy was assessed by calculating the Pearson correlation coefficient (r)
between the observed and predicted cognition scores on the test set. We derived a distribution
of 500 correlation values for each framework, corresponding to 100 repetitions of the 5-fold
CV, resulting in 500 test sets from which correlations were calculated. In the main analysis,
which focused on predicting complex reasoning, we tested for significant differences in
prediction accuracy between the three ODF reconstruction methods under otherwise identical


https://doi.org/10.1101/2025.09.02.673635

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.02.673635; this version posted September 7, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

conditions, i.e., same scan and same feature group (e.g., all features (volume, MD and FA)
from the CSD reconstruction of the first scan vs. all features from the SS3T reconstruction of
the first scan). To assess these differences, we applied a specialized t-test designed for
comparing machine learning algorithms, which accounts for variability not only from the choice
of the test set but also from the training set (Nadeau & Bengio, 2003). The implementation of
this t-test was provided in Julearn (Hamdan et al., 2024). The resulting p-values were further
corrected for multiple comparisons using the Benjamini-Hochberg procedure (Benjamini &
Hochberg, 1995). For the main analysis, we further evaluated the mean squared error (MSE),
as a proxy for prediction accuracy.

2.6.3 Prediction Similarity

For each combination of feature group and ODF reconstruction method, we compared
predictions made from features of the first run and the second run. Ideally, predictions should
be very similar across runs. To assess this similarity, we calculated the Pearson correlation
between the predicted scores from the first run and those from the second run across all 500
test sets. This procedure provided a distribution of Pearson correlations, which we then
compared between different ODF reconstruction methods and feature groups. To ensure a
valid comparison, we used the exact same cross-validation splits for both runs, so that
predictions from the first and second scan were generated for the same individuals in each
fold. This was necessary to avoid correlating predictions from different subject groups, which
would not reflect the stability of prediction across scans for the same individuals.

2.6.4 Sensitivity Analysis

To investigate whether our results can be replicated for other prediction frameworks, we
further investigated the prediction of two additional targets and one additional confound. For
the two targets, we considered the summary score for executive functioning (abstraction and
mental flexibility, attention, and working memory) and an overall accuracy score over all tests
included in the PNCB. As an additional confound, we added total brain volume (TBV) to the
original set of confounds (sex, age, mean FD).
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3. Results

We evaluated the potential of WM bundles reconstructed from single-shell DWI data with a
limited angular resolution of 32 directions through two main analyses. First, we assessed the
reliability of the reconstructed bundles. Second, we evaluated the ability of features extracted
from the bundles to predict individual differences in cognitive performance. For all analyses,
we compared three different methods to reconstruct ODFs — GQI, SS3T, and CSD.

3.1 Reliability Analysis

To assess the reliability of reconstructed bundles, we evaluated the fraction of scans for which
each bundle could be successfully reconstructed, compared within- and between-subject Dice
scores, calculated the discriminability scores for all bundles, compared the bundle
reconstructions to the atlas bundles they were based on and calculated the ICC for features
extracted from the reconstructed bundles.

3.1.1 Nearly all WM bundles can be reconstructed from single-shell 32-
direction DWI scans

Before assessing the reliability of reconstructed bundles across two scans, we first evaluated
an even more basic measure: how often a given WM bundle could be reconstructed
considering all scans from all subjects. To do this, for each ODF reconstruction method, we
calculated the fraction of scans for which a given bundle was produced. For the majority of
bundles, reconstruction was successful in nearly all scans across all methods, resulting in a
reconstruction success rate close to 1. The mean reconstruction success rates across all
bundles were 0.977 for GQI, 0.995 for CSD, and 0.996 for SS3T. There was no numeric
difference between methods for most bundles (Supplementary Fig. S1). However, for 6 out
of 60 bundles, reconstruction success rates were lower for at least one of the three
reconstruction methods. These bundles included the left and right optic radiation bundle, the
left and right corticobulbar tract, and the dentatorubrothalamic tracts (DRTT) (left-to-right and
right-to-left). For these six bundles, the lowest success rates were observed for GQl-based
ODFs, whereas using CSD- and SS3T-based ODFs consistently yielded higher success rates.
These results establish that most major WM bundles can be reconstructed from single-shell
acquisitions even with limited angular resolution.

3.1.2 Reconstructed bundles are reliable across all ODF reconstruction
methods

To assess the reliability of the reconstructed bundles, we calculated the Dice scores, reflecting
the overlap between two reconstructions of the same bundle (where a score of 0 indicates no
overlap and a score of 1 indicates perfect overlap). A bundle with high reconstruction reliability
is expected to have a higher Dice score between two scans of the same subject (i.e., within-
subject similarity), compared to any two scans of different subjects (i.e., across-subject
similarity). We repeated this comparison of within- and between-subject similarity across all
bundles and ODF reconstruction methods. Figure 3A shows an illustrative example of the left
corticospinal tract reconstructed using SS3T-derived ODFs. Across all 60 bundles and all
three reconstruction methods, the median within-subject Dice scores were consistently higher
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than the median between-subject Dice scores (Figure 3B; see Supplementary Fig. S2 for
full distributions from all bundles). Nonetheless, there was some variation among methods,
with CSD and SS3T having numerically higher Dice scores than GQI. The higher average
within-subject Dice score compared to the average between-subject Dice score indicates that
bundle reconstructions were reliable and distinguishable across subjects.

Figure 3: All 60 WM bundles could be reliably reconstructed for all three reconstruction methods. A) Example of
reconstructed left corticospinal tracts using SS3T-derived ODFs illustrating the higher alignment and corresponding
Dice score within subject (first row) compared to between subject (second row). The first row shows the bundle
reconstruction for two scans of the same subject, first separately (left and middle) and then overlapping (right). The
second row shows an example of scans from two different subjects. Streamline visualizations were created using
Mi-Brain (Rheault et al., 2016). B) Median Dice scores within-subject vs. between-subject for each of the three
ODF reconstruction methods. Each box plot contains one datapoint per bundle. Within methods, datapoints
belonging to the same WM bundle are connected by a dashed line.

3.1.3 Bundles from SS3T have the highest discriminability

To summarize the reliability of the reconstructed WM bundles in one descriptive metric that
can be easily compared between reconstruction methods, we calculated the discriminability
score for each bundle and each reconstruction method based on the Dice scores.
Discriminability is a recently developed measure of test-retest reliability that quantifies how
well within-subject observations can be distinguished from between-subject observations. It
does so by quantifying the proportion of times that the within-subject distance is smaller than
the between-subject distance. All methods had a high median discriminability value across
bundles (> 0.94), with SS3T significantly outperforming GQI and CSD (Figure 4A). Two
outliers were consistently observed across all three methods: the left-to-right and right-to-left
DRTTs had the lowest discriminability scores. Notably, these bundles also had the lowest
reconstruction success rates. Thus, these bundles were not only challenging to reconstruct
but also demonstrated low reliability when reconstructions were available for both scans of a
subject.

As a next step, we statistically compared the discriminability of the three ODF reconstruction
methods for each bundle. We found that SS3T was the top-performing method (or tied for top-
performing) for 49/60 WM tracts. For GQl, this was true for 39/60 bundles. In contrast, CSD
was top (or tied for top) for only 7/60 WM bundles (Figure 4B; exact p-values can be found in
Supplementary Table S1). These results suggest that SS3T provides the most discriminable
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bundle reconstructions, offering the clearest distinction between bundles within vs. across
subjects.

Figure 4: The reconstructed WM bundles exhibit high median discriminability with the highest values for bundles
reconstructed from SS3T ODFs. A) Plot of the discriminability values for all WM bundles and ODF reconstruction
methods. Each data point represents the discriminability value for a specific WM bundle. Corresponding WM
bundles are connected with dashed lines across methods. On average, SS3T shows the highest discriminability
across reconstruction methods. Significant differences between discriminability distributions (as determined using
a Wilcoxon signed rank test and the Benjamini-Hochberg procedure for correction) are marked with an asterisk. B)
Table showing the exact discriminability values for each of the WM bundles for all three methods, indicating
significant differences between methods. A single-colored cell symbolizes that the corresponding method led to
the best result and was significantly better than the other methods. Two or three colored cells per bundle show that
there was no significant difference between the best two or three methods. Significant differences are determined
using permutation tests implemented in hyppo (Panda et al., 2020).

3.1.4 Evidence for sensitivity-specificity trade-offs in bundle
reconstruction methods

While discriminability indicates whether a bundle is more similar within a subject than between
subjects, it does not assess the biological plausibility of the reconstruction. A bundle
reconstruction may be highly reliable yet fail to capture all its components, consistently
reconstructing only the core of the bundle while omitting peripheral branches. Conversely, a
reconstructed bundle could be over-inclusive and consistently include parts of the brain that
are not part of the bundle. To evaluate this possibility, we compared the reconstructed bundles
to their corresponding atlas bundles (F.-C. Yeh et al., 2018). As described below, we evaluated
bundles visually and also calculated sensitivity and specificity values.

For the majority of WM bundles, we observed the following pattern: GQI produced bundles
with the highest sensitivity but the lowest specificity, bundles reconstructed using CSD had
the highest specificity and lowest sensitivity, whereas SS3T led to a trade-off between
sensitivity and specificity (Supplementary Fig. S3, Table S$2). We illustrate this pattern in
detail for the left cingulum bundle and the left corticospinal tract.

For the left cingulum bundle, fibers extending to the frontal cortex were missing in all GQI
reconstructions, while CSD and SS3T were able to recover these connections more effectively
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(Figure 5A, left). When considering sensitivity and specificity values for the different
reconstruction methods, GQI had the lowest sensitivity and the highest specificity — it tended
to reconstruct only the core of the bundle, producing few false positives. In contrast, CSD
achieved the highest sensitivity but also had the lowest specificity. As such, CSD produced
complete reconstructions that often extended over the defined atlas bundles. Finally, SS3T
effectively balanced sensitivity and specificity, leading to a more complete reconstruction than
GQI with fewer nonspecific connections than CSD (Figure 5A, right).

We observed a similar pattern for the left corticospinal tract (Figure 5B). As for the cingulum
bundle, GQI only recovered the core of the bundle, whereas CSD and SS3T reconstructed
more of the fibers that branched towards the cortex (Figure 5B, left). Again, we found similar
sensitivity and specificity patterns for each method as seen for the cingulum bundle (Figure
5B, right).

Taken in the context of our prior findings on discriminability, these results emphasize that GQl
has relatively high specificity but low sensitivity — it produces discriminable reconstructions by
only capturing the core of the bundles. In contrast, CSD is more sensitive but less specific: it
provides greater coverage of the atlas bundles but at the cost of reduced discriminability.
Finally, SS3T appears to provide a good balance between sensitivity and specificity, providing
discriminable and relatively complete reconstructions for most WM bundles.

Figure 5: Different ODF reconstruction methods exhibit distinct sensitivity vs. specificity profiles of reconstructed
WM bundles when compared to the atlas tracts used for bundle reconstruction. A) Left: Example images for the
left Cingulum from the lateral and medial views of the left hemisphere. For each reconstruction method, the atlas
tract (gray) is overlaid by the probabilistic population map (blues) derived by averaging all reconstructions of the
given bundle. Darker colors indicate that the given part of the bundle was reconstructed in a higher fraction of
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subjects. These plots were created using Mayavi (Ramachandran & Varoquaux, 2011). Right: Sensitivity and
specificity of each individual reconstructed left Cingulum bundle compared to the corresponding atlas tract (small
points). The large points show the median sensitivity and specificity across all scans per method. B) Left: Sensitivity
and specificity of each individual reconstructed left Corticospinal Tract compared to the corresponding atlas tract
(small points). The large points show the median sensitivity and specificity across all scans per method. Right:
Example images for the left Corticospinal tract from the lateral and posterior view of the left hemisphere.

3.1.5 Features from bundles reconstructed using SS3T are most reliable

The prior steps of the reliability analysis focused on the bundle shape, location, and extent.
However, the reconstructed bundles are typically not directly used as input for brain-behavior
studies predicting inter-individual differences. Instead, scalar features extracted from the
bundles are more commonly used for prediction. Our next step was therefore to assess the
reliability of scalar features from WM bundles using intraclass correlation (ICC). Across
bundles, ICC values ranged from poor to good depending on the feature and reconstruction
method. On average, ICCs were in the fair range (Figure 6, exact values per bundle in
Supplementary Table S3). Further, for all three feature types, SS3T consistently resulted in
the significantly highest ICCs across bundles (Figure 6). While differences between GQIl and
CSD were non-significant for FA (Figure 6B) and MD (Figure 6C), GQI yielded significantly
higher ICCs than CSD for bundle volume (Figure 6A). The feature type / reconstruction
method combination leading to the highest average ICCs across bundles was bundle volume
/ SS3T. These results highlight that not only the reconstruction method but also the feature
type influences reliability.
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Figure 6: Scalar bundle features (total volume, FA, MD) are most reliable in bundles reconstructed using the SS3T
method. ICC was evaluated for A) bundle volume, B) mean FA across all voxels belonging to the reconstructed
bundle, and C) mean MD across all voxels belonging to the reconstructed bundle. Each data point represents the
ICC value for a specific WM bundle. Corresponding WM bundles are connected with dashed lines across methods.
Significant differences after correction for multiple comparisons are marked with an asterisk.

3.2 Prediction Analysis

As a next step, we aimed to assess how well features extracted from single-shell scans with
limited angular resolution are suited for predictive analyses that link brain and behavior.
Specifically, we evaluated how well volumetric and microstructural features from WM bundles
could predict individual differences in complex reasoning performance. As described below,
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we compared the prediction accuracy and prediction similarity between the three ODF
reconstruction methods for four different feature groups.

3.2.1 GQIl and SS3T outperform CSD for predicting complex reasoning

We considered a total of 24 prediction frameworks (4 feature groups x 3 reconstruction
methods x 2 scans) for predicting complex reasoning. Across configurations, the median test
Pearson correlation between the ground truth and predicted cognition scores, reflecting the
prediction accuracy, ranged from r=0.15 to r= 0.36 (Figure 7). When comparing the different
ODF reconstruction methods, features from bundles based on GQI and SS3T reconstruction
outperformed features from bundles based on CSD for prediction in 15/16 comparisons.
Although the differences reached statistical significance for 5 out of 16 comparisons, the
overall pattern consistently showed GQI and SS3T outperforming CSD. Notably, there was no
consistent performance difference between SS3T and GQlI (Figure 7). When comparing the
influence of bundle feature types, we found that using all features led to the best prediction of
complex reasoning. When examining bundle features separately, prediction accuracy was
best for volume, followed by FA, and finally MD. This was consistent across both scans and
all three reconstruction methods (Figure 7). These patterns were consistent when considering
the MSE as a proxy for prediction accuracy (Supplementary Fig. S4). Notably, these findings
parallel our reliability results and suggest that methods that more reliably reconstructed
bundles, like SS3T and GQlI, allow for better prediction performance of cognition.

Figure 7: GQI and SS3T outperform CSD in predicting complex reasoning from different groups of bundle features.
Each distribution contains 500 points (100 x 5-fold CV). The left block of prediction accuracies (Pearson r) used
features extracted from bundles reconstructed from run-01 scans, and the right block from run-02 scans. For each
run, four different groups of features were evaluated: volume, mean FA, and mean MD for each of the 54
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considered bundles (162 features), only the bundle volume (54 features), only the mean FA (54 features,) and only
the mean MD (54 features). Significant differences between the different reconstruction methods, within run and
feature groups, are marked with an asterisk. Significance was determined with an adjusted t-test implemented in
Julearn (Hamdan et al., 2023) and corrected for multiple comparisons using the Benjamini-Hochberg procedure.

3.2.2 Predictions remain similar when using features from two different
scans for prediction

To assess how consistent the predictive models were across scans, we compared the
predictions generated from features derived from the first and second scans separately.
Specifically, we used the same model and cross-validation splits to generate predictions from
each scan and then calculated the Pearson correlation between these two sets of predicted
scores. Similar to the findings for prediction accuracy and feature ICC, models using GQI and
SS3T features produced more similar predictions across runs than those using CSD features
(Figure 8). The difference between the methods was strongest when using only bundle
volume as a feature. Overall prediction similarity was highest when considering all features or
only the bundle volumes as features. (Figure 8). These results further emphasize the utility of
SS3T and GQI for brain-behavior prediction analyses and stress the importance of selecting
a reliable reconstruction method.

Figure 8: Predictions of complex reasoning remain similar when using features from two different scans for
prediction, with GQI and SS3T outperforming CSD. Comparison of the prediction similarity between different
reconstruction methods for various groups of features. Prediction similarity was assessed by correlating the
predicted scores obtained from features extracted from run-01 scans with predictions based on run-02 features for
each fold. A higher correlation indicates a higher similarity across scans. Each distribution contains 500 points (100
x 5-fold CV).
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3.2.3 Prediction results are similar across cognitive domains

To test the robustness of our findings, we conducted two sensitivity analyses. First, we
assessed whether prediction results were consistent across different cognitive scores: overall
accuracy and executive functioning. Second, we evaluated the impact of adjusting for total
brain volume (TBV) in our analyses.

When predicting the overall accuracy, median prediction accuracy was in the range r € [0.06,
0.28] (Supplementary Fig. S5A). For executive functioning, correlations were in the range of
r € [0.10, 0.21] (Supplementary Fig. S5B). As for the main analysis, GQI and SS3T
outperformed CSD. Similarly, all features performed better than only volume, only FA, and
only MD for both prediction accuracy (Supplementary Fig. S5) and prediction similarity
(Supplementary Fig. S6). For the similarity of prediction results between two DWI scans, as
in the main analysis, the difference was largest when considering only the bundle volumes as
features (Supplementary Fig. S6). These results confirm that the patterns observed in the
main prediction task generalize to other cognitive scores.

When controlling for TBV when predicting complex reasoning, we observed an overall drop in
prediction accuracies to r € [0.06, 0.18] (Supplementary Fig. S7A). While SS3T and GQI
continued to outperform CSD for prediction accuracy (Supplementary Fig. S7A) and
prediction similarity (Supplementary Fig. S7B), the difference between feature groups
decreased. Combining all three feature types still led to improved performance but with less
difference between different feature types (Supplementary Fig. S7). These results show that
the ranking of reconstruction methods persists when including TBV as a covariate. However,
it also suggests that the predictive power of bundle volume features may be partly driven by
the global effects of TBV.
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4 Discussion

Our findings demonstrate that single-shell DWI scans with lower angular resolution can serve
as a valuable resource for research. While certain white matter bundles posed challenges in
reconstruction, the majority were successfully reconstructed and exhibited high reliability
across repeated scans. By providing precise values for discriminability, sensitivity, specificity,
and ICCs for each bundle and reconstruction method, our results offer researchers benchmark
data to help select reconstruction strategies tailored to their specific research questions.
Importantly, we showed that these reliably reconstructed bundles were not only reproducible
but also informative for brain-behavior analyses predicting cognitive performance. Notably, as
the scans evaluated here are quite similar to those acquired as part of both legacy research
studies and clinical practice at some academic centers (e.g. the Children’s Hospital of
Philadelphia; (Zimmerman et al., 2025), these results underscore the substantial research
potential of single-shell scans with lower angular resolution.

In tractography analysis using dMRI, it is well-established that different processing pipelines
can lead to different outcomes (Brun et al., 2019; Neher et al., 2015; Schilling et al., 2019).
This prior work motivated our evaluation of three ODF reconstruction methods. We included
CSD based on its ubiquity and its compatibility (after file format conversion) with AutoTrack,
which we used for tract segmentation. GQI served as a standard ODF reconstruction method
commonly paired with AutoTrack. Finally, SS3T was included as it has been optimized for
single-shell data. Notably, we did not include diffusion tensor imaging (DTI) (Le Bihan et al.,
2001), as it can only reconstruct one major diffusion direction per voxel and shows poor
tractography performance (Berman et al., 2013; Kamagata et al., 2024; Petersen et al., 2017).
Overall, our findings highlight an advantage of using SS3T for ODF reconstruction on single-
shell data with 32 diffusion directions, as it leads to both complete and reliable bundle
reconstructions that perform well for cognitive prediction. However, depending on the tract of
interest and the goals of the study — e.g., prioritizing coverage or discriminability — alternative
methods such as CSD or GQI may be more appropriate in specific contexts. For example, if
sensitivity is more important than specificity or reliability, CSD should be considered. In
contrast, when wanting to accurately extract microstructural properties from the core of a
bundle while minimizing the impact of false positives on the measurements, GQI might be the
best choice considering its high specificity.

While most prior comparisons of tractography pipelines have focused on dMRI data of different
qualities (Baete et al., 2019; Daducci et al., 2014), one in-depth study evaluated multiple ODF
reconstruction methods on lower angular resolution data with a b-value of 1000 s/mm? (Wilkins
et al., 2015). This study identified CSD and the ball-and-stick model as yielding the best fiber
detection rates (Wilkins et al., 2015). Although SS3T was not available at the time, GQI was
included and showed lower coverage but fewer false positives, aligning with our current
findings. That study, however, used only a single scan per subject and, as such, could not
assess test-retest reliability. In contrast, our results show that while CSD consistently produces
more complete bundles, this does not necessarily translate into greater reproducibility across
repeated scans.

Regardless of the reconstruction method, most bundles could be reliably identified from these
limited scans, as reflected in generally high rates of successful reconstruction. This is in line
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with what would be expected from advanced acquisitions (F.-C. Yeh, 2022). The DRTT was a
notable exception, exhibiting consistently low reconstruction success across methods. The
DRTT is a long tract connecting the dentate nucleus in the cerebellum to the motor cortex via
the red nucleus and thalamus. Prior work suggests that it is difficult to reconstruct due to its
multisynaptic nature and interhemispheric course (Kwon et al., 2011). Its reconstruction is
known to be challenging even in advanced diffusion MRI datasets (Radwan et al., 2022), with
reported reconstruction success rates of 0.625 in the Human Connectome Project dataset
(Van Essen et al., 2013) and complete failure in the MASSIVE dataset (Froeling et al., 2017).
These prior reports underscore that limitations in DRTT reconstruction were not solely
attributable to the lower angular resolution, single-shell data used in our analysis.

Beyond the DRTT, our results indicate that WM bundles can be reconstructed reliably despite
the limits of the acquisition sequence. Mean within-subject Dice scores were consistently
higher than between-subject scores across all bundles and reconstruction methods, though
absolute within-subject values remained moderate (averaging around 0.6). Prior work has
shown that removing two different directions from a single 100-direction scan leads to Dice
scores around 0.87 (Vos et al., 2016), stressing how even minor acquisition differences reduce
reliability. In high-quality diffusion spectrum imaging (DSI) data with 258 directions, median
within-subject Dice scores around 0.80 have been reported across WM bundles
(Radhakrishnan et al., 2023). Here, when considering only the bundles also included in
(Radhakrishnan et al., 2023), median within-subject Dice scores of 0.59 (GQl), 0.65 (CSD),
and 0.65 (SS3T) were observed. This showed that while reliable bundles could be
reconstructed from limited scans, reliability is lower than cutting-edge research scans.

It is worth emphasizing that comparing dice values across the literature can be challenging
and requires nuance. Many prior studies have reported the weighted Dice score (wDice). This
metric weights voxels by their streamline density when assessing overlap, giving more weight
to areas with dense fibers, such as the core of the bundle, and less weight to spurious
streamlines that are far from the core of the fascicle, e.g., branching out at the cortex
(Cousineau et al., 2017). The wDice score has been used frequently for evaluating the within-
subject similarity of reconstructed WM bundles (Boukadi et al., 2019; Cousineau et al., 2017;
Kruper et al., 2021; Radwan et al., 2022; F. Zhang et al., 2019). It is, however, difficult to
compare it to the unweighted Dice score we used here. We deliberately decided against using
the wDice score because it has been shown that the streamline density often does not reflect
underlying biology but rather how difficult it is to track through a considered voxel (C.-H. Yeh
et al., 2021) based on regions of crossing fibers or a bottleneck effect (Schilling et al., 2022).
Further, it may not be optimal for our purpose of comparing both within- and between-subject
overlap. Since wDice places more emphasis on densely tracked regions, which tend to be
more similar across subjects, it reduces sensitivity to inter-subject differences and may thus
inflate estimates of reliability.

In addition to the Dice score, we used discriminability to summarize the reliability per bundle.
We found that WM bundles from low-resolution scans can be identified with high accuracy,
especially when reconstructed using SS3T, which outperformed GQI and CSD.
Discriminability values varied between 0.629 and 0.993 for different bundles and ODF
reconstructions, with means >0.94. While there is no comparable work evaluating the
discriminability of reconstructed WM bundles, studies examining the reliability of functional
connectivity have reported discriminability values ranging from 0.654-0.98 (Bridgeford et al.,
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2021; Camp et al., 2024; Shearer et al., 2025). For inter-regional structural connectivity in
research quality data, one study reported that discriminability varies by the number of parcels
in the GM atlas and with the type of edge weighting, with values between 0.75 and 0.96
(Bridgeford et al., 2021). As such, our results for single-shell scans with limited angular
resolution are well within the range of what could be expected for widely used neuroimaging
derivatives.

While a reliable bundle reconstruction is essential, most brain-behavior studies leverage
scalar features derived from WM bundles, such as total volume, FA, and MD. We found that
scalar features extracted from reconstructed bundles showed fair test-retest reliability as
defined by the ICC. Prior work has reported that the volume of association bundles
reconstructed from the HCP-YA dataset had a median ICC of 0.81 (F.-C. Yeh, 2020).
Considering only equivalent bundles, we observed lower but still acceptable median ICCs for
bundle volume: 0.63 for GQI, 0.52 for CSD, and 0.67 for SS3T. Importantly, these values
remained within the range of other widely used neuroimaging features employed successfully
in inter-individual prediction. For example, resting state functional connectivity (rsFC) exhibits
ICCs between 0.15 and 0.65 with an overall mean of 0.29 (Noble et al., 2019). For task FC,
these values range from -0.02 to 0.87, with a mean of 0.397 (Elliott et al., 2020). For inter-
regional structural connectivity, reported ICCs have ranged from 0.35 to 0.62 across
reconstruction methods (Buchanan et al., 2014) and 0.50 to 0.67 for different types of data
(Prckovska et al., 2016). As such, features derived from single-shell dMRI with lower angular
resolution have ICCs similar to other measures widely used in contemporary research.

In addition to possessing acceptable reliability, the results of our brain-behavior analyses
demonstrated that WM bundles reconstructed from limited diffusion acquisitions can predict
cognitive performance (mean prediction accuracy r between 0.06-0.36). While relatively few
studies have used features derived from WM bundles for cognition prediction, existing
approaches primarily rely on the advanced diffusion data from the HCP Young Adult (HCP-
YA) dataset (Van Essen et al., 2013). When not correcting for any confounding factors, mean
prediction accuracies between r = 0.053 and 0.335 could be observed for different cognition
scores and features (Lo et al., 2025). When TBV was accounted for, prediction accuracies
ranged from r=0.18 t0 0.37 (W. Liu et al., 2023). Similar results have been observed in studies
predicting cognition from the structural connectome (SC) derived from advanced datasets
such as the HCP-YA and ABCD datasets (Garavan et al., 2018), with values comparable to
ours: r = 0.05-0.3 (Z. Zhang et al., 2019), 0.13-0.41 (M. Liu et al., 2021), 0.2-0.3 (Dhamala et
al., 2021), and -0.02-0.25 (Rauland et al., 2025). When accounting for confounds such as age,
sex, education, and motion, prediction performance was in the range of: r = -0.02-0.32 (Y.
Zhang et al., 2024), -0.02-0.26 (Litwinczuk et al., 2022), and 0.15-0.28 (Ooi et al., 2022).
Despite relying on clinically feasible single-shell, lower angular resolution scans and rigorously
controlling for relevant confounds, our prediction results are thus on par with studies that use
much more advanced diffusion data. This underscores the potential of such limited dMRI
acquisitions for brain-behavior studies.

As part of our brain-behavior analyses, we observed that bundle volume consistently
outperformed FA and MD in prediction accuracy, aligning with prior findings (Yeung et al.,
2023; Z. Zhang et al., 2019). However, this superior performance might have been partially
driven by the global effects of TBV (Pietschnig et al., 2015; Royle et al., 2013). Including TBV
as a confound and regressing it from the features resulted in a general drop in prediction
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performance. Nevertheless, the remaining signal indicates that WM bundle features contain
information relevant to cognition beyond TBV itself. Furthermore, combining all three feature
types improved prediction performance across reconstruction methods, though the
comparison is partially confounded by the difference in feature dimensionality (i.e., 162 vs. 54
features).

Several limitations should be considered when interpreting our results. First, although our data
were acquired using clinically feasible parameters, they were collected in a research setting.
Actual clinical data may introduce additional sources of variability and artifacts, such as
increased motion in patient populations or structural abnormalities like tumors, stroke lesions,
or other pathological changes. Moreover, clinical diffusion MRI protocols vary across
institutions and countries. While the presented acquisition parameters are feasible to be
applied in large academic centers like the Children’s Hospital of Philadelphia, it is not
uncommon for hospitals to acquire images with as few as 6 gradient directions, which is the
minimum necessary number of directions to model the diffusion tensor. We do not expect the
results to generalize to scans with fewer gradient directions. Second, our study was conducted
using data from a single site and scanner; when pooling data from multiple sites or over a
longer time in which the institution’s scanner, acquisition protocol, or software might have
changed, harmonization (Moyer et al., 2020; Pinto et al., 2020) becomes necessary. Third,
while our two 32-direction scans were representative of clinical constraints, they were
originally designed to be combined into a single 64-direction scan and thus used different sets
of gradient directions. Compared to traditional test-retest data, this may have introduced
additional variability in the data. However, this limitation would lead to an underestimation
rather than an overestimation of reliability. Finally, as in Wilkins et al (2015), we would like to
stress that the relatively low b-value and the low number of directions might not be equally
well suited for all three reconstruction methods. Generally, all three methods evaluated here
are optimized for higher b-values (GQI b=1500, CSD: h=3000, SS3T: b=2500) and a higher
angular resolution (GQI: >100, CSD: >60, SS3T: >45), and their relative performance may
change for acquisitions including a higher b-value and more directions.

In summary, this study highlights the research potential of single-shell dMRI data with
relatively limited angular resolution. We demonstrated that most major white matter bundles
can be reliably reconstructed and that features derived from these reconstructions are reliable
enough to allow for brain-behavior analyses. In addition, we show that SS3T generally
provided the highest discriminability while still reconstructing relatively complete bundles. The
results lay the groundwork for future studies to apply modern analytic methods, such as
person-specific bundle segmentation, to the massive pool of legacy research dMRI data and
clinically acquired dMRI scans. Notably, healthcare systems routinely collect diffusion scans
at a scale unmatched by any research consortium, with samples that are more
demographically diverse and representative of the general population. Unlocking this resource
would not only allow the creation of more generalizable normative brain charts (Schabdach et
al., 2023), but also enable studies of rare diseases that are difficult to capture in research
cohorts. Further, truly massive dMRI datasets have the potential to both improve brain-
behavior analyses (Cui & Gong, 2018; Gell et al., 2024; Marek et al., 2022; Scheinost et al.,
2019) and may be critical for leveraging artificial intelligence methods that require massive
training datasets (Hoffmann et al., 2022).
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Supplementary

Figure S1: Reconstruction success rates per bundle per method. The reconstruction success rates represent the
fraction of scans for which a given bundle could be reconstructed. Marked in bold are bundles with reconstruction

fractions < 1 for at least one of the three reconstruction methods.
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Discriminability p-values
WM bundle Gal csD SS3T | GQ-CSD CSD-SS3T  GQI-SS3T
. L 0.971 0.961 0.981 0.060 0.001 0.061
Arcuate Fasciculus R 0.891 0.936 0.970 0.001 0.001 0.001
Cingulum L 0.981 0.968 0.983 0.007 0.004 0.742
R 0.979 0.957 0.980 0.001 0.001 0.847
Extrome Capsule L 0.898 0.914 0.964 0.002 0.001 0.001
R 0.928 0.909 0.967 0.001 0.001 0.001
L 0.984 0.953 0.984 0.001 0.001 0.966
Frontal Aslant Tract R 0.984 0.955 0.985 0.001 0.001 0.924
. L 0.972 0.953 0.978 0.000 0.001 0.271
Hippocampus Alveus R 0.974 0.940 0.962 0.001 0.001 0.026
Inferior Fronto Occipital L 0.916 0.971 0.986 0.001 0.009 0.001
Fasciculus R 0.978 0.968 0.983 0.070 0.011 0.435
Inferior Longitudinal L 0.960 0.962 0.980 0.805 0.000 0.000
Fasciculus R 0.981 0.963 0.981 0.000 0.001 0.891
Middle Longitudinal L 0.928 0.896 0.947 0.001 0.001 0.001
Fasciculus R 0.967 0.916 0.965 0.001 0.001 0.715
. L 0.980 0.959 0.980 0.000 0.000 0.961
Parietal Aslant Tract R 0979 0952 | 0980 0.001 0.001 0.823
Superior Longitudinal L 0.982 0.962 0.982 0.001 0.000 0.857
Fasciculus R 0.980 0.962 0.981 0.000 0.000 0.954
. . L 0.982 0.958 0.981 0.001 0.001 0.806
Uncinate Fasciculus R 0.981 0.954 0.981 0.001 0.001 0.947
Vertical Occipital L 0.980 0.967 0.983 0.002 0.003 0678
Fasciculus R 0.981 0.963 0.981 0.000 0.000 0.944
Acoustic Radiation L 0.918 0.959 0.944 0.001 0.002 0.001
R 0.944 0.956 0.935 0.039 0.001 0.096
.. L 0.986 0.966 0.986 0.001 0.001 0.975
Corticostriatal Tract R 0987 0970 | 0989 0.005 0.003 0.818
- L 0.983 0.968 0.985 0.021 0.005 0.750
Thalamic Radiation R 0.986 0.969 0.986 0.003 0.003 0.990
S L 0.817 0.946 0.993 0.001 0.001 0.001
Optic Radiation R 0.833 0.863 0.960 0.001 0.001 0.001
Fomix L 0.899 0.850 0.891 0.001 0.001 0.110
R 0.899 0.875 0.924 0.000 0.001 0.001
— L 0.886 0.894 0.937 0.189 0.001 0.001
Ansa Lenticularis R 0913 0889 | 0929 0.001 0.001 0.003
. L 0.861 0.843 0.843 0.003 0.969 0.001
Ansa Subthalamica R 0.901 0.868 0.902 0.001 0.001 0.969
Fascioulus Lenfioularis L 0.855 0.803 0.827 0.001 0.000 0.001
R 0.832 0.803 0.837 0.001 0.001 0.345
) . L 0.919 0.881 0.901 0.001 0.000 0.004
Fasciculus Subthalamicus o 0.938 0.873 0.893 0.001 0.001 0.001
Corticospinal Tract L 0.893 0.940 0.921 0.001 0.001 0.001
R 0.960 0.944 0.960 0.010 0.007 0.958
. L 0.731 0.824 0.823 0.001 0.899 0.001
Corticobulbar Tract R 0783 0834 0840 0.001 0.316 0.001
. . L 0.981 0.961 0.977 0.000 0.004 0.535
Corticopontine Tract R 0.981 0.958 | 0977 0.000 0.000 0.514
Modial Lemnisous L 0.921 0.902 0.847 0.001 0.001 0.001
R 0.949 0.908 0.921 0.001 0.027 0.001
. Ir 0.638 0.629 0.634 0.539 0.707 0.815
Dentatorubrothalamic Tract 0694 0647 0659 0.001 0.028 0.001
Non-Decussating L 0.937 0.905 0.956 0.001 0.001 0.002
Dentatorubrothalamic Tract R 0.967 0.932 0.976 0.001 0.001 0.094
. L 0.809 0.855 0.954 0.001 0.001 0.001
Reticular Tract R 0.929 0.912 0.970 0.005 0.001 0.001
) . L 0.917 0.903 0.926 0.008 0.001 0.087
Medial Forebrain Bundle o 0.911 0.906 | 0937 0.356 0.001 0.001
Anterior Commissure 0.857 0.854 0.884 0.565 0.001 0.001
Corpus Callosum 0.982 0.967 0.982 0.001 0.002 0.966

Table S1: Discriminability per bundle per method including p-values. A single colored cell per row symbolizes
that the corresponding method led to the best result and was significantly better than the other methods. Two or
three colored cells per bundle show that there was no significant difference between the best two or three
methods. Cells are colored according to the ODF reconstruction method (GQI: blue, CSD: green, SS3T: red) P-
values are calculated using permutation tests as implemented in hyppo (Panda et al., 2020).
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Figure S2: Full distributions of within and between-subject dice scores per bundle for GQI, CSD, and SS3T.
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Figure S3: Median sensitivity and specificity for all 60 reconstructed WM bundles. Sensitivity and specificity were
calculated for each instance (different subjects, different scans) of the reconstructed bundle. Visualized here are
the median sensitivity and specificity values across all instances of a given bundle.
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Sensitivity Specificity
WM bundle
GQl CsD SS3T | GQl CsSD SS3T
X L [0.365 0.651 0.609 0.878  0.900
Arcuate Fasciculus
R | 0.234 0570 0.528 0.863  0.895
. L {0517 0.685 0.655 0.858 0.876
Cingulum
R | 0467 0.623 0.611 0.879  0.888
L {0377 0.758 0.715 0.909 0.925
Extreme Capsule
R [ 0411 0.694 0.666 0913  0.925
L [0.362 0.675 0.591 0.849 0.877
Frontal Aslant Tract
R [ 0444 0.710 0.655 0.856  0.871
i L |0.718 0.877 0.815 0.814  0.859
Hippocampus Alveus
R | 0527 0.728 0.646 0.839 0.876
Inferior Fronto Occipital L | 0465 0.672 0.626 0.876  0.890
Fasciculus R | 0441 0615 0.589 0.885  0.897
Inferior Longitudinal L {0573 0.789 0.722 0.808  0.839
Fasciculus R | 0630 0769 0.757 0.817  0.841
Middle Longitudinal L | 0245 0582 0.480 0.914 0.932
Fasciculus R |0.378 0637 0.583 0912  0.922
) L |0.688 0.785 0.838  0.860
Parietal Aslant Tract
R | 0.688 0.777 0.831
Superior Longitudinal L 10484 0615
Fasciculus R |0.335 0.540
. X L [0.702  0.872
Uncinate Fasciculus
R [0.578  0.768
Vertical Occipital L | 0607 0.783
Fasciculus R | 0.775  0.908
Anterior Commissure 0.097  0.268
Corpus Callosum 0.353  0.463
. - L [0.334  0.599
Acoustic Radiation
R [0.284 0.571
L [0.665  0.855
Ansa Lenticularis
R | 0.341  0.691
) L |0.698 0.897
Ansa Subthalamica
R [ 0517 0.724
L [0.305  0.462
CorticostriatalTract
R [0.325 0.461
X ) ) L [0.000 ' 0.056
Fasciculus Lenticularis
R |0.000 0.011
. . L | 0.096 0.538
Fasciculus Subthalamicus
R | 0.239  0.638
. L |0.281 0.393
Fornix
R [0.337  0.525
) L L [0.360  0.550
Optic Radiation
R [0.355 0.493
. - L [0.319 0467
Thalamic Radiation
R [0.360 0.479
X L | 0.060 0.548
Corticobulbar Tract
R [ 0.110  0.647
. ) L [0.435 0.602
Corticopontine Tract
R [ 0472 0.611
. X L [0.236  0.523
Corticospinal Tract
R [0.348  0.589
i Ir [0.028 0.039
Dentatorubrothalamic Tract
rl [0.028 0.114
i . L | 0.601 0.765
Medial ForebrainBundle
R [0.630  0.785
i . L [0.312  0.520
Medial Lemniscus
R [0.448  0.585
Non-Decussating L | 0431 0665
Dentatorubrothalamic Tract R | 0403  0.619
X L [0.200 0.409
Reticular Tact
R [ 0.404  0.590

Table S2: Median sensitivity and specificity per bundle and reconstruction method. The highest median sensitivity
and specificity values are highlighted in red (GQlI), green (CSD), or blue (SS3T), depending on the method with
which they were achieved.
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ICC Volume ICC MD
CsD GQl SS3T CsD Gal SS3T
0.505 0.614 0.412  0.522
0.500 0.355 0.600  0.482
0.517  0.535 0.403  0.463
0.535  0.593 0.549  0.659
0.502 0.629 0.520  0.402

0.454 0.552 0.634  0.644
0.509 0.569 0.608  0.602
0.487 0.683 | 0.536 0.622 0.582

WM bundle

Arcuate Fasciculus

Cingulum

Extreme Capsule

Frontal Aslant Tract

L
R
L
R
L
R
L
R
HiobocamDUS Alveus L | 0528 0.458  0.477
1 u Veu:
PP P R | 0.495 0.622
Inferior Fronto Occipital L|os18 0293  0.538
Fasciculus R 1 0.499 0.429  0.405
Inferior Longitudinal L o536 0.400  0.269
Fasciculus R 0517 0.516  0.443
Middle Longitudinal L {0530 0609  0.466
Fasciculus R 0.511 0721 0.702
) L | 0.549 0.638  0.523
Parietal Aslant Tract
R 1 0.508 0.646  0.566
Superior Longitudinal L |os12 0710 0.712
Fasciculus R 0.543 0.698  0.694
) A L | 0.568 0.328  0.424
Uncinate Fasciculus
R 10.550 0292  0.248
Vertical Occipital L |o615 0.351 0.283
Fasciculus R | 0.607 0.484  0.470
Anterior Commissure 0.552 0.301 0.387
Corpus Callosum 0.473 0.563  0.501
Lloe11 0.351  0.379
Acoustic Radiation
R 10615 0277  0.491
o L {0515 0.199  0.246
Ansa Lenticularis
R | 0.544 0.286  0.382
) L|0.479 0.218  0.377
Ansa Subthalamica
R 10517 0.273
L | 0.406 0.436  0.397
Corticostriatal Tract
R 10473 0.456  0.397
) o L | 0423 0.203
Fasciculus Lenticularis
R 0.427 0.274 0223
L | o527 0177  0.176
Fasciculus Subthalamicus
R 10450 0.296  0.404
) L | 0418 0.477  0.453
Fornix
R | 0.468 0.488  0.471
) - L | 0526 0.498  0.233
Optic Radiation
R 10482 0.631 0616
) - L | 0.404 0.629 |0315 0431
Thalamic Radiation
R 0.433 0.615 |0.502 0.624
) L | 0.667 0.163  0.242
Corticobulbar Tract
R 10.659 0.152  0.156
) ) L | 0.401 0.429 0317
Corticopontine Tract
R | 0.403 0.477  0.593
o L|o578 0571  0.543
Corticospinal Tract R
0.592 0.431  0.582
Dentatorubrothalamic Tract ir| 0:321 0223 0.237
u I
| 0.416 0.236 | 0.225

0.426 0.247  0.347
0.414 0272 0.335
0.642 0.354  0.411
0.672 0426  0.555
0.466 0.289  0.225
0.445 0423 0.419
0.510 0.417  0.437
0.512 0.446  0.504

Medial Forebrain Bundle

Medial Lemniscus

Non-Decussating
Dentatorubrothalamic Tract

ReticularTract

Xr| B r| (X0

Table S3: ICCs per bundle and reconstruction method for bundle volume, mean FA and mean MD. The highest
ICCs for each bundle and each feature are highlighted in red (GQlI), green (CSD), or blue (SS3T), depending on
the method with which they were achieved.
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Figure S4: Prediction accuracy in terms of negative MSE for predicting complex reasoning from different groups
of features for all three reconstruction methods. Each distribution contains 500 points (100 x 5-fold CV). The left
block of prediction accuracies used features extracted from bundles reconstructed from run-01 scans, the right
block from run-02 scans. For each run, four different groups of features were evaluated: volume, mean FA and
mean MD for each of the 54 considered bundles (162 features), only the bundle volume (54 features), only the
mean FA (54 features), and only the mean MD (54 features).

Figure S5: Prediction accuracy in terms of Pearson correlation for predicting A a composite 1Q score and B
executive functioning from different groups of features for all three reconstruction methods. Each distribution
contains 500 points (100 x 5-fold CV). The left block of prediction accuracies used features extracted from bundles
reconstructed from run-01 scans, and the right block from run-02 scans. For each run, four different groups of
features were evaluated: volume, mean FA, and mean MD for each of the 54 considered bundles (162 features),
only the bundle volume (54 features), only the mean FA (54 features), and only the mean MD (54 features).
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Figure S6: Comparison of the prediction reliability between different reconstruction methods for different groups
of features for A predicting a composite IQ score and B predicting executive functioning. Prediction reliability was
assessed by correlating the predictions obtained from features extracted from run-01 scans with predictions
based on run-02 features for each fold. A higher correlation indicates a higher similarity and therefore also
reliability across scans.

Figure S7: Prediction accuracy (A) and prediction reliability (B) when including TBV as a confound for predicting
complex reasoning.
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